
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Master’s Thesis

Spartacus

A Tableau Prover for Hybrid Logic

submitted by

Daniel Norbert Götzmann

submitted
12 January 2009

Supervisor

Prof. Dr. Gert Smolka

Advisor

Mark Kaminski, M.Sc.

Reviewers

Prof. Dr. Gert Smolka
Prof. Bernd Finkbeiner, Ph.D.

2

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement under Oath

I confirm under oath that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken,
(Datum / Date) (Unterschrift / Signature)

3

Abstract

This thesis presents Spartacus, a tableau-based reasoner for hybrid logic with
global modalities and reflexive and transitive relations. To obtain termination
in the presence of global modalities and transitive relations, Spartacus uses
pattern-based blocking. To achieve a competitive performance on practical prob-
lems, we employ a range of optimization techniques.

After describing the architecture of Spartacus, we evaluate the impact of pattern-
based blocking and the implemented optimization techniques and heuristics on
the performance of the prover. We also compare our system with existing rea-
soners for modal and description logics.

From the evaluation we conclude that pattern-based blocking is a promising
technique that can significantly improve the performance of modal reasoning.

4

5

Acknowledgements

I would like to thank Prof. Gert Smolka, who suggested this topic and, thus,
gave me the opportunity to work on an interesting subject. I also thank Prof.
Bernd Finkbeiner for reviewing this thesis.

I am deeply grateful to Mark Kaminski for dedicating a great amount of time
and effort to reviewing and discussing the progress of this project. I very much
appreciate the numerous comments and suggestions he has offered, which contin-
ually encouraged me to further develop both the implementation and this thesis.
It was also him who suggested the name of Spartacus.

6

Contents

1 Introduction 9
1.1 Hybrid Logics . 9
1.2 Deciding Satisfiability . 10
1.3 Contributions . 11
1.4 Outline . 11

2 Hybrid Logic 13
2.1 Hybrid Logic with E . 13
2.2 Tableaux for H(@, E) . 16
2.3 Blocking . 18
2.4 Reflexivity, Transitivity and Seriality 20

3 Architecture of Spartacus 23
3.1 Overview . 23
3.2 Agenda . 25
3.3 Node Store . 26
3.4 Backtracking Search . 27

3.4.1 Branching Stack . 27
3.4.2 Backtracking . 28

3.5 Extensions . 28
3.5.1 Global Modalities . 29
3.5.2 Nominals . 29
3.5.3 Reflexivity, Transitivity and Seriality 30

4 Blocking and Optimizations 31
4.1 Representing and Normalizing Terms 31
4.2 Pattern-based Blocking . 33

4.2.1 Bit-Matrix-based Pattern Store 34
4.2.2 List-based Pattern Store 35
4.2.3 Tree-based Pattern Store 36

4.3 Backjumping . 37
4.4 Boolean Constraint Propagation 39
4.5 Disjoint Branching . 40
4.6 Lazy Branching . 41
4.7 Caching . 42

5 Evaluation 45
5.1 Approach . 45

7

8 CONTENTS

5.2 Pattern-based Blocking . 48
5.3 Ordering Heuristics . 52
5.4 Disjoint Branching . 57
5.5 Lazy Branching . 58
5.6 Boolean Constraint Propagation 58
5.7 Comparison with Other Systems 58

6 Conclusion 67
6.1 Summary . 67
6.2 Outlook . 68

6.2.1 Difference Modality . 68
6.2.2 Branching Heuristics . 68
6.2.3 Optimization Techniques 68
6.2.4 Evaluation . 69

A Input Syntax 71

Chapter 1

Introduction

Hybrid logic is an expressive extension of modal logic. Like modal logic, hybrid
logic is used to reason about transition systems. Its increased expressive power
compared to basic modal logic lies in the ability to refer to individual states by
the use of nominals, which makes possible reasoning about state equality.

A typical reasoning problem in modal logic is deciding the satisfiability of for-
mulas. Commonly, this problem is tackled using tableau-based algorithms.

This thesis presents an implementation of a tableau-based decision procedure for
hybrid logic with global modalities and reflexive and transitive relations. Our
system employs pattern-based blocking in order to guarantee termination.

This chapter gives a brief overview of hybrid logic and existing approaches for
deciding satisfiability. Following that, we mention the contributions of our work
and outline the organization of the thesis.

1.1 Hybrid Logics

Modal logics [12] are used to reason about transition systems. The basic modal
logic contains operators for reasoning about states that are accessible from a
given state. References to states in basic modal logic are always relative to the
unnamed “current” state. So we can talk about successors of the current state
but not about any fixed named states.

Hybrid logic [4] enriches the expressiveness of modal logic by allowing to explicitly
refer to individual states. The simplest hybrid logic is obtained by extending
basic modal logic with nominals, which can be seen as predicates that are true
in exactly one state. Nominals are used to name individual states and allow to
reason about state equality.

Most hybrid logics also include a satisfaction operator that is used to specify
which property holds on a certain named state. Expressiveness can be increased
further by adding operators like global modalities. The universal global modality
can express that a property holds on all states. Its dual, the existential modality,

9

10 CHAPTER 1. INTRODUCTION

expresses that at least one state exists on which a certain property holds. Further
expressive extensions can be obtained by including difference, converse or graded
modalities.

Hybrid logics are closely related to description logics [54, 11, 1], which have ap-
plications in many fields, including software engineering [66], medical informat-
ics [53], web-based information systems [35], natural language processing [20]
and database technology [15].

1.2 Deciding Satisfiability

A typical reasoning problem for modal logics is deciding the satisfiability of a
formula, i.e., determining whether there exists a transition system that fulfills all
constraints specified by the formula. For computationally deciding satisfiability,
several approaches exist.

The most widely used approach are tableau-based algorithms [36]. Given a for-
mula, a tableau algorithm works by inferring constraints on transition systems
specified by the formula by applying so-called tableau rules, either returning a
representation of a satisfying transition system or proving the formula unsatisfi-
able. Examples of systems based on the tableau method include the hybrid logic
reasoner HTab [31] and description logic reasoners like DLP [52], FaCT++ [64],
pellet [58] and RacerPro [28].

A related approach is based on hypertableaux [7], which aim at reducing the
nondeterminism involved in tableau algorithms. A reasoner following this ap-
proach is HermiT [51]. There also exists the translation-based method, which
works by transforming a modal formula into a decidable fragment of first-order
logic (FOL) and using a reasoner for FOL in order to decide satisfiability. For
instance, MSPASS [38] and Hoolet [8] are reasoners for modal and, respec-
tively, description logics that follow this approach. It is also possible to apply
resolution directly on a hybrid formula (without translation), as it is done by the
hybrid logic reasoner HyLoRes [2].

Other existing computational approaches include sequent-based, game-based and
automata-based methods [36].

Implementing an efficient decision procedure for hybrid logic is challenging. Even
in the case of basic modal logic, a naïve implementation of a tableau algorithm
will perform very badly. Hence, to get a system of practical value, it is crucial
to employ various computational optimization techniques [36]. Further issues
arise once support for nominals and global modalities is to be added. In basic
modal logic, the transition system constructed by the tableau algorithm has the
shape of a tree, enabling the tableau algorithm to proceed in a strictly top-down
manner [45]. Once nominals are used, the shape of the transition system can be
more complex and more sophisticated strategies are required. Furthermore, in
the presence of global modalities or transitive relations, blocking must be used
to guarantee termination of the tableau algorithm [44, 36, 40].

1.3. CONTRIBUTIONS 11

1.3 Contributions

In this thesis, we present Spartacus, an implementation of a tableau-based deci-
sion procedure for hybrid logic with global modalities and reflexive and transitive
relations.

Spartacus implements pattern-based blocking, a technique proposed by Kamin-
ski and Smolka [42]. They argued that pattern-based blocking can significantly
reduce the worst-case size of tableau branches [41] compared to chain-based
blocking as described in [13]. One of the key motivations for our work is to test
whether pattern-based blocking has a positive effect on performance in practice.
This thesis presents our implementation of pattern-based blocking and evaluates
its impact on the performance of a practical decision procedure. Three data
structures are compared regarding their effectiveness for storing and querying
blocked patterns.

To improve the performance of Spartacus, several optimization techniques are
implemented. In particular, we explore a new technique called lazy branching.

Spartacus allows for different strategies of tableau rule application, which en-
ables us to evaluate their practical fitness.

1.4 Outline

The following chapter introduces syntax and semantics of hybrid logic with the
satisfaction operator and global modalities. It also describes the tableau algo-
rithm Spartacus is based on, including the blocking technique used to guarantee
termination. Chapter 3 is concerned with the architecture of Spartacus. The
implementation of pattern-based blocking is described in Chapter 4. Chapter 4
also gives an overview of the implemented optimization techniques. Chapter 5
presents the results of the evaluation of our system. Chapter 6 concludes the
thesis.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Hybrid Logic

This chapter describes the theoretical foundation for a tableau-based decision
procedure for hybrid logic.

Section 2.1 explains the syntax we use for hybrid logic as well as its seman-
tics. Section 2.2 describes the basic tableau algorithm Spartacus is based on.
Section 2.3 explains blocking conditions required for termination. Section 2.4 is
concerned with extensions of the tableau algorithm in order to support reflexivity,
transitivity and seriality.

2.1 Hybrid Logic with E

This section provides a basic definition of the syntax and semantics of H(@, E),
the hybrid logic with the satisfaction operator and global modalities.

Traditionally, modal logic is regarded as an isolated logic whose semantics is
typically defined in terms of Kripke structures [12, 36]. However, modal logic is
also known to be a fragment of higher-order logic [22, 23]. Modal operators can
be seen as higher-order constants [9, 42]. Accordingly, modal decision procedures
can be described using higher-order syntax [29, 42].

We represent modal logic in simple type theory, following the representation
in [42]. Terms and types are defined as usual. Unless otherwise stated, we use
the letters s, t to denote types.

For a term t and a type τ , the notation t : τ is used to express that the term t
is of type τ .

For types τ1, τ2, the functional type τ1τ2 is interpreted as the set of all total
functions from the interpretation of τ1 to the interpretation of τ2. The notation
τ1τ2τ3 is used as an abbreviation for τ1(τ2τ3).

We use λx.t1 and t1t2 to denote abstraction and application, respectively. The
notation t1t2t3 is used as an abbreviation for (t1t2)t3.

The representation of modal logic in simple type theory makes use of two base
types, B and S. The interpretation of B consists of the two truth values, true

13

14 CHAPTER 2. HYBRID LOGIC

and false. Terms of type B are called formulas. The base type S is interpreted
as a nonempty set whose elements are called states or worlds.

We will use three kinds of variables. Variables of type S are called nominal
variables or nominals. Variables of type SB are called propositional variables and
variables of type SSB are called relational variables. Unless otherwise stated,
the letters x, y, z will denote nominals, the letters p, q will denote propositional
variables and the letter r will denote a relational variable.

Intuitively, the logic can be seen as describing properties of graphs. Nominals
denote states, which correspond to nodes in the graph and relational variables
denote relations between states, which correspond to labeled directed edges in
the graph. Propositional variables denote properties on states or nodes.

The following logical constants are used with their usual meaning:

>,⊥ :B ∃,∀ : (SB)B
¬ :BB =̇ :SSB

∧,∨,→ :BBB

For the boolean connectives ∧, ∨, → and the identity =̇, infix notation is used.
For instance, t1 ∧ t2 is written instead of (∧)t1t2. For ∃(λx.t) and ∀(λx.t), the
common abbreviations ∃x.t and ∀x.t are used. When convenient, ẋ is used as an
abbreviation for (=̇)x : SB, i.e., the application of the equality constant =̇ to a
single argument x.

Modal syntax is embedded into higher-order syntax by representing modal terms
as terms of type SB [9, 42]. This representation requires lifted versions of the
boolean connectives that take terms of type SB as arguments. They are defined
as follows:

Definition 2.1 (Lifted boolean connectives).

¬̇px=¬(px) ¬̇ : (SB)SB
(p ∧̇ q)x= px ∧ qx ∧̇ : (SB)(SB)SB
(p ∨̇ q)x= px ∨ qx ∨̇ : (SB)(SB)SB

In addition, the modal constants 〈_〉, [_], E, A, and @ are used, which are
defined as follows:

Definition 2.2 (Modal constants).

〈r〉px= ∃y.rxy ∧ py 〈_〉 : (SSB)(SB)SB
[r]px= ∀y.rxy → py [_] : (SSB)(SB)SB
Epx= ∃p E : (SB)SB
Apx= ∀p A : (SB)SB

@ypx= py @ :S(SB)SB

The diamond (〈_〉) and box ([_]) operators are used to reason about the suc-
cessors of a state with respect to some accessibility relation r. A formula of the
form rxy is called an r-edge from x to y. If rxy holds, y is called an r-successor

2.1. HYBRID LOGIC WITH E 15

of x. The diamond operator asserts the existence of an r-successor that has a
certain property. Its dual, the box operator, asserts that all r-successors have a
certain property.

The global modalities E (existential modality) and A (universal modality) are
used to assert that a certain property must hold on some state or on all states,
respectively. The satisfaction operator (@) is used to express that a certain
property must hold on a particular named state.

Modal terms are defined as follows:

Definition 2.3 (Modal terms). A term t : SB is modal if it has the form

t ::= p | ẋ | ¬̇t | t ∧̇ t | t ∨̇ t | 〈r〉t | [r]t | Et | At | @xt

We apply the convention that ∨̇ binds weaker than ∧̇ and ∧̇ is preceded by ¬̇,
〈r〉, [r], E, A and @x. For instance, we write 〈r〉p ∨̇ p ∧̇ q for (〈r〉p) ∨̇ (p ∧̇ q) and
[r]¬̇p ∧̇ q for ([r](¬̇p)) ∧̇ q.

In the following, it is convenient to assume that modal terms are normalized
such that negations occur only immediately before propositional variables and
nominals.

Definition 2.4 (Negation-normal form (NNF)). A modal term t : SB is in
negation-normal form (NNF) if it has the form

t ::= p | ¬̇p | ẋ | ¬̇ẋ | t ∧̇ t | t ∨̇ t | 〈r〉t | [r]t | Et | At | @xt

Each modal term can be transformed into an equivalent term in NNF in linear
time by pushing negations inwards, applying de Morgan’s laws and using the
duality between the modal operators.

Definition 2.5 (Modal interpretation). A modal interpretation M is an in-
terpretation that

• interprets B as the set {0, 1},

• interprets S as a non-empty set,

• interprets > as 1 (i.e., true) and ⊥ as 0 (i.e., false),

• gives the logical constants >, ⊥, ∧, ∨, →, ∃, ∀, =̇ their usual meaning,
and

• satisfies the equations of Definition 2.1 and Definition 2.2.

We use the following semantic notions:

Definition 2.6 (Models, satisfiability and validity). Let t : SB be a modal
term.

• A modal interpretation M satisfies t iff there exists a nominal x ∈ MS
such thatMtx = 1

• A modal interpretationM that satisfies t is called a model for t.

16 CHAPTER 2. HYBRID LOGIC

• t is satisfiable iff there exists a model for t.

• t is unsatisfiable iff t is not satisfiable.

• t is valid iff for all modal interpretationsM and for all nominals x ∈MS
it holds thatMtx = 1.

Typical reasoning problems of modal logics include deciding satisfiability or va-
lidity of a modal term. Validitity can be reduced to satisfiability since a formula
t is valid iff ¬̇t is unsatisfiable.

The set of variables that occur free in a term t is denoted by Vt. For a set X of
terms, VX is defined as

⋃
{Vt | t ∈ X}.

