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Motivation
Open Programming System:

Not all components available at compile time

Components linked dynamically

Dynamic type checking needed

Possible construct: type case

Notation: case t1 : T1 of x : T2 ⇒ t2 else t3

Provides branching dependent on type T1 of subterm t1

Evaluates to t2[x := t1] iff T1 = T2 dynamically
otherwise to t3
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Type Case
Example:

rep = λX.λx : X.case x : X of x′ : bool ⇒ ”bool”
else case x : X of x′ : int ⇒ ”int”
else ”unknown”

Given a type and a term of this type rep returns a string
representation of the type.

Problem: Type case destroys parametricity of type
abstraction.

abstypeNumber = int

implementation: [...]

rep Number n −→
∗ ”int”
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Dynamic Type Name Generation
Solution: Generate new type names dynamically.

Notation: new X = T in t

Type name X can be used in t in place of T .

Use global state for dynamically generated type names
instead of coercions (Rossberg’s approach).

Example:

new X = int in
abstypeNumber = X

implementation: [...]

rep Number n −→
∗ ”unknown”
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Laziness
Call-by-need extension for simply typed λ-calculus:

Notation: lazy x = t in t′

Variable x can be used in t′ in place of t

(similar to let )

Evaluate t as late as possible.

Use global state for modelling relationship between x

and t.

Similar construct can be used to express lazy linking:

lazy <X,x> = <T, t> in t′
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Task Formulation
Develop a calculus, λN

F
, an extension of system F with

constructs for type case and a binder for new type names.

Use global state instead of coercions.

Use evaluation contexts.

Prove the unique type, the progress and the
preservation property.

Extend the simply typed λ-calculus with call-by-need
evaluation and give proofs for the safety properties.

Use this construct to model lazy linking in system F or in λN

F

Give a model implementation.
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