
Realizing a Java Virtual Machine with
SEAM

Design Presentation

Patrick Cernko
cernko@ps.uni-sb.de

19. Februar 2004
Programming Systems Lab,

Saarland University

Realizing a Java Virtual Machine with SEAM – p.1/9

mailto:cernko@ps.uni-sb.de


Motivation

� SEAM: Generic VM framework
� Java Virtual Machine

� Published Specification [Lindholm and Yellin, 1999]

� Wide spread, object-oriented, real-world VM
� Question to answer

� SEAM sensible for OO languages
� Efficiency/Overhead to comparable JVMs

� Aproach
� Reuse Infrastructure from Reference-VM
� Mesure against Reference-VM

Realizing a Java Virtual Machine with SEAM – p.2/9



SEAM

� VM Core
� Abstract data store

• Garbage collector
� Generic concurrent execution model

• “Worker” abstraction
� Language Layer

� Language data modeled on top of store
� Model code execution using “Workers”

Realizing a Java Virtual Machine with SEAM – p.3/9



Java

� Objects have Properties
(= “abstract fields” [Bacon et al., 2002])
� Locks
� Hash value

� Code unit: .class file
� Provides one Java class
� Loaded by need at runtime by ClassLoader
� Bytecode

� Bytecode execution engine
� Executes methods of Java classes

Realizing a Java Virtual Machine with SEAM – p.4/9



Data Model

� Scalars
� int stored as 31Bit value in store
� long, float and double must be boxed

� Java Objects
� Simple (heavy-weight) one-to-one mapping of

fields, e.g. Lock & Hash
� Refinements possible

(think-locks [Bacon et al., 1998], indirection)
� Data Model taken from existing prototype

Realizing a Java Virtual Machine with SEAM – p.5/9



ClassLoader

� Loads .class files
� resolves symbolic references

� to other classes and interfaces
� to static strings and numbers

� Methods for creating scalars and arrays

→ reuse of ClassLoader from existing prototype
(straightforward implementation)

Realizing a Java Virtual Machine with SEAM – p.6/9



Execution Engine

� BytecodeInterpreter from Kaffe-VM
� Well structured and documented
� Switch-based single opcode execution
� Easy to integrate

• Well factored accessors
⇒ Own implementation of accessors

� Outlook:
� Kaffe provides JIT
� Kaffe-JIT shares much infrastructure with

interpreter
⇒ JIT possible as optional second step

Realizing a Java Virtual Machine with SEAM – p.7/9



Timeline

� Milestone 1: Running SEAM-JVM prototype
using new interpreter (15.03.2004)

� Milestone 2: enhancing Data Model (15.05.2004)

� incremental
� combined with writing preliminary thesis

� Milestone 3: Writing final thesis (30.06.2004)

� Milestone 4: Revision of the thesis
� Milestone 5: Final presentation (end of august)

Realizing a Java Virtual Machine with SEAM – p.8/9



References

[Bacon et al., 2002] Bacon, D. F., Fink, S. J., and Grove, D. (2002). Space- and Time-Efficient
Implementation of the Java Object Model. In Magnusson, B., editor, Proceedings of the Sixteenth
European Conference on Object-Oriented Programming (ECOOP 2002), volume 2374 of Lecture
Notes in Computer Science, pages 111–132, Málaga, Spain. Springer-Verlag.

[Bacon et al., 1998] Bacon, D. F., Konuru, R., Murthy, C., and Serrano, M. (1998). Thin locks:
Featherweigt synchronization for Java. In Proceedings of the ACM SIGPLAN ’98, Conference on
Programming Language Design and Implementation (PLDI), pages 258–268. ACM Press.

[Brunklaus and Kornstaedt, 2002] Brunklaus, T. and Kornstaedt, L. (2002). A Virtual Machine for
Multi-Language Execution. Technical report, Programming Systems Lab.

[Lindholm and Yellin, 1999] Lindholm, T. and Yellin, F. (1999). The JavaTM Virtual Machine
Specification. Adison Wesley, 2 edition.

Realizing a Java Virtual Machine with SEAM – p.9/9


	Motivation
	SEAM
	Java
	Data Model
	ClassLoader
	Execution Engine
	Timeline
	References