2.2 Tableaux for H(@, E)

One method to decide modal satisfiability is to use a tableau algorithm. The
tableau method was invented by Beth [10] and Hintikka [30], with Beth [10] being
the first to use the term tableau. The general idea behind tableau algorithms is
to gradually infer new terms by applying inference rules, called tableau rules, to
terms that have already been derived. Satisfiability of a modal term t is proven
if this approach yields a model for t.

This section explains the tableau algorithm for H(@, E) as described in [42].

The set of terms that have been inferred at a certain point during tableau con-
struction is called a tableau branch, which is defined as follows:

Definition 2.7 (Tableau branch). A tableau branch Γ = {t1, . . . , tn} is a set
of terms such that each ti (1 ≤ i ≤ n) is either

• a formula of the form tx for some negation-normal modal term t, or

• an edge of the form rxy.

The nominal x occurring in a formula tx refers to the individual state on which
the term t holds. Thus, its function is analogous to a prefix used in related
calculi [13, 14, 46].

Since, in the following, our formulas containing modal terms will always have the
form tx, we will assume the modal operators in t to have a higher precedence than
the final application of t to x. For instance, 〈r〉tx will be seen as abbreviation
for (〈r〉t)x.

For each branch Γ, we define a state equivalence relation ∼Γ representing the
equational constraints that hold on Γ:

Definition 2.8 (State equivalence relation). Let Γ be a branch. The state
equivalence relation ∼Γ is defined as the equivalence closure of the relation

{(x, y) | ẋy ∈ Γ} ∪ {(x, x) | x ∈ VΓ}

2.2. TABLEAUX FOR H(@, E) 17

R ∧̇
(t1 ∧̇ t2)x
t1x t2x

R♦

〈r〉tx
rxy ty

y 6∈ VΓ RE

Etx

ty
y 6∈ VΓ

R ∨̇
(t1 ∨̇ t2)x
t1x | t2x

R�

[r]tx rxy

ty
RA

Atx

ty
y ∈ VΓ

R@

@ytx
ty

R=̇

tx

ty
x ∼Γ y, t modal

Γ is the tableau branch to which a rule is applied.

Figure 2.1: Tableau Rules

A tableau calculus for H(@, E) is defined by the rules in Figure 2.1. A tableau
rule specifies which formulas can be inferred from the formulas already contained
on a branch Γ. For instance, for a branch Γ ⊇ {[r]tx, rxy}, according to the rule
R� the term ty can be derived, yielding an extended branch Γ′ = Γ ∪ {ty}
containing the derived term in addition.

Definition 2.9 (Extensions). A branch Γ′ is called an extension of a branch
Γ if Γ′ can be obtained from Γ by finitely many applications of tableau rules
defined in Figure 2.1. If additionally Γ′) Γ, then Γ′ is called a proper extension
of Γ.

A branch Γ is called maximal if there is no branch Γ′ such that Γ′ is a proper
extension of Γ.

The application of a tableau rule to a branch Γ yields one or, in the case of
R ∨̇ , two extended branches. Thus, a tableau can be visualized by a tree where
the root is labeled with the terms of the initial branch, the edges are labeled
with the rules applied and the other nodes are labeled with formulas derived
by the corresponding rule applications. Figure 2.2 shows an example of such a
visualization.

An important property of a tableau branch is whether it contains obvious con-
tradictions. This notion is formalized as follows:

Definition 2.10 (Closed and open branches). A tableau branch Γ is called
closed if, for some x, y and p, either

• px ∈ Γ and ¬̇px ∈ Γ, or

• ¬̇ẋy ∈ Γ and x ∼Γ y.

Otherwise, Γ is called open.

Definition 2.11 (Satisfiability of branches). A modal interpretationM sat-
isfies a branch Γ if it satisfies every formula t ∈ Γ, i.e., from t ∈ Γ it follows that
Mt = 1. For a branch Γ, the notion of satisfiability is analogous to the notion
of satisfiability for single terms.

18 CHAPTER 2. HYBRID LOGIC

(〈r〉p ∧̇ ([r]¬̇p ∨̇ [r]q))x

R ∧̇
(〈r〉px), ([r]¬̇p ∨̇ [r]q)x

R♦

py, rxy

yy
yy

yy
yy

EE
EE

EE
EE

[r]¬̇px

R�

[r]qx

R�

¬̇py qy

Figure 2.2: Example of a tableau

In particular, closed branches are always unsatisfiable as there exists no modal
interpretation that satisfies both a term and its negation.

The tableau rules of Figure 2.1 are sound in the sense that a branch Γ is un-
satisfiable if and only if all extensions of Γ are unsatisfiable. Furthermore, the
tableau rules are complete in the sense that repeated application of the rules
can reduce every unsatisfiable branch to a set of closed branches [42]. Together
with the blocking conditions stated in the following section, which are required
for termination, the tableau rules of Figure 2.1 thus yield a decision procedure
for satisfiability in H(@, E). The unsatisfiability of a modal term t in negation-
normal form is proven by starting with a branch Γ = {tx} for some x 6∈ Vt
and successively applying all tableau rules that lead to proper extensions. The
term t is satisfiable if tableau construction yields a maximal open branch and
unsatisfiable otherwise.

2.3 Blocking

The tableau calculus presented in Section 2.2 is not terminating. For terms
of the shape Atx where t contains a diamond or an existential modality, the
tableau construction may not terminate. Figure 2.3 shows two examples of non-
terminating tableau constructions caused by alternating applications of RA and
the nominal generating rules R♦ or, respectively, RE .

Termination of tableau expansion can be ensured by introducing blocking con-
ditions that restrict the applicability of the rules that introduce new nominals,
RE and R♦.

The blocking condition for RE is simple. It states that the rule RE must not
be applied to a formula Etx ∈ Γ if there exists a witness for t, i.e., some y such
that ty ∈ Γ.

For R♦, a more complex blocking condition is needed. We use a technique
called pattern-based blocking, which was introduced by Kaminski and Smolka
[42]. Unlike the traditional chain-based techniques [36, 13] it does not require

2.3. BLOCKING 19

AEpx

RA

A〈r〉px

RA

Epx

RE

〈r〉px

R♦

py

RA

py, rxy

RA

Epy

RE

〈r〉py

R♦

pz pz, ryz

Figure 2.3: Non-terminating tableau constructions

any information about the order in which nominals are introduced to a branch.

Roughly speaking, the idea behind pattern-based blocking is not to apply R♦ to
〈r〉sx ∈ Γ if there is a z such that 〈r〉sx can be satisfied by adding to Γ the edge
rxz such that this addition does not trigger any box propagations.

The blocking condition described in [42] achieves this by introducing the notion
of a pattern:

Definition 2.12 (Diamond pattern). The diamond pattern of 〈r〉sx on a
branch Γ is defined as

PΓ(〈r〉sx) := {〈r〉s} ∪ {[r]t | [r]tx ∈ Γ}

Using this definition, the blocking condition for R♦ can be formulated as fol-
lows: The rule R♦ must not be applied to a formula 〈r〉sx ∈ Γ if there are
y, z such that ryz, sz ∈ Γ and PΓ(〈r〉sx) ⊆ PΓ(〈r〉sy). In practice, this check
can be performed by remembering, at the time we do diamond expansion, the
corresponding pattern as expanded.

This blocking condition is subsumed by the blocking condition introduced in [40],
which states that R♦ must not be applied to 〈r〉sx ∈ Γ if there is a z such that
sz ∈ Γ and for all {t|[r]tx ∈ Γ}, it holds that tz ∈ Γ. Note that, in the latter
approach, termination is only guaranteed if the rule R� is prioritized before R♦.

In contrast to the blocking condition in [42], it remains open whether the stronger
condition in [40] can be implemented efficiently. Hence, we decided to implement
the weaker blocking condition described in [42].

Pattern-based blocking does not only guarantee termination in the presence
of global modalities but can also reduce search space. For instance, if the
tableau algorithm without pattern-based blocking is applied to the branch Γ =
{〈r〉(p ∧̇ 〈r〉t) ∧̇ 〈r〉(q ∧̇ 〈r〉t)}, the formula 〈r〉t might be tested for satisfiability

20 CHAPTER 2. HYBRID LOGIC

Rrefl

[r]tx
tx

r reflexive Rtrans

[r]tx rxy

[r]ty
r transitive

Figure 2.4: Tableau rules for reflexivity and transitivity

twice, depending on the tableau construction strategy. When pattern-based
blocking is applied, this is prevented by the blocking condition.

For practical purposes it is beneficial to work with reduced diamond patterns.

Definition 2.13 (Reduced diamond pattern). The reduced diamond pattern
of 〈r〉sx on a branch Γ is defined as

PR
Γ (〈r〉sx) := {s} ∪ {t | [r]tx ∈ Γ}

The blocking condition for R♦ with reduced diamond patterns states that the
rule R♦ must not be applied to a formula 〈r〉sx ∈ Γ if there are y, z such that
ryz, sz ∈ Γ and PR

Γ (〈r〉sx) ⊆ PR
Γ (〈r〉sy).

The advantage of using the reduced blocking condition is that it may be applica-
ble more often than the original blocking condition. The reason is that, using re-
duced diamond patterns, the relational symbols are not relevant and the bodies of
diamonds and boxes can be exchanged. For example, unlike the original blocking
condition, the reduced blocking condition is applicable for 〈r1〉tx on a branch Γ =
{〈r1〉tx, 〈r2〉ty, ryz, tz} and for 〈r〉sx on Γ = {〈r〉sx, [r]tx, 〈r〉ty, [r]sy, ryz, sz, tz}.

2.4 Reflexivity, Transitivity and Seriality

The tableau algorithm presented in Section 2.2 with blocking conditions de-
scribed in Section 2.3 can easily be extended to enforce reflexivity, transitivity
or seriality of relations [19, 42, 46].

Definition 2.14 (Reflexivity, transitivity and seriality). A relation r is

• reflexive iff every state is an r-successor of itself,

• transitive iff for every state x it holds that if y is an r-successor of x and z
is an r-successor of y, then z is an r-successor of x, and

• serial iff for every state x there exists an r-successor of x.

Reflexivity and transitivity can be enforced by the additional tableau rules Rrefl

and Rtrans shown in Figure 2.4. Seriality of a relation r can be enforced by
conjoining the term A〈r〉>̇ (where >̇ = λx.>) to the term that is to be tested
for satisfiability.

While the original definition of pattern-based blocking is applicable for transitive
relations without modifications, the reduced blocking condition must be adapted.
The reason is that, if r is transitive, a box [r]t that holds on x also holds on all
r-successors of x. So, for instance, if r is transitive, [r]〈r〉p ∧̇ 〈r〉¬̇p is satisfiable
but 〈r〉〈r〉p ∧̇ [r]¬̇p is unsatisfiable, while both terms have the reduced pattern

2.4. REFLEXIVITY, TRANSITIVITY AND SERIALITY 21

{〈r〉p, ¬̇p}. A similar problem occurs when relational variables are exchanged. If
r is transitive, 〈r′〉〈r〉p ∧̇ [r′]¬̇p is satisfiable but 〈r〉〈r〉p ∧̇ [r]¬̇p is unsatisfiable.

To cope with the above problems, we adapt the definition of reduced patterns as
follows:

Definition 2.15 (Reduced transitive diamond pattern). For a transitive
relation r, the reduced diamond pattern of 〈r〉sx on a branch Γ is defined as

PR
Γ (〈r〉sx) := {s} ∪ {t, [r]t | [r]tx ∈ Γ}

22 CHAPTER 2. HYBRID LOGIC

Chapter 3

Architecture of Spartacus

This chapter explains the basic architecture of Spartacus.

Section 3.1 gives an overview of the implementation and a brief description of
practical considerations required to implement the tableau algorithm efficiently.
The subsequent sections give a more detailed explanation of the core components
needed for deciding basic modal logic. Section 3.5 explains additional infrastruc-
ture to support global modalities, state equality, the satisfaction operator as well
as reflexive, transitive and serial relations.

3.1 Overview

The implementation is based on the tableau algorithm presented in Section 2.2.
It attempts to compute, for any given modal term t, whether t is satisfiable. In
order to do this, it tries to find a model for t by constructing a maximal open
branch that is an extension of the branch Γ = {tx} for some x 6∈ VΓ.

The transition from the theoretical description of the tableau algorithm to an
efficient decision procedure requires some practical considerations.

One of those considerations concerns the practical application of the rule R ∨̇ .
It is necessary to check whether at least one of the branches obtained by its
application has a maximal open extension. We chose to perform depth first
backtracking search, a technique that considers only one branch at a time, as it
is done in many logic reasoners [33, 52, 31]. This means, a disjunction (t1 ∨̇ t2)x
on a branch Γ is handled by selecting one of the disjuncts ti. Only after the
algorithm fails to find a maximal open extension of Γ ∪ {tix}, the other branch
Γ ∪ {tjx} (j 6= i) is considered.

Another issue concerns the representation of the information that holds on a
branch. For theoretical purposes, it suffices to regard a branch as a set of terms.
For practical purposes, it is desirable to structure the terms in such a way that
they can be accessed efficiently. The general idea is to store terms that pertain
to a particular node in the same place and separate from terms that pertain to
other nodes [36]. A so-called node store (cf. Section 3.3) stores, for each node,

23

24 CHAPTER 3. ARCHITECTURE OF SPARTACUS

Figure 3.1: Architecture of Spartacus

the terms that have been inferred as constraints on that node and the list of its
successors with respect to the accessibility relations. Intuitively, the node store
stores the transition system determined by the constraints that have been derived
by tableau expansion. When a new constraint is inferred, the contents of the node
store are changed accordingly. The corresponding operations on the node store
include creating new nodes and edges between nodes (e.g., when applying R♦)
and adding newly derived terms to existing nodes. When a negation of a term
already contained in a node is added to that node, the algorithm continues with
the exploration of the next branch.

Another consideration involves the applicability of tableau rules. In theory, a
tableau rule is applicable on a branch Γ if it leads to a proper extension of Γ. In
practice, one needs an efficient way to determine when a rule becomes applicable.
This may happen when a new term is added to a node or when a new node or a
new edge is created. In order to keep track of new terms that have been added
to a node and for which a rule must still be applied, a technique similar to the
ToDo list architecture of FaCT++ [64] is implemented. The general idea is to
use an agenda (cf. Section 3.2) to keep track of terms for which a rule must still
be applied.

Figure 3.1 sketches how the agenda, the node store and backtracking search
interact in order to determine whether a modal term of basic modal logic is
satisfiable. Initially, the node store contains a single node. The input term that
is to be tested for satisfiability is added to that node and terms for which tableau
rules must be applied are added to the agenda. The agenda is processed until

3.2. AGENDA 25

either it becomes empty or there are no alternative branches to be explored after
a branch has become closed.

In the latter case, the input is proven to be unsatisfiable as all branches are
closed. If, however, the agenda becomes empty, all applicable tableau rules have
been applied. Hence, a maximal open branch has been found and a model for
the input can be obtained from the contents of the node store.

In order to support global modalities, equality and the satisfaction operator,
some extensions to the infrastructure are needed as described in Section 3.5.

3.2 Agenda

The agenda is one of the key parts of Spartacus. It is used to keep track of
pending actions. In particular, it stores disjunctions that have not been consid-
ered for branching yet, diamonds and existential modalities not yet expanded,
boxes, universal modalities and satisfaction operators whose contents have not
been propagated yet and equational constraints between nodes (resulting from
positive nominals) that have not been satisfied yet and might later require nodes
to be merged.

