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Motivation

� SEAM: Generic VM framework
� Java Virtual Machine

� Published Specification [Lindholm and Yellin, 1999]

� Wide spread, object-oriented, real-world VM
� Question to answer

� SEAM sensible for OO languages
� Efficiency/Overhead to comparable JVMs

� Aproach
� Reuse Infrastructure from Reference-VM
� Mesure against Reference-VM
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SEAM

� VM Core
� Abstract data store

• Garbage collector
� Generic concurrent execution model

• “Worker” abstraction
� Language Layer

� Language data modeled on top of store
� Model code execution using “Workers”
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Java

� Objects have Properties
(= “abstract fields” [Bacon et al., 2002])
� Locks
� Hash value

� Code unit: .class file
� Provides one Java class
� Loaded by need at runtime by ClassLoader
� Bytecode

� Bytecode execution engine
� Executes methods of Java classes
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Data Model

� Scalars
� int stored as 31Bit value in store
� long, float and double must be boxed

� Java Objects
� Simple (heavy-weight) one-to-one mapping of

fields, e.g. Lock & Hash
� Refinements possible

(think-locks [Bacon et al., 1998], indirection)
� Data Model taken from existing prototype
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ClassLoader

� Loads .class files
� resolves symbolic references

� to other classes and interfaces
� to static strings and numbers

� Methods for creating scalars and arrays

→ reuse of ClassLoader from existing prototype
(straightforward implementation)
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Execution Engine

� BytecodeInterpreter from Kaffe-VM
� Well structured and documented
� Switch-based single opcode execution
� Easy to integrate

• Well factored accessors
⇒ Own implementation of accessors

� Outlook:
� Kaffe provides JIT
� Kaffe-JIT shares much infrastructure with

interpreter
⇒ JIT possible as optional second step
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Timeline

� Milestone 1: Running SEAM-JVM prototype
using new interpreter (15.03.2004)

� Milestone 2: enhancing Data Model (15.05.2004)

� incremental
� combined with writing preliminary thesis

� Milestone 3: Writing final thesis (30.06.2004)

� Milestone 4: Revision of the thesis
� Milestone 5: Final presentation (end of august)
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