
Universität des Saarlandes
Programming Systems Lab

Polymorphic Lambda Calculus with

Dynamic Types

Bachelor Thesis
Task Formulation

Matthias Berg

Tutors: Guido Tack, Gert Smolka

Polymorphic Lambda Calculus with Dynamic Types – p. 1/8



Motivation
Open Programming System:

Not all components available at compile time

Components linked dynamically

Dynamic type checking needed

Possible construct: type case

Notation: case t1 : T1 of x : T2 ⇒ t2 else t3

Provides branching dependent on type T1 of subterm t1

Evaluates to t2[x := t1] iff T1 = T2 dynamically
otherwise to t3

Polymorphic Lambda Calculus with Dynamic Types – p. 2/8



Type Case
Example:

rep = λX.λx : X.case x : X of x′ : bool ⇒ ”bool”
else case x : X of x′ : int ⇒ ”int”
else ”unknown”

Given a type and a term of this type rep returns a string
representation of the type.

Problem: Type case destroys parametricity of type
abstraction.

abstypeNumber = int

implementation: [...]

rep Number n −→
∗ ”int”

Polymorphic Lambda Calculus with Dynamic Types – p. 3/8



Dynamic Type Name Generation
Solution: Generate new type names dynamically.

Notation: new X = T in t

Type name X can be used in t in place of T .

Use global state for dynamically generated type names
instead of coercions (Rossberg’s approach).

Example:

new X = int in
abstypeNumber = X

implementation: [...]

rep Number n −→
∗ ”unknown”

Polymorphic Lambda Calculus with Dynamic Types – p. 4/8



Laziness
Call-by-need extension for simply typed λ-calculus:

Notation: lazy x = t in t′

Variable x can be used in t′ in place of t

(similar to let )

Evaluate t as late as possible.

Use global state for modelling relationship between x

and t.

Similar construct can be used to express lazy linking:

lazy <X,x> = <T, t> in t′

Polymorphic Lambda Calculus with Dynamic Types – p. 5/8



Task Formulation
Develop a calculus, λN

F
, an extension of system F with

constructs for type case and a binder for new type names.

Use global state instead of coercions.

Use evaluation contexts.

Prove the unique type, the progress and the
preservation property.

Extend the simply typed λ-calculus with call-by-need
evaluation and give proofs for the safety properties.

Use this construct to model lazy linking in system F or in λN

F

Give a model implementation.

Polymorphic Lambda Calculus with Dynamic Types – p. 6/8



References
M. Abadi, L. Cardelli, B. Pierce, and D. Rémy. Dynamic typing in polymorphic
languages. Journal of Functional Programming, 5(1):111-130, Jan. 1995.

Catherine Dubois, François Rouaix, Pierre Weis. Extensional polymorphism.
Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, p.118-129, January 23-25, 1995, San Francisco, California,
United States.

Robert Harper, Greg Morrisett. Compiling polymorphism using intensional type
analysis. Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, p.130-141, January 23-25, 1995, San Francisco,
California, United States.

John C. Mitchell , Gordon D. Plotkin, Abstract types have existential type, ACM
Transactions on Programming Languages and Systems (TOPLAS), v.10 n.3,
p.470-502, July 1988

Joachim Niehren, Jan Schwinghammer, Gert Smolka. A Concurrent Lambda
Calculus with Futures. Technical Report, Programming Systems Lab, 2004.

Benjamin C. Pierce. Types and Programming Languages. The MIT Press, Feb, 2002.

Polymorphic Lambda Calculus with Dynamic Types – p. 7/8



References
Andreas Rossberg. Generativity and dynamic opacity for abstract types. Proceedings
of the 5th International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, pages 241-252, 2003.

Andreas Rossberg. What are Components. Slides, March 2004.

Gert Smolka. Personal communication. http://www.ps.uni-sb.de/∼smolka/,
March 2004.

Eijiro Sumii and Benjamin C. Pierce, A bisimulation for dynamic sealing. Proceedings
of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of programming
languages. ACM Press, January 2004.

Polymorphic Lambda Calculus with Dynamic Types – p. 8/8


	Motivation
	Type Case
	Dynamic Type Name Generation
	Laziness
	Task Formulation
	References
	References