In general, if the agenda is empty, all tableau rules that lead to a proper extension
have been applied. As long as the agenda contains terms, tableau construction
continues by selecting a term on the agenda, removing it from the agenda and
inferring new terms by applying corresponding tableau rules. For instance, if a
box expression [r]t pertaining to a node n is considered, the term t is added to
all r-successors of n, corresponding to the application of R�.

Note that most terms can safely be removed from the agenda after the corre-
sponding actions have been performed, as additional tableau rules do not become
applicable for them later during tableau construction. The only exceptions are
box expressions and universal modalities, for which R� or, respectively, RA

might become applicable if a new node is created after they have been processed
and removed from the agenda. Hence, when a new node is created, actions
corresponding to R� or RA

1 are performed immediately. For instance, when
processing a diamond expression 〈r〉s pertaining to a node n, a new r-successor
m of n is created and s is added to m, corresponding to the application of R♦.
In this case, if n already contains the boxes [r]t1, . . . , [r]tk , their bodies t1, . . . , tk
are also added to m immediately, corresponding to the application of R�.

The agenda is implemented as a priority queue [16] with the different types of
actions having different priorities. The prioritization is flexible. For instance,
one can freely choose whether diamond expansions have a higher priority than
processing disjunctions. For diamonds and disjunctions the expansion strategy
can be refined further, e.g., one can choose whether they should be processed in
a FIFO or in a LIFO way.

Since the priority queue is based on a balanced tree map that is ordered according

1cf. Section 3.5.1 for a detailed description on how universal modalities are handled.

26 CHAPTER 3. ARCHITECTURE OF SPARTACUS

to the priority of the actions, both adding a new action and finding the next
action to be performed can be done in logarithmic time in the size of the priority
queue [43].

3.3 Node Store

Another key part of Spartacus is the node store. It is motivated by the idea of
storing information about a node bundled in the same place and separate from
information about other nodes.

The node store consists of an array that stores, for each node, a list of successors
and a store containing all terms that have been added to the node as constraints
during tableau construction. Each node is assigned a unique identifier, which
corresponds to its position in the array.

Operations on the node store include creating new nodes and edges (e.g., when
applying R♦) and adding newly derived terms to existing nodes. A new node is
created in the intuitive way, by extending the array with an additional element.
A new r-edge from a node n to a node m is created by inserting the node m into
the list of r-successors of n.

For each individual node n, a special data structure is maintained that stores
terms that have been added as constraints to n as well as additional information
needed for optimizations described in Chapter 4. In the following, we use Ln to
denote the set of terms that have been added to n during tableau construction
according to the store of n. The event that a term t is found to hold in a node
n when ¬̇t ∈ Ln is called a clash.

When a new term t is added to a node, it must be checked whether adding t leads
to a clash. In many cases, it is also necessary to add t to the agenda in order
to remember that actions corresponding to t must be performed. In particular,
when a new term t is added to a node n, the following effects will result:

• If ¬̇t ∈ Ln, backtracking is invoked.

• If t is a propositional literal or a negated nominal, it is added to Ln.

• If t is a diamond, box, disjunction or positive nominal, it is added to Ln
and inserted into the agenda together with the information that it pertains
to the node n.

• If t is a global modality or a satisfaction term, it is inserted into the agenda.

• If t = t1 ∧̇ . . . ∧̇ tk is a conjunction, the procedure is repeated for each
ti (1 ≤ i ≤ k).

In order to store terms, a special data structure, term store, is used. Terms of
different syntactic categories are stored in separate stores. For instance, each
node contains separate term stores for diamonds and boxes. Thus, terms of
a given syntactic category can be retrieved independently from terms of other
categories.

3.4. BACKTRACKING SEARCH 27

A term store is implemented as ordered and balanced binary tree map that
stores, for each term, dependency information required for our implementation
of dependency-directed backtracking (backjumping, cf. Section 4.3). Therefore,
adding new terms to a term store and determining whether a term store contains
a given term can be done in logarithmic time in the size of the store. If a term
that leads to a clash is found, its dependency information, which is necessary to
invoke backjumping, can be determined without additional costs.

3.4 Backtracking Search

The typical mechanism for dealing with the non-determinism of the rule R ∨̇ is to
apply a depth first backtracking search, exploring one branch at a time [36]. This
means, a disjunction (t1 ∨̇ t2)x ∈ Γ is processed by selecting one of the disjuncts,
let’s say t1x, and continuing with tableau expansion on the branch Γ∪ {t1x}. If
that leads to a clash, backtracking is invoked in order to restore the branch Γ.
Then, the tableau expansion continues on the branch Γ ∪ {t2x}, which contains
the alternative disjunct t2x.

An implementation of backtracking search must keep track of unexplored branches.
In order to perform backtracking efficiently, we also need a mechanism to restore
the contents of the agenda and the node store as they were before a branching
decision.

In the following, we describe how the unoptimized variant of backtracking search
is implemented. Many of the optimizations integrated into Spartacus aim at
improving backtracking search by reducing the search space. Those optimizations
are explained in Chapter 4.

3.4.1 Branching Stack

A branching stack is maintained in order to keep track of unexplored branches.
The branching stack contains, for each branching point, a list of remaining al-
ternatives.

When, according to the agenda, a branching action has to be performed for t =
(t1 ∨̇ . . . ∨̇ tk) located in a node n, one disjunct ti (1 ≤ i ≤ k) of t is selected and
added to n. An item containing the remaining disjuncts {tj | 1 ≤ j ≤ k, i 6= j}
is added to the branching stack. The so-called branching depth is equal to the
number of items contained in the branching stack.

If a clash is detected, backtracking is invoked as described in the following sub-
section. After backtracking is completed, the next alternative is chosen from the
list of remaining alternatives on top of the branching stack. This alternative is
then added to the corresponding node and removed from the list. If that disjunct
is the last alternative of the branching point, the topmost item of the branching
stack is removed.

28 CHAPTER 3. ARCHITECTURE OF SPARTACUS

3.4.2 Backtracking

When a clash has been detected, all actions depending on the last branching
point must be undone. For this task, two different approaches exist, copying and
trailing.

The copying approach works by storing a copy of the state immediately before
a branching alternative is chosen. Backtracking is done by restoring the saved
state. However, if the branching depth becomes high, many copies have to be
stored, leading to high memory consumption and computational overhead for
copying states.

The other approach, trailing, has a lower memory consumption because back-
tracking is performed by undoing those actions that have been performed since
the most recent branching point. Therefore, in order to employ trailing, the
data structures used during tableau construction must allow to efficiently undo
changes.

Spartacus uses trailing as the backtracking technique to reduce memory con-
sumption and computational overhead. When backtracking is invoked, terms
that have been added to a term store or to the agenda after the branching point
to which the system is backtracked have to be removed. Similarly, nodes and
edges that have been added to the node store after the corresponding branching
point must be deleted.

For most data structures, trailing can be implemented by maintaining a stack
that stores, for each branching depth, the information that has been added at
that branching depth. Backtracking on a store is performed by removing elements
according to the stack. This approach is possible because the branching depth
at which an action is performed is always greater or equal than the branching
depth of all previous actions.

The agenda, however, needs special consideration because it is the only data
structure for which backtracking requires more than removal of information
added after a certain branching point. If the agenda is backtracked to a branch-
ing depth that lies between the depth of insertion of a term t and the depth of
execution of the action corresponding to t, the effects of that action are back-
tracked as well. However, t, which is the cause of that action, is still present
on the branch but, since an action for t has been performed, t is no longer on
the agenda. Hence, t must be reinserted into the agenda so that the action
corresponding to t is rescheduled. In order to do this, the agenda maintains a
reinsertion stack. If an action for a term t is executed at a branching depth
that is greater than the depth at which t has been inserted, t is added to the
reinsertion stack. Thus, it can be reinserted if required after backtracking.

3.5 Extensions

The infrastructure described in the previous sections can handle terms of basic
modal logic. In this section, we present how this system is extended to support

3.5. EXTENSIONS 29

global modalities (Section 3.5.1), nominals and the satisfaction operator (Section
3.5.2) as well as reflexivity, transitivity and seriality (Section 3.5.3).

3.5.1 Global Modalities

In order to support global modalities, some extensions are required.

An existential modality Et is expanded by creating a new node n and propagating
t to n. In addition, t is added to a global term store that stores all expanded
existential modalities. If this store contains the term t at the time Et is scheduled
for expansion, a new node for t is not created according to the blocking condition
for E described in Section 2.3.

If a universal modality At must be satisfied according to the agenda, t is propa-
gated to all nodes that are contained in the node store at the time of the prop-
agation. In addition, t is added to a global term store that contains all terms
that must hold universally. When a new node n is created, all terms contained
in this store are propagated to n in order to satisfy the universal modality.

In order to guarantee termination in the presence of global modalities, a block-
ing technique is needed as described in Section 2.3. We employ pattern-based
blocking, whose implementation details are described in Section 4.2.

3.5.2 Nominals

In order to support nominals, the node store contains a nominal map, which maps
nominals to nodes. The nominal map is initialized by mapping each nominal x
occurring in the input term to a node n where Ln initially only contains ẋ.

During tableau construction, the nominal map is used to determine which node
corresponds to a given nominal when satisfaction terms must be handled or
equational constraints must be satisfied. A satisfaction term @xt is handled by
propagating t to the node corresponding to x according to the nominal map. The
remainder of this section is concerned with the more involved task of satisfying
equational constraints.

During tableau construction, it can happen that ẋ is found to hold on multiple
nodes n1, . . . , nk. A naïve implementation of the tableau rule R=̇ shown in
Figure 2.1 would copy each term t that holds on ni to hold on nj (1 ≤ j ≤
k, i 6= j), eventually yielding k nodes containing the same information. This
redundancy is avoided by merging the information contained in n1, . . . , nk into
a single representative node.

Equivalence classes of nodes are represented by disjoint set forests [16]. More
precisely, if two nodes m and n are found to be equal, their contents are merged
into one of the nodes, let’s say m, which becomes the representative of the
equivalence class. A forward pointer to m is inserted at the position of n in
the node store. This way, the items on the agenda referring to n do not need
to be changed because the representative m can be determined by following the
forward pointer of n.

30 CHAPTER 3. ARCHITECTURE OF SPARTACUS

Note that, for the procedure to be correct, it is not necessary to merge two nodes
immediately after inferring that they contain the same nominal. It might be
beneficial to postpone the costly merge operation until further constraints have
been derived. Therefore, when the term ẋ is added to a node n, the information
that ẋ must be satisfied in n is added to the agenda in order to schedule merging
of nodes depending on the prioritization of the agenda.

How an action for ẋ located in n is performed depends on whether n is the
representative node for the nominal x. If this is the case, the equational constraint
is already satisfied and no further action is required. Otherwise the nodes m and
n must be merged in order to satisfy the equational constraint.

In the latter case, one of the nodes, let’s say m, is selected to become the rep-
resentative of the equivalence class. The entry in the node store pertaining to n
is replaced by a forward pointer to m. Terms stored in Ln are copied to Lm. If
a clash is detected in the process, backtracking is invoked. Otherwise, the dia-
mond expressions copied from Ln to Lm must be handled properly. This could
be done by adding them to the agenda as usual. However, we chose a different
approach that works by adding all successors of n to the list of successors of m.
This way, we avoid creating another node for a diamond for which a successor
of n has already been created. For a diamond in Ln for which a node has not
been created at the time of merging, a successor of m will eventually be created,
as it is already on the agenda and m can be determined as representative of n
as described above. In order to make sure that all boxes are propagated to all
successors, each box contained in Lm after merging is added to the agenda.

3.5.3 Reflexivity, Transitivity and Seriality

Support for reflexivity, transitivity and seriality requires only minor changes.

For reflexivity, the rule Rrefl shown in Figure 2.4 is implemented. This means,
when a box expression [r]t is added to a node n and r is a reflexive relation, the
term t is added to n as well.

In order to handle transitivity, propagation of boxes must be adapted according
to the rule Rtrans shown in Figure 2.4. When a box [r]t located in n must be
propagated to an r-successor m of n and r is a transitive relation, [r]t is added
to m in addition to t.

Seriality is handled by initially adding, for each serial relation r, the universal
modality A(〈r〉>̇), where >̇ denotes a valid term that causes no effects when it
is propagated to a node2.

2>̇ is the term represented by the integer 1 as described in Section 4.1.

Chapter 4

Blocking and Optimizations

This chapter provides information about the optimization techniques imple-
mented in Spartacus and describes the implementation of pattern-based block-
ing.

Section 4.1 explains the internal representation of terms as well as the initial
simplification of input terms. Section 4.2 provides detailed information about
the implementation of pattern-based blocking.

Sections 4.3-4.6 describe several optimization techniques that aim at reducing the
size of the search space, i.e., the amount of branches that have to be examined.
Section 4.7 explains caching of unsatisfiable sets of terms.

Spartacus allows optimizations to be turned off, except for normalization of
terms as described in Section 4.1. If desired, pattern-based blocking can also be
disabled. However, as explained in Section 2.3, termination is not guaranteed on
all inputs of H(@, E) if pattern-based blocking is disabled.

4.1 Representing and Normalizing Terms

Much of the data that has to be stored and dealt with during tableau construction
pertains to terms. Hence, the efficiency of an implementation depends on a
suitable internal representation of terms. In particular, the following properties
are desirable:

• Terms should have a compact representation so that they can be stored
cheaply.

• Retrieving additional information about a term must be efficient.

• Conjunctions that contain the same conjuncts should have the same repre-
sentation independent of the order in which they occur. The same applies
to disjunctions.

• Terms containing subterms that are obviously valid or unsatisfiable should
be simplified accordingly.

31

32 CHAPTER 4. BLOCKING AND OPTIMIZATIONS

∧
{t, ¬̇t, . . .} 7→ 0 〈r〉0 7→ 0 E0 7→ 0∨
{t, ¬̇t, . . .} 7→ 1 [r]1 7→ 1 A1 7→ 1∧
{0, . . .} 7→ 0 @x0 7→ 0 A0 7→ 0∨
{1, . . .} 7→ 1 @x1 7→ 1 E1 7→ 1

Figure 4.1: Simplification of terms

• It should be easy to determine whether two terms are negations of each
other.

In general, a representation of hybrid terms that fulfills those properties can
be obtained using techniques similar to those described by Horrocks [33] for
description logic.

The general idea is to represent terms as integers, which we call term indices. This
way, less space is required and efficient data structures for integers can be used.
The tableau system is analytic, i.e., the tableau branches contain only subterms
of the input expression. Hence, it suffices to generate a mapping assigning an
integer to each subterm of the input term. The mapping allows for subterm
sharing. Different occurrences of the same subterm are always assigned the same
integer. The mapping from integers to compact terms, whose subterms have
been replaced by the corresponding integers, is stored in an array A. Hence,
information about a term can be retrieved efficiently.

In order to be able to quickly determine whether two terms are negations of each
other, the negation of a term t is always encoded as an integer that differs from
the index of t only in the least significant bit. This means, if i is even then A[i+1]
is the negation of A[i]. This way, it is possible to detect a clash earlier (e.g., if
{〈r〉p, [r]¬̇p} ⊆ Ln) and not only on the atomic level (i.e., if {p, ¬̇p} ⊆ Ln or
{ẋ, ¬̇ẋ} ⊆ Ln).

Furthermore, conjunctions and disjunctions are normalized. The conjuncts in
conjunctions and the disjuncts in disjunctions are ordered by syntactic category
(e.g., propositional variable, diamond, box, . . .) and, within the same category,
according to the order of their indices. Double occurrences of the same term
are eliminated. Therefore, conjunctions and disjunctions containing the same
subterms are always assigned the same integer.

In addition, terms are simplified by detecting obvious validity and unsatisfiability.
The integers 0 and 1 are assigned to obviously unsatisfiable and obviously valid
terms, respectively. If a conjunction contains both a term and its negation, it is
obviously unsatisfiable. Therefore, 0 is assigned to it. Similarly, if a disjunction
contains a term and its negation, then 1 is assigned to it. In addition, if the
immediate subterm of a diamond term is obviously unsatisfiable, the diamond
term is also obviously unsatisfiable and 0 is assigned to it. Similar rules are
applied to other operators as shown in Figure 4.1. When 0 is propagated to a
node during tableau construction, backtracking is invoked. Propagating 1 to a
node has no effects.

4.2. PATTERN-BASED BLOCKING 33

4.2 Pattern-based Blocking

Pattern-based blocking is a blocking technique for diamond expressions. While
the theory behind pattern-based blocking is described in Section 2.3, this section
is concerned with the implementation details.

When, according to the agenda, a diamond is due to be considered, we have to
check whether the blocking condition is applicable. To do so, a pattern store
is maintained, which stores the patterns for which a witnessing node exists.
Furthermore, for each node, a term store of blocked diamonds is maintained.

Before a diamond 〈r〉s located in n is expanded by creating a new node, we check
whether a witness already exists for the corresponding pattern. Provided that
{t1, . . . , tk} = {t|[r]t ∈ Ln}, this is the case if the pattern {s, t1, . . . , tk} (or, if
r is transitive, {s, t1, . . . , tk, [r]t1, . . . , [r]tk}, cf. Section 2.4) is contained in the
pattern store. If so, 〈r〉s is not expanded. Instead, 〈r〉s is stored in the term store
of blocked diamonds of the node n. Otherwise, 〈r〉s is expanded as usual and
the pattern s, t1, . . . , tk (if r is transitive: {s, t1, . . . , tk, [r]t1, . . . , [r]tk}) is added
to the pattern store, as a witness for this pattern is generated by the diamond
expansion.

When a new box [r]t is found to hold in a node n, for each diamond contained in
the term store of blocked diamonds of n, we check whether the blocking condition
is still applicable. Those diamonds for which this is not the case are removed
from the store of blocked diamonds and reinserted into the agenda.

If the input is satisfiable, the information about blocked diamonds is used to
compute the complete model. In order to do so, for each blocked diamond 〈r〉s
in n, a node m is searched such that s ∈ Lm and {t|[r]t ∈ Ln} ⊆ Lm. Then, an
r-edge from n to m is inserted.

While the implementation of pattern-based blocking as described so far is suf-
ficient to guarantee termination, a stronger variant of pattern-based blocking is
also implemented, which is possibly more effective as an optimization technique.
The stronger variant does not only store a pattern as blocked when a node is
created but also when the body of a box is propagated to a node later during
tableau construction. This means, when the body t of a box [r]t ∈ Ln is prop-
agated to an r-successor m of n that was created for a diamond 〈r〉s ∈ Ln, the
pattern {s} ∪ {t|[r]t ∈ Ln} (if r is transitive: {s} ∪ {t, [r]t|[r]t ∈ Ln}) is stored
in the pattern store as m is a witness for it.

In order to be efficient, the pattern store must be based on a data structure that
provides an efficient operation for determining whether a superset of a given set is
stored. Since backtracking can reset the status of a pattern from expanded to not
expanded, the pattern store must also be capable of being backtracked. In the
following, we describe three versions of the pattern store. We have implemented
a version based on bit matrices as proposed by Giunchiglia and Tacchella [25] and
a version based on an array of lists, which is derived from the bit-matrix-based
pattern store. A third version of the pattern store is based on a tree-based data
structure as proposed by Hoffmann and Koehler [32].

34 CHAPTER 4. BLOCKING AND OPTIMIZATIONS

0 1 2 3 4 5 . . . 31
M [t1] 1 0 1 1 0 0 . . . 0
M [t2] 1 1 0 1 1 0 . . . 0
M [t3] 1 1 1 0 1 0 . . . 0
M [t4] 0 0 1 1 1 0 . . . 0
M [t5] 0 1 1 1 0 0 . . . 0

Figure 4.2: Example of the contents of a bit matrix after five patterns have been
inserted.

4.2.1 Bit-Matrix-based Pattern Store

One of the implementations of the pattern store uses a bit matrix as proposed
by Giunchiglia and Tacchella [25].

The bit matrix of the pattern store contains, for each subterm of the input, a bit
vector. Each stored pattern corresponds to a bit. The bit matrix is maintained
in such a way that a pattern t1, . . . , tn is stored iff the bitwise

∧
of all bit vectors

corresponding to t1, . . . , tn is a bit vector that contains at least one bit that is
not zero.

For example, figure 4.2 shows the contents of the bit matrix after the insertion
of the patterns {t1, t2, t3}, {t2, t3, t5}, {t1, t3, t4, t5}, {t1, t2, t4, t5} and {t2, t3, t4}.
For instance, since {t1, t2, t4, t5} has been inserted as the fourth pattern, M [ti][3]
is set for ti ∈ {t1, t2, t4, t5}.

In the following, letM denote the bit matrix of the pattern store, letM [t] denote
the bit vector corresponding to the term t and let M [t][i] denote the i-th bit of
the bit vector corresponding to the term t.

Initially, each M [t] is the empty bit vector. A new pattern t1, . . . , tn is inserted
to the store by setting M [ti][c] to one for 1 ≤ i ≤ n, where c is the next bit not
yet used for storing a pattern. A query for whether a superset of {t1, . . . , tn}
is stored is performed by testing whether the bitwise

∧
of M [t1], . . . ,M [tn] is

non-zero.

In order to store all blocked patterns, the size of the bit vectors must be larger
than or equal to the number of blocked patterns. Once the number of patterns
exceeds the size of the bit vectors, which is initially 32, the length of the bit
vectors is doubled.

Since it is typically the case that most of the subterms of the input are not part
of any pattern to be stored, a bit vector for a term t is only allocated when t
is part of a blocked pattern for the first time. In the meantime, the empty bit
vector in M [t] is represented by a special symbol in order to reduce the size of
the bit matrix.

4.2. PATTERN-BASED BLOCKING 35

4.2.2 List-based Pattern Store

A potential drawback of the bit-matrix-based pattern store is that, if many pat-
terns with different terms are stored, the bit matrix is large and sparse, i.e., most
bits in the bit matrix are zero. The list-based pattern store is a modification of
the bit-matrix-based approach that addresses this problem. The general idea is
to store, for each term, a list of integers such that the intersection of all lists
associated with a pattern is empty iff that pattern is not blocked. These lists
thus correspond to the bit vectors in the bit matrix. The length of a list is equal
to the number of stored patterns that contain the corresponding term, whereas
the length of a bit vector depends on the total number of stored patterns. Hence,
the list-based approach may significantly reduce the amount of memory required.

Initialization. Once the encoding of terms as described in Section 4.1 has been
completed, the total number n of subterms of the input is known. An array A
of size n is generated such that each element A[i] (0 ≤ i < n) of A is initially an
empty list. The counter c is set to zero.

Insert operation. When a pattern {t1, . . . , tm} (m > 0) is added to the pattern
store, the current value of the counter c is appended to the lists A[ti] (1 ≤ i ≤ m).
Hence, the lists associated with the pattern share the same element. Formally,
the array is updated as follows:

A′[tj] =

{
c :: (A[tj]) if tj ∈ {ti|1 ≤ i ≤ m}
A[tj] otherwise

After the array has been updated, the counter c is incremented by one. Therefore,
the lists stored in A are always sorted in descending order.

For instance, after the insertion of the patterns {t1, t2, t3}, {t2, t3, t5}, {t1, t3, t4, t5},
{t1, t2, t4, t5} and {t2, t3, t4}, the contents of the lists are as follows:

A[t1]: [3, 2, 0]
A[t2]: [4, 3, 1, 0]
A[t3]: [4, 2, 1, 0]
A[t4]: [4, 3, 2]
A[t5]: [3, 2, 1]

Since, e.g., {t1, t2, t4, t5} has been inserted as the fourth pattern, 3 is contained
in the lists for t1, t2, t4 and t5. Note the similarity between the contents of the
bit matrix in Figure 4.2 and the contents of the lists. An integer is contained in
a list iff the corresponding bit is set in the bit matrix.

Querying. A query pattern {t1, . . . , tm} contains m ≥ 1 terms. If m = 1, a
superset of the query pattern {t1} is stored iff A[t1] is not the empty list. If
the pattern to be queried contains more than one element, i.e., m > 1, it must
be determined whether the intersection of the lists associated with the query
pattern is empty. In other words, it must be checked whether the lists contain
at least one common element. Since the lists are ordered, an obvious way to do
this is to try to find the largest common element.

36 CHAPTER 4. BLOCKING AND OPTIMIZATIONS

fun query {t1, . . . , tm}
Initialization:
for 1 ≤ i ≤ m: li := A[ti]
Apply drop to pairs of lists until the heads of all lists are equal:
while ∃i, j:hd(li) 6= hd(lj):

for 2 ≤ i ≤ m:
(l1, li) := drop(l1, li)
if l1 = nil then return false

return true

Figure 4.3: Algorithm for computing whether a superset is stored

Let drop be a procedure that, given a pair of two lists l1 and l2, removes all
elements from l1 and l2 that are larger than the largest common element of the
two lists, or returns (nil, nil) if l1 and l2 have no common element. In other
words, drop satisfies the following recursive equations:

drop(nil, ys) = drop(xs, nil) = (nil, nil)

drop(x :: xr , y :: yr) =

(x :: xr , y :: yr) if x = y

drop(xr , y :: yr) if x > y

drop(x :: xr , yr) if x < y

Hence, if the query pattern contains exactly two elements t1, t2, a superset of
{t1, t2} is stored iff drop (A[t1], A[t2]) does not yield (nil, nil). Using drop, a
procedure for query patterns containing more than two elements is obtained in a
straightforward way. A superset of {t1, . . . , tm} (m > 2) is stored iff the function
sketched in Figure 4.3 returns true.

4.2.3 Tree-based Pattern Store

An alternative implementation of the pattern store is based on a data structure
of unlimited branching trees proposed by Hoffmann and Koehler [32].

The pattern store consists of a set of trees whose nodes are labeled with terms
(more precisely, term indices as described in Section 4.1). The general idea is to
represent a pattern {t1, . . . , tn} by a path in a tree containing the labels t1, . . . , tn.
Terms in the path are stored in increasing order as given by their indices, i.e.,
if a node is labeled with t, the label of its children is always strictly larger than
t. A compact forest is obtained as, if two patterns {t1, . . . , tk, tk+1, . . . , tn} and
{t1, . . . , tk, t′k+1, . . . , t

′
n} share their smallest k elements, their representation in

the forest shares the corresponding nodes. Hence, different children of a node
always have a different label.

An example of the forest storing the patterns {t1, t2, t3}, {t2, t3, t5}, {t1, t3, t4, t5},
{t1, t2, t4, t5} and {t2, t3, t4} is shown in Figure 4.4.

In order to store a pattern {t1, . . . , tn}, where t1 < . . . < tn, we first search the
largest prefix t1, . . . , tk (k ≤ n), such that a tree exists whose root is labeled with
t1 and which contains t1, . . . , tk as a path. If such a tree exists, we add the path

4.3. BACKJUMPING 37

t1

lllllllllllll

EE
EE

EE
EE

t2

t2

yy
yy

yy
yy

EE
EE

EE
EE

t3 t3

yy
yy

yy
yy

EE
EE

EE
EE

t3 t4 t4 t4 t5

t5 t5

Figure 4.4: Example of a forest storing five patterns

fun query ({t1, . . . , tm}, N)
for x ∈ N such that label(x) ≤ t1 :

if label(x) = t1
then

if m = 1
then return true
else query ((t2, . . . , tm), children(x))

else query ((t1, . . . , tm), children(x))
return false

Figure 4.5: Algorithm for computing whether a superset is stored in the forest

tk+1, . . . , tn as a subtree to the node labelled tk. Otherwise, we add a new tree
consisting of the path t1, . . . , tn to the forest.

Figure 4.5 sketches the query function, which is used to determine whether a
superset of {t1, . . . , tn} is stored in the forest. Provided that t1 < . . . < tn and
N is the set of root nodes of the forest, this is the case iff query ({t1, . . . , tn}, N)
returns true.

Since removing patterns from a forest is non-trivial, the tree-based pattern store
is the only data structure in our implementation that uses copying instead of
trailing for backtracking.

4.3 Backjumping

Backjumping [24] is a variant of dependency-directed backtracking [59] that
makes use of information about the cause of a clash in order to prune the
search space. The technique has been used in constraint solvers [5] and SAT
solvers [21, 56] and adapted to modal and description logic reasoners [33, 52, 60].

Backjumping aims at reducing the search space by avoiding thrashing, i.e., the
exploration of branches that differ only in inessential features from branches that
have been explored previously.

Figure 4.6 illustrates an example where thrashing occurs. Branching search starts
by choosing the alternative p1x of (p1 ∨̇ q1)x. Both branches that are then gen-

38 CHAPTER 4. BLOCKING AND OPTIMIZATIONS

¬̇p2x, ¬̇q2x, (p1 ∨̇ q1)x, (p2 ∨̇ q2)x

iiiiiiiiiiiii

UUUUUUUUUUUUU

p1x

rrrrrrr
LLLLLLL q1x

rrrrrrr
LLLLLLL

p2x q2x p2x q2x

Figure 4.6: Example of thrashing

erated by the disjunction (p2 ∨̇ q2)x are closed as ¬̇p2x and ¬̇q2x are already on
the branch. Naïve backtracking, as described in Section 3.4, does not recognize
that the cause for the branches becoming closed is independent from the choice
made for (p1 ∨̇ q1)x. Therefore, the useless exploration of the alternative branch
containing q1x is not avoided.

Backjumping reduces the amount of thrashing as it makes use of information
about the cause of a clash. While naïve backtracking always goes back to the
most recent branching point, backjumping prunes the search space by ignoring
branching points where a different choice can obviously not result in an open
branch.

One way to implement backjumping is to label each term with a dependency set
that contains the branching points on which the term depends [33]. When a clash
is detected, the dependency sets of the clashing terms are used to determine the
most recent branching point that introduced one of the clashing terms. Then,
backtracking directly jumps back to that branching point.

For backjumping to be correct, it is crucial that each dependency set contains
all the branching points on which the corresponding term depends. It is thus
important to understand, which branching points must be added to the depen-
dency set of a term. In general, a branching point b must be included in the
dependency set of a term t if t has been introduced to the branch by an action
that depends on b.

Assume that b is a branching point containing the alternatives t1, . . . , tn. The
dependency set of the first alternative t1 of a branching point b is the dependency
set of the corresponding disjunction extended with b. When, after a clash, a
subsequent alternative ti (1 < i ≤ n) of the branching point is chosen, the
dependency set of ti additionally contains each element contained in at least one
of the dependency sets of the clashing terms. This is necessary because the clash
could be avoided by a different choice at one of those branching points. Note
that b is removed from the dependency set of the last alternative of b, because, in
that case, jumping to b after a clash would be useless as there are no unexplored
alternatives on b.

The dependency set of a term introduced by an action other than branching is
the union of the dependency sets of the terms on which the action depends. For
instance, the conjuncts of a conjunction t inherit the dependency set of t. When
the body of a box tx = [r]sx is propagated to an r-successor y of x, then the
dependency set of sy is the union of the dependency sets of tx and rxy. If terms
are copied from a node n to a node m to satisfy an equational constraint, their

4.4. BOOLEAN CONSTRAINT PROPAGATION 39

dependency sets and the dependency sets of boxes to be propagated to successors
of m must be unioned with the dependency sets of the corresponding nominals.

When a clash is detected, backtracking is invoked with the dependency sets of
the clashing terms. If the union of those dependency sets is empty, it is cer-
tain that there exists no alternative branch that might lead to an open maximal
branch. Therefore, the result unsatisfiable can be returned immediately. Oth-
erwise, backtracking jumps back to the most recent branching point contained
in the union of the dependency sets of the clashing terms. Since a branching
point is only contained in a dependency set if there are unexplored alternatives,
the next alternative can be chosen from this branching point and added to the
branch.

Dependency-directed backtracking as proposed in [59] could prune the search
space even further. By maintaining assumption sets containing all formulas that
have contributed to the closure of a branch, the investigation of any branch that
contains the formulas in one of the assumption sets is avoided. However, it is
not obvious how this approach could be adapted to modal logics.

4.4 Boolean Constraint Propagation

Boolean constraint propagation (BCP) is an optimization technique that helps
reducing the number of branches and lowering the average branching depth [21].

In our realization of BCP, before branching on a disjuction t = t1 ∨̇ . . . ∨̇ tk
located in a node n, we check, for each ti (1 ≤ i ≤ k), whether the negation of
ti is already in Ln. If so, ti does not have to be considered as an alternative
because adding ti would immediately lead to a clash. If, after BCP is applied,
there are at least two alternatives left, branching must be performed on them as
usual, but not on disregarded alternatives.

The greatest gain, however, is achieved if at most one alternative remains. If there
is no remaining alternative, backtracking is invoked immediately. If exactly one
alternative remains, it is added to the branch deterministically.

Note that, if BCP is used in combination with backjumping, eliminated disjuncts
must be handled as if they had actually caused a clash. This means, the union of
the dependency sets of terms with which eliminated disjuncts would have clashed
must be added to the dependency set of each remaining alternative.

We also implemented a more eager version of BCP. Instead of just looking at the
first disjunction on the agenda, it tries to find a disjunction on the agenda that
can be simplified to the point where it contains at most one alternative. If such a
disjunction is found, the remaining alternative is added deterministically, or, if no
alternative remains, backtracking is invoked immediately. Only if no disjunction
can be simplified that far, branching is applied with the weaker version of BCP
as described above.

Thus, the eager version of BCP helps reducing the amount of search by allowing
more deterministic steps to be made before we need to branch. Our implemen-

40 CHAPTER 4. BLOCKING AND OPTIMIZATIONS

Rd
∨̇

(t1 ∨̇ t2)x
t1x | t2x, (¬̇t1)x

Figure 4.7: Tableau rule for disjoint branching

tation of eager BCP can require all disjunctions on the agenda to be examined
every time the propagation routine is invoked. Therefore, eager BCP can also
have a noticeable adverse effect on the performance of the implementation, es-
pecially if many disjunctions are examined without actually detecting cases that
can be simplified far enough. A more sophisticated implementation that reduces
work, e.g., by using watched literals [50, 49], may solve that problem.

4.5 Disjoint Branching

The search technique described so far uses purely syntactic branching. A disjunc-
tion (t1 ∨̇ . . . ∨̇ tk)x is processed by generating a branching point b and selecting
one of the disjuncts, let’s say t1x, to be added to the branch. When backtrack-
ing to b, the disjunct t1x is discarded and tableau construction continues with
an alternative branch containing an alternative disjunct, let’s say t2x. From
backtracking to b and discarding t1x, we know that the alternative branch will
eventually become closed as well if t1x is added to it. However, purely syntactic
branching does not make use of this information.

The problem that arises when branching syntactically is that different branches
are not necessarily semantically disjoint. Therefore, tableau-based algorithms
using syntactic branching cannot polynomially simulate truth-tables [17].

However, the tableau algorithm can be changed to enforce semantically disjoint
branches by replacing R ∨̇ by the tableau rule Rd

∨̇ shown in Figure 4.7 [65]. In
our system, this is implemented as follows: When a disjunct t is discarded, its
negation ¬̇t is added to the corresponding node as an additional constraint. A
possible disadvantage of this approach is that adding (¬̇t)x to the branch might
result in a significantly larger search space. For example, if disjoint branching
is applied on 〈r〉(p ∧̇ q) ∧̇ ([r]¬̇p ∨̇ [r]t) as shown in Figure 4.8, the negation of
[r]¬̇p (i.e., 〈r〉p) is added to the initial node after the first branch has become
closed. Hence, a second r-successor must be created and the subproblem t must
be solved twice.

To avoid this problem, discarded alternatives can also be stored separately in
so-called no-good lists [36]. The general idea is that, if a term t is added to a
node whose no-good list contains t, backtracking can be invoked immediately
because we have already discovered that adding t will eventually lead to a clash.
In general, using no-good lists does not enforce that different branches are se-
mantically disjoint. For instance, if [r](p ∧̇ q) is added to a node whose no-good
list contains only [r]p, backtracking is not invoked immediately.

We have implemented both the disjoint branching rule in Figure 4.7 and no-good
lists.

4.6. LAZY BRANCHING 41

(〈r〉(p ∧̇ q) ∧̇ ([r]¬̇p ∨̇ [r]t))x
R ∧̇

〈r〉(p ∧̇ q)x, ([r]¬̇p ∨̇ [r]t)x
R♦, R ∧̇

rxy, py, qy

rrrrrrr
LLLLLLL

[r]¬̇px
R�

[r]tx, 〈r〉px
R�

¬̇py ty

R♦,R�

rxz, pz, tz

Figure 4.8: Example of disjoint branching causing a larger search space

In our system, no-good lists are implemented by maintaining an additional term
store for each node containing the discarded alternatives. When a new term is
added to a node, it is checked whether it is already contained in the corresponding
store of discarded alternatives. If this is the case, backtracking is invoked as usual.

4.6 Lazy Branching

Lazy branching is an extension of an optimization technique known as lazy un-
folding [33]. It aims at reducing the search space by postponing the application
of the tableau rule R ∨̇ to disjunctions containing propositional disjuncts.

In order to describe lazy branching, we use the letter l to denote a propositional
literal that corresponds to a possibly negated propositional variable p. The
negation of l is denoted by l̄. In addition, we use the function σ that maps
a propositional literal l to ⊥ iff l is a negated propositional variable. Formally,
σ is defined as follows:

σl =

{
⊥ l has the form ¬̇p
> otherwise

The general idea behind lazy branching is that a propositional literal l is a witness
for the satisfiability of a disjunction (l ∨̇ . . .) ∈ Ln as long as l̄ 6∈ Ln and provided
that l̄ is not already used as a witness for the satisfiability of another disjunction
(l̄ ∨̇ . . .) ∈ Ln. As long as a disjunction contains such a witness, branching is
not applied. This preserves completeness of the decision procedure because the
addition of a propositional constraint to a branch not containing its negation
does neither lead to a clash nor to another tableau rule becoming applicable.

In order to implement lazy branching, for each node, a special lazy branching store
is maintained that stores disjunctions together with their respective witnesses.

42 CHAPTER 4. BLOCKING AND OPTIMIZATIONS

When a new disjunction t is added to a node, we check whether t contains a
witness for its satisfiability. If so, t is added to the lazy branching store. Only if
t has no witness, t is added to the agenda.

Each lazy branching store contains a map from propositional variables to pairs
of the shape (>, {t1, . . . , tk}) or (⊥, {t1, . . . , tk}). A propositional variable p
is mapped to (>, {t1, . . . , tk}) if t1, . . . , tk are disjunctions that can be delayed
because they contain p as a witness. Similarly, p is mapped to (⊥, {t1, . . . , tk})
if t1, . . . , tk are disjunctions that can be delayed because they contain ¬̇p as a
witness.

In order to determine whether a disjunction t ∈ Ln can be delayed, we first check
whether t contains a propositional literal l such that l ∈ Ln. If so, t is already
satisfied and additional considerations for t are not necessary. Otherwise, we
check whether t contains a propositional literal l, which is a possibly negated
propositional variable p, such that its negation l̄ 6∈ Ln and

• p is mapped to (σl, {t1, . . . , tk}), in which case t can be added to the list,
thus mapping p to (σl, {t, t1, . . . , tk}), or,

• p is not mapped to anything, in which case an entry (σl, {t}) is created to
which p is mapped.

Only if no such l exists, t is added to the agenda.

When a propositional literal l, which is a possibly negated propositional variable
p, is added to n during tableau construction, we check whether p is mapped
to (σl̄, {t1, . . . , tk}), in which case t1, . . . , tk may no longer be delayed due to
their witness becoming false. Consequently, we try to find a different witness for
t1, . . . , tk. The terms ti for which no witnesses can be found are added to the
agenda.

If the input term is satisfiable, propositional constraints on the propositional
variable p corresponding to l are obtained by checking whether the corresponding
lazy branching store maps the propositional variable p to (>, {. . .}) or (⊥, {. . .}).

Besides lazy branching on propositional literals as described above, Spartacus
also implements lazy branching on boxes, which delays a disjunction ([r]t ∨̇ . . .) ∈
Ln if Ln contains no diamonds and r is not reflexive.

Lazy branching could be extended further by postponing disjunctions containing
a negated nominal ¬̇ẋ provided that ẋ 6∈ Ln.

4.7 Caching

Several reasoners for modal logic or description logic cache the satisfiability re-
sults of sets of terms [25, 27, 34] in order to avoid solving the same subproblem
twice. If the set of terms that hold in a node is cached as unsatisfiable, back-
tracking can be invoked immediately. If the set of terms that hold in a node is
cached as satisfiable, the recomputation of the result already known is avoided.

4.7. CACHING 43

Reasoners that apply caching typically work top-down, looking at one node at a
time [34, 25]. Using this strategy, a node can be cached as unsatisfiable if it is
deleted during backtracking. Furthermore, a node can be cached as satisfiable
when it and all of its successors are fully expanded.

However, in the presence of global modalities or nominals, the top-down expan-
sion strategy cannot be applied naïvely because constraints can be propagated
upwards. For example, when the procedure is applied to ẋ ∧̇ 〈r〉(〈r〉ẋ), a loop is
created, making it impossible to follow the top-down strategy.

Spartacus features a caching technique that allows to cache unsatisfiable sets
of nominal-free terms regardless of the expansion strategy. For a node n, let Tn

denote the set of terms that have been propagated to n from outside, including
bodies of diamonds, boxes and global modalities. The general idea is to cache
Tn once it is found to be unsatisfiable, provided that Tn is nominal-free.

In order to determine whether Tn is unsatisfiable, we employ a technique that
makes use of the dependency sets used for backjumping (cf. Section 4.3). When a
clash is detected in a node n and Tn is nominal-free, it is checked whether Tn can
be cached. This is the case iff the union of the dependency sets of the clashing
terms does not contain a branching point that pertains to n. If Tn is cached as
unsatisfiable and n has been generated as a successor1 of m, we recursively try
to cache Tm.

A set of formulas T is certainly unsatisfiable if a subset of T is unsatisfiable.
Hence, it is beneficial to use for the cache a data structure that supports efficient
querying for whether a subset of a given set is already cached. For this purpose,
we have implemented both a data structure based on bit matrices as proposed
by Giunchiglia and Tacchella [25] and a tree-based data structure as proposed
by Hoffmann and Koehler [32]. The former approach has the advantage that the
cache can be size bounded [25].

When a cache hit occurs, the dependency set needed for backjumping is approx-
imated as described by Horrocks and Patel-Schneider [34]. Since the approxi-
mated dependency set can contain irrelevant branching points, caching can pos-
sibly limit the effectiveness of backjumping. The negative interaction of caching
with backjumping may be reduced if, for each cached set of terms, the terms
that caused the clash were stored. This way, a better approximation of the
dependency sets would be possible.

When caching is enabled, we typically do not encounter any cache hits and,
therefore, no positive effect on performance. In the few cases were cache hits
occur, the number of branches that are explored often increases when caching is
enabled and a positive effect on the decision time is not encountered.

We have not implemented caching for satisfiable sets of terms because, in the
presence of nominals and global modalities, it is not clear how to efficiently
determine whether a node and all of its successors are fully expanded as the
models are not necessarily tree-shaped. However, pattern-based blocking (cf.

1Note that a node has at most one predecessor unless it contains a nominal and that caching
is not applied to nodes containing nominals.

44 CHAPTER 4. BLOCKING AND OPTIMIZATIONS

Sections 2.3, 4.2) subsumes some implementations of satisfiability caches (e.g.,
the satisfiability cache of Donini and Massacci [18], which is implemented as
mixed caching by Goré and Postniece [27]).

Chapter 5

Evaluation

This chapter presents the results of the evaluation.

Section 5.1 provides general information about the tests performed and describes
the sets of terms we used for the evaluation.

We are particularly interested in the effects of pattern-based blocking on perfor-
mance. Section 5.2 compares the cases in which blocking is enabled with those
in which it is disabled. It also shows the results obtained with different data
structures for pattern-based blocking.

Section 5.3 shows the results for different rule application strategies.

Sections 5.4-5.6 deal with the effects of disjoint branching, lazy branching and
boolean constraint propagation.

A comparison of Spartacus with other systems can be found in Section 5.7.

5.1 Approach

In order to evaluate the effect of different optimizations and ordering heuristics
on performance, we use several problem sets from different sources:

• Modal terms generated with the K-CNF-generator written by Tacchella
and Sebastiani [62]. Propositional literals only occur on the lowest level.

– mCNF-c*v03d*: Sets of terms that contain three propositional vari-
ables with the number of clauses ranging from 30 to 300 and the modal
depth ranging from two to six. Each problem set contains nine terms.

– mCNF-c075v04d01: 16 terms that contain 75 clauses, have a modal
depth of one and contain four propositional variables.

– mCNF-c110v05d01: 16 terms that contain 110 clauses, have a modal
depth of one and contain five propositional variables.

45

46 CHAPTER 5. EVALUATION

The latter two sets are interesting because approximately half of their terms
are unsatisfiable, whereas randomly generated terms with a modal depth
larger than one are typically satisfiable for a reasonable number of clauses.

• Hybrid terms with global modalities generated by hGen [3]. hCNF-C*
denotes terms of this class with the number of clauses ranging from 20 to
200. Each term contains three propositional variables and five nominals.
The global depth is two, propositional and nominal literals occur with
a probability of 40 percent on lower levels. The ratio of propositional
variables to nominals is 4:1. Each disjunction consists of three disjuncts,
the probability of a literal being a modal subformula is 80 percent, global
modalities and satisfaction operators each occur with a probability of ten
percent. Each set consists of 20 terms.

• A subset of the Unbounded Modal QBF benchmarks used for TANCS-
2000 [48]. We use QBFs encoded as modal formulas using approaches
based on [55] (qbfS-C*-V*-D*) and [45] (qbfL-C*-V*-D*). We also use
modalized variants (qbfMS-C*-V*-D* and qbfML-C*-V*-D*) where differ-
ent propositional variables are encoded as modal formulas with a single
variable (see [47] for details). Each set consists of eight terms.

• Benchmarks from the Logics Workbench (LWB) [6] for the propositional
modal logic K, KT (with reflexivity) and S4 (with reflexivity and transi-
tivity). For each of these logics there exist 18 sets of terms. Each of these
sets consists of 21 terms of increasing complexity.

Results of the evaluation are presented in tables that show, for each set of terms,
how many problems from that set were solved within 60 seconds. In addition,
we show the average of the decision times.

Results for LWB benchmarks are presented differently because they consist of
sets of terms of increasing complexity. Thus, the tables show, for each setting, an
integer between 1 and 21 that indicates the most complex problem solved within
60 seconds. The decision time in seconds is shown in addition unless there is
another setting with which a more complex problem can be solved within the
given time-out.

If optimizations do not have a significant effect on a class of formulas, we omit
the corresponding rows in the tables.

Note that, for the evaluation of different settings of Spartacus, we focus on the
decision times, excluding the time needed for parsing and preprocessing since it
does not depend on the settings. However, for the comparison of Spartacus
with other systems in Section 5.7, the full running times are shown.

We start with the following initial configuration, which is adjusted after each
experiment according to the insights gained from it:

• disjuncts are processed in the following order: negated nominals, proposi-
tional literals, diamonds, boxes, satisfaction terms, existential modalities,
nominals, universal modalities, conjunctions

• backjumping is enabled

5.2. PATTERN-BASED BLOCKING 47

eager eager eager on off
list matrix tree list

mCNF-c030v03d02 9 0.00 9 0.00 9 0.00 9 0.00 9 0.00
mCNF-c060v03d02 9 0.01 9 0.01 9 0.01 9 0.01 9 0.01
mCNF-c090v03d02 9 0.16 9 0.18 9 0.18 9 0.16 9 0.16
mCNF-c120v03d02 8 4.90 8 5.77 8 5.31 8 8.02 8 3.48
mCNF-c030v03d04 9 0.03 9 0.04 9 0.05 9 0.03 9 0.05
mCNF-c060v03d04 9 0.13 9 0.16 9 0.20 9 0.13 9 0.27
mCNF-c090v03d04 9 0.29 9 0.41 9 0.54 9 0.30 9 0.67
mCNF-c120v03d04 9 0.64 9 1.07 9 1.37 9 0.65 9 1.54
mCNF-c150v03d04 9 1.33 9 2.53 9 2.83 9 1.32 9 4.09
mCNF-c180v03d04 9 1.97 9 4.30 9 4.69 9 2.02 9 7.20
mCNF-c210v03d04 9 3.01 9 7.04 9 7.86 9 3.01 9 10.66
mCNF-c240v03d04 9 4.46 9 11.25 9 12.77 9 4.50 9 15.58
mCNF-c270v03d04 9 9.85 8 16.30 8 17.87 9 9.88 8 23.40
mCNF-c300v03d04 9 12.77 8 25.20 8 27.16 9 12.93 6 22.24
mCNF-c030v03d06 9 0.17 9 0.20 9 0.35 9 0.17 9 0.52
mCNF-c060v03d06 9 0.59 9 0.91 9 2.39 9 0.60 9 2.57
mCNF-c090v03d06 9 1.01 9 2.14 9 8.55 9 1.04 9 7.50
mCNF-c120v03d06 9 2.33 9 5.66 9 24.44 9 2.39 7 12.71
mCNF-c150v03d06 9 4.16 9 12.10 6 42.59 9 4.24 6 35.15
mCNF-c180v03d06 9 7.27 9 21.53 0 9 7.42 2 51.54
mCNF-c210v03d06 9 9.69 9 37.89 0 9 10.10 0
mCNF-c240v03d06 9 13.70 5 41.70 0 9 14.11 0
mCNF-c270v03d06 9 17.09 2 51.22 0 9 17.74 0
mCNF-c300v03d06 9 27.15 0 0 9 27.88 0
mCNF-c075v04d01 16 0.15 16 0.18 16 0.17 16 0.14 16 0.13
mCNF-c110v05d01 16 9.77 16 12.83 16 12.02 16 8.33 16 8.03

Table 5.1: Evaluation results for blocking on mCNF

• the non-eager variant of boolean constraint propagation is employed

• no-good lists are enabled (except for mCNF-*d01, where disjoint branching
is enabled)

• lazy branching on propositional literals is enabled

• caching is disabled

• terms on the agenda are prioritized as follows:

– for mCNF-*d04, mCNF-*d06, mCNF-*d01 and LWB benchmarks: heuris-
tic A as described in Section 5.3

– for mCNF-*d02, hCNF, qbfMS and qbfML: heuristic B as described in
Section 5.3

– for qbfS and qbfL: heuristic D as described in Section 5.3

We ran all experiments on a PC with 2.8 GHz Intel Pentium 4 CPU (Hyper-
threading disabled) and 1 GB RAM, running Linux.

48 CHAPTER 5. EVALUATION

eager eager eager on
list matrix tree list

hCNF-C20 20 0.00 20 0.00 20 0.00 20 0.00
hCNF-C40 20 0.02 20 0.02 20 0.02 20 0.02
hCNF-C60 20 0.56 20 0.59 20 0.60 20 0.78
hCNF-C80 16 4.99 16 5.97 16 5.24 16 7.26
hCNF-C100 13 6.77 12 3.47 13 7.48 12 7.25
hCNF-C120 13 14.07 13 16.73 13 15.65 13 11.83
hCNF-C140 5 6.67 5 7.62 5 7.92 5 5.06
hCNF-C160 7 14.44 7 16.55 7 17.43 7 10.50
hCNF-C180 3 5.37 3 6.06 3 5.92 4 15.80
hCNF-C200 8 28.38 7 28.83 7 29.83 8 20.14

Table 5.2: Evaluation results for blocking on hCNF

5.2 Pattern-based Blocking

This section evaluates the effects of pattern-based blocking in general and com-
pares the different data structures used for storing patterns. Tables 5.1-5.5 show
the results of the evaluation for different pattern stores when eager blocking is
applied. An additional column shows the results for the case when the non-eager
variant of pattern-based blocking is employed (using the best of the three data
structures). If blocking is not crucial to achieve termination, we also show the
results obtained without blocking.

Table 5.1 shows the results on the class mCNF. While pattern-based blocking
has only a small effect on performance if the modal depth is small, it leads to an
immense speedup for larger modal depths if the list-based data structure is used.
The matrix-based data structure performs worse on this problem class. Using
the tree-based data structure can even worsen the performance compared to the
case where pattern-based blocking is disabled.

The results for blocking on terms of the class hCNF is shown in Table 5.2. On
this class, the list-based pattern store is only slightly superior to pattern stores
based on other data structures. While the eager variant is advantageous on terms
with up to 100 clauses, the non-eager variant performs better on terms with more
clauses.

Table 5.3 compares the results obtained for non-modalized QBFs. On this class
of terms, the tree-based data structure generally outperforms the other data
structures. Enabling pattern-based blocking leads to immense speedups on terms
of the class qbfS. On the class qbfL, performance slightly degrades if blocking is
employed. Note that, according to the heuristic D that is used here, disjunctions
are processed with a higher priority than diamonds. In the case of the basic modal
logic K, this has the consequence that the eager and the non-eager variants of
pattern-based blocking coincide. Hence, there is no need to compare the two
variants and we can exclude the corresponding column from the table.

As can be seen in Table 5.4, pattern-based blocking is crucial for the performance
on modalized QBFs. Enabling the eager variant is beneficial. The tree-based
pattern store is superior to the other two data structures.

5.2. PATTERN-BASED BLOCKING 49

eager eager eager off
list matrix tree

qbfS-C10-V4-D4 8 0.00 8 0.00 8 0.00 8 0.03
qbfS-C20-V4-D4 8 0.01 8 0.02 8 0.02 8 0.06
qbfS-C30-V4-D4 8 0.04 8 0.04 8 0.04 8 0.07
qbfS-C40-V4-D4 8 0.03 8 0.03 8 0.03 8 0.03
qbfS-C50-V4-D4 8 0.02 8 0.03 8 0.03 8 0.02
qbfS-C10-V4-D6 8 0.01 8 0.01 8 0.01 8 0.34
qbfS-C20-V4-D6 8 0.03 8 0.03 8 0.03 8 1.28
qbfS-C30-V4-D6 8 0.07 8 0.08 8 0.08 8 1.52
qbfS-C40-V4-D6 8 0.06 8 0.08 8 0.07 8 0.87
qbfS-C50-V4-D6 8 0.07 8 0.08 8 0.07 8 0.15
qbfS-C10-V8-D4 8 0.01 8 0.01 8 0.01 8 1.39
qbfS-C20-V8-D4 8 0.03 8 0.03 8 0.03 8 13.08
qbfS-C30-V8-D4 8 0.09 8 0.10 8 0.10 8 23.23
qbfS-C40-V8-D4 8 0.26 8 0.32 8 0.29 6 13.09
qbfS-C50-V8-D4 8 0.44 8 0.50 8 0.43 6 7.11
qbfS-C10-V8-D6 8 0.01 8 0.01 8 0.01 8 6.73
qbfS-C20-V8-D6 8 0.07 8 0.08 8 0.08 1 7.35
qbfS-C30-V8-D6 8 0.36 8 0.47 8 0.37 0
qbfS-C40-V8-D6 8 1.13 8 1.49 8 1.10 0
qbfS-C50-V8-D6 8 5.62 8 11.47 8 4.91 0
qbfS-C10-V16-D4 8 0.01 8 0.01 8 0.01 4 9.63
qbfS-C20-V16-D4 8 0.04 8 0.04 8 0.05 0
qbfS-C30-V16-D4 8 0.63 8 0.92 8 0.75 0
qbfS-C40-V16-D4 8 0.46 8 0.55 8 0.49 0
qbfS-C50-V16-D4 8 10.19 7 9.63 8 8.47 0
qbfS-C10-V16-D6 8 0.01 8 0.01 8 0.01 3 9.94
qbfS-C20-V16-D6 8 0.10 8 0.11 8 0.12 0
qbfS-C30-V16-D6 8 0.28 8 0.33 8 0.30 0
qbfS-C40-V16-D6 8 1.87 8 2.76 8 1.80 0
qbfS-C50-V16-D6 8 5.40 8 6.96 8 4.06 0
qbfL-C10-V4-D4 8 0.97 8 0.99 8 0.96 8 0.75
qbfL-C20-V4-D4 8 2.59 8 2.69 8 2.56 8 2.01
qbfL-C30-V4-D4 8 2.34 8 2.49 8 2.28 8 1.76
qbfL-C40-V4-D4 8 1.10 8 1.12 8 1.12 8 0.81
qbfL-C50-V4-D4 8 1.11 8 1.16 8 1.12 8 0.82
qbfL-C10-V4-D6 8 13.82 8 15.48 8 10.74 8 9.60
qbfL-C20-V4-D6 4 32.28 2 24.24 6 32.53 6 29.57
qbfL-C30-V4-D6 1 13.91 1 15.68 3 38.81 5 43.56
qbfL-C40-V4-D6 6 13.71 5 5.72 7 19.07 7 16.10
qbfL-C50-V4-D6 8 7.52 8 8.34 8 7.38 8 5.59

Table 5.3: Evaluation results for blocking on non-modalized QBFs

50 CHAPTER 5. EVALUATION

eager eager eager on off
list matrix tree tree

qbfMS-C10-V4-D4 8 0.01 8 0.01 8 0.02 8 0.02 5 27.58
qbfMS-C20-V4-D4 8 0.13 8 0.15 8 0.16 8 0.59 1 44.47
qbfMS-C30-V4-D4 8 0.34 8 0.45 8 0.40 8 7.62 1 49.98
qbfMS-C40-V4-D4 8 4.91 8 8.17 8 5.02 6 8.02 0
qbfMS-C50-V4-D4 8 3.68 8 5.24 8 3.76 6 5.63 0
qbfMS-C10-V4-D6 8 0.02 8 0.02 8 0.02 8 0.03 0
qbfMS-C20-V4-D6 8 2.00 8 3.20 8 2.27 7 3.10 0
qbfMS-C30-V4-D6 8 6.93 7 3.60 8 7.57 7 5.38 0
qbfMS-C40-V4-D6 6 9.75 5 10.57 6 9.64 5 16.73 0
qbfMS-C50-V4-D6 8 6.04 8 13.38 8 6.56 7 15.44 0
qbfMS-C10-V8-D4 8 0.02 8 0.02 8 0.03 8 0.04 0
qbfMS-C20-V8-D4 8 0.21 8 0.27 8 0.25 8 0.62 0
qbfMS-C30-V8-D4 8 2.28 8 4.08 8 2.77 7 2.89 0
qbfMS-C40-V8-D4 3 21.81 1 2.99 3 19.77 1 24.75 0
qbfMS-C50-V8-D4 8 3.68 8 5.24 8 3.76 6 5.63 0
qbfMS-C10-V8-D6 8 0.03 8 0.04 8 0.04 8 0.09 0
qbfMS-C20-V8-D6 8 0.67 8 1.01 8 0.90 8 1.63 0
qbfMS-C30-V8-D6 7 1.74 7 2.91 7 2.11 7 3.45 0
qbfMS-C40-V8-D6 3 11.41 3 13.48 4 12.69 4 28.04 0
qbfMS-C50-V8-D6 1 13.72 1 29.93 1 16.93 0 0
qbfMS-C10-V16-D4 8 0.04 8 0.05 8 0.06 8 0.07 0
qbfMS-C20-V16-D4 8 0.59 8 0.82 8 0.76 8 1.65 0
qbfMS-C30-V16-D4 8 10.22 8 9.36 8 4.25 8 6.04 0
qbfMS-C40-V16-D4 2 24.54 2 25.80 3 13.31 3 18.36 0
qbfMS-C50-V16-D4 0 0 2 45.55 1 58.56 0
qbfMS-C10-V16-D6 8 0.05 8 0.06 8 0.07 8 0.08 0
qbfMS-C20-V16-D6 8 0.48 8 0.65 8 0.61 8 0.74 0
qbfMS-C30-V16-D6 7 8.09 7 9.75 8 8.77 8 12.64 0
qbfMS-C40-V16-D6 4 22.27 3 16.25 5 23.02 5 27.24 0
qbfMS-C50-V16-D6 1 35.73 1 50.35 1 21.74 1 35.63 0
qbfML-C10-V4-D4 8 1.13 8 1.43 8 1.20 8 3.72 0
qbfML-C20-V4-D4 8 6.29 8 8.22 8 6.36 8 17.12 0
qbfML-C30-V4-D4 8 7.69 8 9.23 8 7.69 8 20.22 0
qbfML-C40-V4-D4 8 14.51 8 16.96 8 14.23 8 34.77 0
qbfML-C50-V4-D4 6 21.01 6 24.45 6 20.55 4 40.95 0
qbfML-C10-V4-D6 8 11.42 7 8.94 8 11.34 6 12.95 0
qbfML-C20-V4-D6 8 20.27 8 28.81 8 19.90 2 16.86 0
qbfML-C30-V4-D6 8 25.52 7 33.06 8 24.04 3 57.45 0
qbfML-C40-V4-D6 3 42.05 1 55.08 4 45.25 0 0
qbfML-C50-V4-D6 1 33.56 1 47.10 1 31.78 0 0
qbfML-C10-V8-D4 8 10.30 8 14.56 8 9.74 6 27.04 0
qbfML-C20-V8-D4 5 40.22 1 29.38 7 39.67 0 0
qbfML-C30-V8-D4 0 0 0 0 0
qbfML-C40-V8-D4 0 0 0 0 0
qbfML-C50-V8-D4 0 0 0 0 0
qbfML-C10-V8-D6 5 12.43 4 4.87 7 22.10 3 6.42 0
qbfML-C20-V8-D6 0 0 0 0 0
qbfML-C30-V8-D6 0 0 0 0 0
qbfML-C40-V8-D6 0 0 0 0 0
qbfML-C50-V8-D6 0 0 0 0 0

Table 5.4: Evaluation results for blocking on modalized QBFs

5.2. PATTERN-BASED BLOCKING 51

(a) Results on K and KT benchmarks

eager eager eager on off
list matrix tree tree

k_d4_n 21 0.71 21 0.72 21 0.72 21 4.53 5
k_d4_p 21 0.14 21 0.15 21 0.15 21 0.17 9
k_dum_n 21 0.02 21 0.02 21 0.02 21 0.03 19
k_dum_p 21 0.01 21 0.01 21 0.01 21 0.01 21 0.19
k_path_n 21 0.55 21 0.54 21 0.56 21 0.57 11
k_path_p 21 0.51 21 0.52 21 0.54 21 0.55 13
k_poly_n 21 0.18 21 0.18 21 0.20 21 0.20 21 4.50
k_poly_p 21 0.17 21 0.17 21 0.18 21 0.18 21 4.35
k_t4p_n 21 0.09 21 0.09 21 0.09 21 0.09 7
kt_45_n 21 0.28 21 0.27 21 0.30 21 0.30 6
kt_45_p 21 0.06 21 0.05 21 0.06 21 0.06 7
kt_dum_n 21 0.03 21 0.03 21 0.03 21 0.03 15
kt_md_n 7 17.09 7 11.55 7 9.59 7 21.80 5
kt_md_p 5 20.24 5 8.41 5 10.51 5 10.47 4
kt_path_n 21 35.76 21 35.87 21 36.29 21 36.43 11
kt_path_p 21 28.94 21 28.88 21 29.73 21 29.72 12
kt_ph_n 21 28.52 21 29.05 21 29.28 21 29.81 21 38.88
kt_ph_p 7 43.83 7 46.26 7 46.61 7 44.65 6
kt_poly_n 8 48.66 8 48.67 8 48.65 8 48.74 2
kt_poly_p 5 56.69 5 55.97 5 56.72 5 56.62 1
kt_t4p_n 21 0.23 21 0.25 21 0.24 21 0.24 7
kt_t4p_p 21 0.04 21 0.05 21 0.05 21 0.06 6

(b) Results on S4 benchmarks

eager eager eager on
list matrix tree tree

s4_45_n 21 0.40 21 0.53 21 1.86 21 19.84
s4_branch_n 13 14 27.47 14 42.29 14 27.32
s4_md_n 21 19.48 21 24.36 21 20.34 21 26.39
s4_md_p 9 32.96 9 35.64 9 33.81 9 35.71
s4_path_n 16 49.25 16 48.80 16 47.96 16 49.34
s4_path_p 17 57.52 17 58.51 17 56.02 17 57.10
s4_ph_n 9 26.86 9 28.53 9 26.67 8
s4_ph_p 4 1.28 4 1.68 4 1.46 4 11.01
s4_s5_n 16 53.57 16 53.71 16 57.89 16 54.11

Table 5.5: Evaluation results for blocking on LWB benchmarks

52 CHAPTER 5. EVALUATION

A B C D E
mCNF-c030v03d02 9 0.00 9 0.00 9 0.00 9 0.00 9 0.00
mCNF-c060v03d02 9 0.10 9 0.01 9 0.03 9 0.01 9 0.09
mCNF-c090v03d02 5 0.08 9 0.17 9 4.67 8 2.95 7 0.40
mCNF-c120v03d02 4 19.44 8 5.05 6 11.86 3 7.31 2 30.18
mCNF-c030v03d04 9 0.03 9 0.05 9 0.06 9 0.03 9 0.07
mCNF-c060v03d04 9 0.13 9 0.27 9 0.40 9 0.12 9 0.45
mCNF-c090v03d04 9 0.29 9 0.74 9 1.08 9 0.28 9 1.20
mCNF-c120v03d04 9 0.64 9 1.83 9 2.97 9 0.62 9 3.53
mCNF-c150v03d04 9 1.30 8 4.26 8 9.51 9 1.13 7 9.90
mCNF-c180v03d04 9 1.97 8 8.88 8 21.27 9 1.95 7 22.51
mCNF-c210v03d04 9 3.00 8 17.24 5 27.55 9 2.84 5 34.65
mCNF-c240v03d04 9 4.42 5 22.78 3 42.25 9 4.22 0
mCNF-c270v03d04 9 9.73 4 36.76 1 55.62 9 8.13 0
mCNF-c300v03d04 9 12.69 1 52.87 0 9 10.97 0
mCNF-c030v03d06 9 0.17 9 0.20 9 0.30 9 0.17 9 0.41
mCNF-c060v03d06 9 0.58 9 0.97 9 1.62 9 0.57 9 2.03
mCNF-c090v03d06 9 1.01 9 2.52 9 5.10 9 0.97 9 6.68
mCNF-c120v03d06 9 2.32 9 7.42 9 17.67 9 2.23 8 17.85
mCNF-c150v03d06 9 4.17 9 22.60 7 37.49 9 3.93 7 48.07
mCNF-c180v03d06 9 7.25 6 30.74 3 50.19 9 6.97 0
mCNF-c210v03d06 9 9.82 4 40.09 0 9 9.16 0
mCNF-c240v03d06 9 13.66 3 56.68 0 9 12.84 0
mCNF-c270v03d06 9 16.99 0 0 9 15.87 0
mCNF-c300v03d06 9 26.94 0 0 9 25.63 0
mCNF-c075v04d01 16 0.15 16 1.27 16 0.84 5 9.16 15 2.26
mCNF-c110v05d01 16 9.84 3 22.92 13 27.05 0 0

Table 5.6: Evaluation results for ordering heuristics on mCNF

Table 5.5 shows the results obtained for LWB benchmarks. We omitted bench-
marks on which pattern-based blocking did not have any effect. On many terms,
we encounter a significantly increased performance if pattern-based blocking is
used. If there is a significant difference between the different data structures, the
tree-based data structure is mostly better.

For the following experiments, we use the eager variant of pattern-based blocking.
We employ the tree-based data structure, except for the classes mCNF and hCNF,
for which we use the list-based pattern store.

5.3 Ordering Heuristics

We selected five ordering heuristics for the terms on the agenda that performed
well during preliminary tests and evaluated their performance.

All ordering heuristics we investigated have in common that boxes have the
highest priority, followed by satisfaction terms, nominals, universal modalities
and existential modalities. Diamonds and disjunctions always have the lowest
priority. In the ordering heuristics we have chosen, the priorities of diamonds
and disjunctions among each other are as follows:

A: Diamonds are processed before disjunctions. Diamonds on a new (more re-

5.3. ORDERING HEURISTICS 53

A B C D E
hCNF-C20 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00
hCNF-C40 20 0.04 20 0.02 20 0.02 17 0.28 18 0.33
hCNF-C60 16 0.87 20 0.56 20 1.84 4 0.26 9 1.90
hCNF-C80 9 3.70 14 0.91 16 4.12 0 3 1.96
hCNF-C100 5 0.95 12 2.83 8 3.18 0 2 5.25
hCNF-C120 1 16.71 11 8.61 10 5.84 0 0
hCNF-C140 1 0.45 5 6.72 3 9.62 0 0
hCNF-C160 0 6 11.78 5 12.45 0 0
hCNF-C180 0 3 5.28 3 12.32 0 0
hCNF-C200 0 4 12.44 3 16.00 0 0

Table 5.7: Evaluation results for ordering heuristics on hCNF

cently generated) node precede diamonds on an old (less recently generated)
node. Disjunctions on a new node have a higher priority than disjunctions
on an old node.

B: Diamonds are processed before disjunctions. Diamonds on a new node pre-
cede diamonds on an old node. Disjunctions on an old node have a higher
priority than disjunctions on a new node.

C: Diamonds are processed before disjunctions. Diamonds on a new node pre-
cede diamonds on an old node. Disjunctions are prioritized according to
their dependency sets, i.e., disjunctions that depend on more recent branch-
ing points have a lower priority than disjunctions that only depend on less
recent branching points.

D: Disjunctions are processed before diamonds. Diamonds on a new node pre-
cede diamonds on an old node. Disjunctions on a new node have a higher
priority than disjunctions on an old node.

E: The priorities of diamonds and disjunctions are based on their dependency
sets. The diamond or disjunction that does not depend on branching points
that are more recent than the branching points other diamonds or disjunctions
depend on has the highest priority.

Table 5.6 shows the results obtained on terms of the class mCNF. While heuristic
B is superior on terms of modal depth 2, A and D are better on the terms with
higher modal depths. Heuristic A performs best on terms of the class mCNF-*d01.

The results for hybrid terms with global modalities are summarized in Table 5.7.
The heuristics B and C clearly outperform the other heuristics on that class.

Table 5.8 illustrates the results obtained for non-modalized QBFs. On this class
of terms, heuristic D shows the best performance.

Table 5.9 shows the results for modalized QBFs. While heuristic D performs well
on the class qbfMS, heuristic E is preferable on the class qbfML.

Table 5.10 summarizes the results obtained on the LWB benchmarks. For the
most part, heuristic D shows a good performance on this class of terms.

In the following, we will use heuristic D with the following exceptions: For ex-
periments on qbfML-*d01, we use heuristic A. Heuristic B is used on the classes

54 CHAPTER 5. EVALUATION

A B C D E
qbfS-C10-V4-D4 8 0.00 8 0.00 8 0.01 8 0.00 8 0.00
qbfS-C20-V4-D4 8 1.17 8 0.02 8 0.04 8 0.02 8 0.03
qbfS-C30-V4-D4 8 0.08 8 0.09 8 0.21 8 0.04 8 0.11
qbfS-C40-V4-D4 8 1.98 8 0.06 8 1.47 8 0.03 8 0.14
qbfS-C50-V4-D4 8 0.46 8 0.06 8 0.92 8 0.03 8 0.15
qbfS-C10-V4-D6 8 0.01 8 0.01 8 0.01 8 0.01 8 0.01
qbfS-C20-V4-D6 8 0.06 8 0.07 8 0.17 8 0.03 8 0.07
qbfS-C30-V4-D6 8 0.21 8 0.60 8 0.36 8 0.12 8 0.36
qbfS-C40-V4-D6 7 1.51 8 0.48 7 4.22 8 0.07 8 0.92
qbfS-C50-V4-D6 8 1.71 8 0.17 7 5.50 8 0.07 8 1.01
qbfS-C10-V8-D4 8 0.01 8 0.01 8 0.01 8 0.01 8 0.01
qbfS-C20-V8-D4 8 0.03 8 0.04 8 0.04 8 0.03 8 0.05
qbfS-C30-V8-D4 8 0.08 8 0.14 8 0.11 8 0.10 8 0.14
qbfS-C40-V8-D4 7 0.88 8 1.14 7 3.84 8 0.28 8 3.36
qbfS-C50-V8-D4 4 16.83 8 2.67 2 9.54 8 0.43 8 11.95
qbfS-C10-V8-D6 8 0.01 8 0.01 8 0.01 8 0.01 8 0.01
qbfS-C20-V8-D6 8 0.05 8 0.13 8 0.11 8 0.08 8 0.10
qbfS-C30-V8-D6 8 0.19 8 0.50 8 0.85 8 0.37 8 1.31
qbfS-C40-V8-D6 6 5.92 7 5.75 6 16.66 8 1.11 5 7.17
qbfS-C50-V8-D6 5 2.63 5 7.08 4 18.16 8 4.96 3 13.46
qbfS-C10-V16-D4 8 0.01 8 0.01 8 0.01 8 0.01 8 0.01
qbfS-C20-V16-D4 8 0.03 8 0.05 8 0.05 8 0.05 8 0.05
qbfS-C30-V16-D4 8 0.30 8 1.04 8 1.06 8 0.76 8 0.97
qbfS-C40-V16-D4 8 4.72 8 0.98 8 0.99 8 0.50 8 1.51
qbfS-C50-V16-D4 5 4.30 4 9.21 5 19.11 8 8.59 4 24.81
qbfS-C10-V16-D6 8 0.02 8 0.02 8 0.02 8 0.01 8 0.01
qbfS-C20-V16-D6 8 0.07 8 0.13 8 0.14 8 0.11 8 0.12
qbfS-C30-V16-D6 8 0.21 8 0.42 8 0.59 8 0.30 8 0.46
qbfS-C40-V16-D6 8 0.80 8 4.75 8 3.58 8 1.81 8 7.08
qbfS-C50-V16-D6 8 3.02 7 4.52 8 7.81 8 4.10 7 4.21
qbfL-C10-V4-D4 7 1.03 8 1.35 7 2.62 8 0.95 8 4.43
qbfL-C20-V4-D4 1 30.53 8 4.70 1 53.72 8 2.55 8 9.88
qbfL-C30-V4-D4 1 18.48 8 3.20 0 8 2.26 7 11.31
qbfL-C40-V4-D4 2 1.64 8 2.82 0 8 1.10 7 9.05
qbfL-C50-V4-D4 3 4.35 8 2.10 0 8 1.10 7 5.61
qbfL-C10-V4-D6 6 14.80 6 10.16 2 25.34 8 10.63 4 22.01
qbfL-C20-V4-D6 1 18.09 4 35.57 0 6 32.18 0
qbfL-C30-V4-D6 0 1 29.30 0 3 38.38 0
qbfL-C40-V4-D6 1 15.32 5 4.83 0 7 18.65 1 57.43
qbfL-C50-V4-D6 0 8 9.06 0 8 7.21 0

Table 5.8: Evaluation results for ordering heuristics on non-modalized QBFs

5.3. ORDERING HEURISTICS 55

A B C D E
qbfMS-C10-V4-D4 8 0.02 8 0.02 8 0.02 8 0.01 8 0.02
qbfMS-C20-V4-D4 4 0.25 8 0.16 8 7.05 8 0.07 8 6.21
qbfMS-C30-V4-D4 6 22.63 8 0.41 7 7.69 8 0.18 8 1.84
qbfMS-C40-V4-D4 5 3.50 8 5.10 6 2.53 8 0.46 8 2.42
qbfMS-C50-V4-D4 5 1.39 8 3.87 4 2.86 8 0.88 8 7.39
qbfMS-C10-V4-D6 8 0.02 8 0.02 8 0.02 8 0.02 8 0.03
qbfMS-C20-V4-D6 4 9.61 8 2.30 7 3.42 8 0.17 7 1.99
qbfMS-C30-V4-D6 3 6.18 8 7.66 4 4.56 8 0.49 6 18.05
qbfMS-C40-V4-D6 2 17.46 6 9.74 1 3.72 8 1.23 3 8.54
qbfMS-C50-V4-D6 3 3.16 8 6.86 3 6.93 8 2.91 5 12.36
qbfMS-C10-V8-D4 8 0.03 8 0.03 8 0.03 8 0.02 8 0.03
qbfMS-C20-V8-D4 7 0.47 8 0.26 8 0.46 8 0.15 8 0.52
qbfMS-C30-V8-D4 6 2.35 8 2.80 6 16.64 8 0.91 8 19.44
qbfMS-C40-V8-D4 2 22.00 3 19.80 1 8.19 8 14.26 0
qbfMS-C50-V8-D4 1 9.15 7 26.06 1 2.33 8 10.75 1 2.36
qbfMS-C10-V8-D6 8 0.04 8 0.05 8 0.09 8 0.04 8 0.07
qbfMS-C20-V8-D6 8 0.70 8 0.91 7 1.65 8 0.45 8 2.07
qbfMS-C30-V8-D6 6 2.86 7 2.13 7 2.56 8 2.19 7 6.69
qbfMS-C40-V8-D6 1 2.21 4 12.72 1 6.31 8 16.81 1 7.06
qbfMS-C50-V8-D6 0 1 16.90 0 6 35.25 0
qbfMS-C10-V16-D4 8 0.06 8 0.06 8 0.06 8 0.06 8 0.07
qbfMS-C20-V16-D4 8 0.36 8 0.77 8 0.65 8 0.57 8 0.58
qbfMS-C30-V16-D4 7 1.38 8 4.25 8 4.60 8 3.42 8 8.08
qbfMS-C40-V16-D4 3 9.31 3 13.32 2 7.45 4 13.08 2 11.41
qbfMS-C50-V16-D4 0 2 46.15 0 6 35.36 0
qbfMS-C10-V16-D6 8 0.06 8 0.07 8 0.07 8 0.07 8 0.07
qbfMS-C20-V16-D6 8 0.24 8 0.62 8 0.56 8 0.53 8 1.00
qbfMS-C30-V16-D6 8 2.46 8 8.85 7 9.72 8 6.89 8 11.39
qbfMS-C40-V16-D6 5 9.55 5 23.09 2 21.77 5 15.09 3 18.76
qbfMS-C50-V16-D6 2 42.78 1 21.67 0 1 17.58 0
qbfML-C10-V4-D4 0 8 1.24 8 1.84 3 23.26 8 0.23
qbfML-C20-V4-D4 0 8 6.61 8 6.98 0 8 0.47
qbfML-C30-V4-D4 0 8 7.89 8 10.75 0 8 0.77
qbfML-C40-V4-D4 0 8 14.83 8 17.62 0 8 1.06
qbfML-C50-V4-D4 0 6 21.42 2 31.52 0 8 1.11
qbfML-C10-V4-D6 1 35.58 8 11.81 7 3.00 0 6 1.00
qbfML-C20-V4-D6 0 8 20.91 7 11.98 0 7 4.65
qbfML-C30-V4-D6 0 8 25.12 7 17.21 0 8 1.72
qbfML-C40-V4-D6 0 3 42.60 5 31.41 0 6 7.78
qbfML-C50-V4-D6 0 1 33.06 2 38.81 0 8 9.20
qbfML-C10-V8-D4 1 21.24 8 10.22 7 8.47 0 7 2.40
qbfML-C20-V8-D4 0 7 41.46 6 38.05 0 8 7.47
qbfML-C30-V8-D4 0 0 0 0 7 7.00
qbfML-C40-V8-D4 0 0 0 0 8 9.17
qbfML-C50-V8-D4 0 0 0 0 8 16.26
qbfML-C10-V8-D6 0 7 23.26 6 22.42 0 4 6.69
qbfML-C20-V8-D6 0 0 0 0 7 25.05
qbfML-C30-V8-D6 0 0 0 0 6 9.43
qbfML-C40-V8-D6 0 0 0 0 7 12.35
qbfML-C50-V8-D6 0 0 0 0 7 15.42

Table 5.9: Evaluation results for ordering heuristics on modalized QBFs

56 CHAPTER 5. EVALUATION

A B C D E
k_branch_n 10 30.28 10 55.90 7 10 29.84 6
k_branch_p 21 0.04 10 11 16 11
k_d4_n 21 0.73 21 0.17 21 0.16 21 0.85 21 0.18
k_d4_p 21 0.15 21 0.07 21 0.08 21 0.06 21 0.04
k_dum_n 21 0.02 21 0.02 21 0.02 21 0.04 21 0.03
k_dum_p 21 0.01 21 0.01 21 0.01 21 0.03 21 0.01
k_grz_n 21 0.01 21 0.01 21 0.01 21 0.01 21 0.02
k_grz_p 21 0.00 21 0.00 21 0.00 21 0.00 21 0.00
k_lin_n 21 0.00 21 0.00 21 0.00 21 0.00 21 0.00
k_lin_p 21 0.00 21 0.00 21 0.00 21 0.00 21 0.00
k_path_n 21 0.58 21 0.58 21 0.59 21 0.59 21 0.61
k_path_p 21 0.56 21 0.54 21 0.55 21 0.50 21 0.55
k_ph_n 21 0.25 21 0.25 21 0.30 21 0.19 21 0.24
k_ph_p 7 7 7 8 59.12 7
k_poly_n 21 0.20 21 0.20 21 0.20 21 0.16 21 0.16
k_poly_p 21 0.19 21 0.19 21 0.20 21 0.06 21 0.16
k_t4p_n 21 0.09 21 0.17 21 0.22 21 0.10 21 2.90
k_t4p_p 21 0.02 21 0.06 21 0.03 21 0.04 21 0.15
kt_45_n 21 0.30 21 0.05 21 0.06 21 0.11 21 0.06
kt_45_p 21 0.06 21 0.16 21 0.21 21 0.05 21 0.12
kt_branch_n 10 30.46 10 56.22 6 10 29.97 6
kt_branch_p 21 0.02 21 0.65 21 0.65 16 21 0.66
kt_dum_n 21 0.03 21 0.01 21 0.01 21 0.01 21 0.01
kt_dum_p 21 0.01 21 0.01 21 0.01 21 0.01 21 0.01
kt_grz_n 21 0.01 21 0.01 21 0.11 21 0.01 21 0.14
kt_grz_p 21 0.00 21 0.00 21 0.00 21 0.00 21 0.00
kt_md_n 7 9.74 7 12.07 7 13.64 7 4.29 7 15.29
kt_md_p 5 5 5 6 8.15 4
kt_path_n 21 36.99 21 36.09 21 36.09 21 36.03 21 36.25
kt_path_p 21 29.75 21 29.66 21 29.81 21 26.06 21 29.67
kt_ph_n 21 29.82 21 18.30 15 21 28.66 15
kt_ph_p 7 46.71 7 36.87 6 7 9.55 7 11.41
kt_poly_n 8 8 4 10 16 53.16
kt_poly_p 5 5 2 21 1.51 10
kt_t4p_n 21 0.23 21 0.05 21 0.05 21 0.09 21 0.04
kt_t4p_p 21 0.05 21 0.04 21 0.06 21 0.52 21 0.21
s4_45_n 21 0.53 21 0.87 21 0.36 21 0.22 21 0.67
s4_45_p 21 0.01 21 0.01 21 0.01 21 0.10 21 0.01
s4_branch_n 14 27.53 11 11 14 24.88 11
s4_branch_p 21 0.01 21 0.29 21 0.32 21 21.53 21 0.32
s4_grz_n 21 0.03 21 0.04 21 0.37 21 0.02 21 0.65
s4_grz_p 21 0.00 21 0.00 21 0.00 21 0.00 21 0.00
s4_ipc_n 21 2.30 21 2.31 21 2.37 21 2.33 12
s4_ipc_p 21 2.96 21 3.10 21 3.00 5 12
s4_md_n 21 24.57 21 24.18 21 24.35 21 23.86 9
s4_md_p 9 35.68 9 49.59 9 49.97 9 37.62 3
s4_path_n 16 49.82 16 48.78 16 49.20 16 49.34 16 48.86
s4_path_p 17 57.12 17 58.00 17 57.17 17 54.42 17 56.48
s4_ph_n 9 10 10 9 11 49.67
s4_ph_p 4 5 5 7 10.53 5
s4_s5_n 16 54.20 16 54.27 16 53.68 16 54.10 16 59.99
s4_s5_p 21 32.72 21 31.81 21 45.92 21 0.00 21 0.00
s4_t4p_n 21 0.28 21 0.30 21 0.30 21 0.26 21 0.28
s4_t4p_p 21 0.11 21 0.08 21 0.14 21 0.22 21 0.11

Table 5.10: Evaluation results for ordering heuristics on LWB benchmarks

5.4. DISJOINT BRANCHING 57

(a) Results for randomly generated terms

on ngl off
mCNF-c075v04p00d01 16 0.15 16 1.43 15 11.76
mCNF-c110v05p00d01 16 9.72 2 32.93 0
hCNF-C60 19 0.34 20 0.56 20 1.66
hCNF-C80 16 3.52 16 4.99 14 3.07
hCNF-C100 12 5.38 13 6.77 7 1.21
hCNF-C120 12 12.06 13 14.07 4 18.05
hCNF-C140 8 20.59 5 6.67 0
hCNF-C160 9 12.34 7 14.44 1 32.53
hCNF-C180 4 14.99 3 5.37 1 13.99
hCNF-C200 9 13.58 8 28.38 0
qbfMS-C50-V4-D4 8 0.47 8 0.88 6 26.85
qbfMS-C50-V4-D6 8 2.06 8 2.89 5 20.24
qbfMS-C50-V8-D4 8 10.10 8 10.78 6 19.09
qbfMS-C50-V8-D6 6 35.69 6 35.56 2 15.98
qbfMS-C50-V16-D4 6 35.34 6 35.62 5 34.68
qbfMS-C50-V16-D6 1 17.58 1 17.75 1 17.67

(b) Results for LWB benchmarks

on ngl off
k_ph_p 8 43.70 8 58.79 6
kt_ph_p 8 31.12 7 5
s4_ipc_p 12 32.16 5 5
s4_ph_p 8 32.38 7 5

Table 5.11: Evaluation results for disjoint branching

mCNF-*d02 and hCNF. For experiments on qbfML, we employ heuristic E.

5.4 Disjoint Branching

Table 5.11 compares disjoint branching and no-good lists with the naïve ap-
proach.

While we have not encountered a class of terms on which it is beneficial to use
neither disjoint branching nor no-good lists, Table 5.11 shows several examples for
cases where disjoint branching or no-good lists can lead to a noticeable increase in
performance. Disjoint branching sporadically performs worse than the approach
using no-good lists on the set of hybrid terms with global modalities. On the
other hand, the results of disjoint branching are often significantly better than
the results obtained with no-good lists.

On the other problem sets we investigated, there are almost never noticeable
differences between the three settings.

Since, on the average, disjoint branching performs better than the approach using
no-good lists, from now on, we will use disjoint branching.

58 CHAPTER 5. EVALUATION

5.5 Lazy Branching

Table 5.12 shows the effects of different variants of lazy branching.

For terms that have a large modal depth and contain propositions only on the
lowest level, lazy branching on boxes can be beneficial. Lazy branching on propo-
sitional literals leads to a significantly better performance on terms that have a
small modal depth. An improvement of the performance can also be observed
for some terms that contain hard propositional subproblems.

However, Table 5.12(a) also shows several cases in which lazy branching has a
negative effect on performance. On the hybrid terms with global modalities we
used for testing, enabling the propositional variant of lazy branching often has
an adverse effect. On one class of terms (qbL-C*-V4-D6), we also observe longer
decision times in case both kinds of lazy branching are combined.

On the LWB benchmarks, the results are also mixed, as it can be seen in Ta-
ble 5.12(b). Note that lazy branching on disjunctions with boxes has no effect
on the benchmarks for KT and S4 due to reflexivity.

Despite the mixed results, we will use lazy branching on both propositional lit-
erals and boxes for the tests presented in the following sections.

5.6 Boolean Constraint Propagation

Table 5.13 shows the impact of boolean constraint propagation on performance.

In many cases, the use of the simple variant of boolean constraint propagation
that considers only the first disjunction on the agenda leads to a significant
speedup.

The eager variant often leads to a further reduction of the decision times, al-
though, in the worst case, the current implementation of the eager variant must,
at each branching step, examine all disjunctions on the agenda. Among the cases
we investigated, negative effects of the eager variant are only encountered on the
class qbfML and the problem kt_ph_n of the LWB benchmarks. In the case of
qbfML, the performance degradation may be related to the ordering heuristic we
use for this class, which might cause a large number of pending disjunctions on
the agenda.

Since the eager variant of BCP performs better on average, we use the eager
variant when comparing the performance of Spartacus with other systems.

5.7 Comparison with Other Systems

After we have evaluated the impact of ordering heuristics and optimizations on
the performance of Spartacus, we can compare its performance with other
implementations.

5.7. COMPARISON WITH OTHER SYSTEMS 59

(a) Results for randomly generated terms

on prop box off
mCNF-c120v03d02 8 3.63 8 4.43 8 4.04 8 4.99
mCNF-c150v03d04 9 0.87 9 1.13 9 0.88 9 1.13
mCNF-c180v03d04 9 1.48 9 1.92 9 1.52 9 1.94
mCNF-c210v03d04 9 2.09 9 2.83 9 2.10 9 2.82
mCNF-c240v03d04 9 3.21 9 4.23 9 3.21 9 4.24
mCNF-c270v03d04 9 6.72 9 8.16 9 6.70 9 8.19
mCNF-c300v03d04 9 8.86 9 11.04 9 8.86 9 11.01
mCNF-c150v03d06 9 2.43 9 4.02 9 2.39 9 4.01
mCNF-c180v03d06 9 4.08 9 7.01 9 4.09 9 6.97
mCNF-c210v03d06 9 6.09 9 9.16 9 6.09 9 9.12
mCNF-c240v03d06 9 8.66 9 12.82 9 8.67 9 12.82
mCNF-c270v03d06 9 10.23 9 15.85 9 10.23 9 15.91
mCNF-c300v03d06 9 15.51 9 25.78 9 15.52 9 25.72
mCNF-c075v04d01 16 0.14 16 0.15 16 0.22 16 0.23
mCNF-c110v05d01 16 9.19 16 9.72 4 30.78 3 25.69
qbfS-C50-V16-D4 8 8.42 8 8.37 7 5.89 7 5.84
qbfS-C50-V16-D6 8 3.89 8 3.85 7 6.39 7 6.50
qbfML-C50-V8-D4 8 16.38 8 16.34 8 20.39 8 20.32
qbfML-C50-V8-D6 7 15.57 7 15.64 7 16.94 7 16.96
hCNF-C60 17 0.11 19 0.33 19 0.67 20 0.68
hCNF-C80 15 6.54 16 3.54 16 4.05 15 3.21
hCNF-C100 9 1.43 12 5.40 12 3.36 14 12.18
hCNF-C120 10 6.62 12 12.05 14 9.80 14 10.98
hCNF-C140 8 10.80 8 20.73 9 16.90 8 15.53
hCNF-C160 8 11.12 9 12.48 11 13.15 9 7.18
hCNF-C180 6 19.57 4 14.90 8 22.98 6 15.25
hCNF-C200 11 21.39 9 13.58 13 20.49 13 22.99
qbfL-C10-V4-D6 8 23.47 8 10.50 8 13.32 8 13.09
qbfL-C20-V4-D6 1 19.89 6 32.04 7 28.75 7 28.50
qbfL-C30-V4-D6 1 17.50 3 39.25 2 19.88 2 19.58
qbfL-C40-V4-D6 5 6.88 6 12.08 6 12.59 6 12.43
qbfL-C50-V4-D6 8 7.59 8 7.26 8 5.17 8 5.16

(b) Results for LWB benchmarks

on prop box off
k_branch_n 10 10 14 35.16 14 41.10
k_branch_p 16 16 21 30.41 21 34.82
k_ph_n 20 21 0.19 13 12
k_ph_p 7 8 43.39 6 6
kt_branch_n 10 10 14 41.70 14 41.83
kt_branch_p 16 16 21 35.83 21 35.75
kt_ph_n 21 28.52 21 28.59 17 17
kt_ph_p 8 31.19 8 31.11 7 7
s4_branch_n 14 24.86 14 24.91 14 41.11 14 41.20
s4_branch_p 21 21.55 21 21.59 21 35.00 21 35.21
s4_ph_p 8 32.22 8 32.29 7 7
s4_s5_n 16 16 21 50.05 21 49.80

Table 5.12: Evaluation results for lazy branching

60 CHAPTER 5. EVALUATION

(a) Results for randomly generated terms

eager on off
mCNF-c090v03d02 9 0.28 9 0.15 9 0.68
mCNF-c120v03d02 8 3.14 8 3.63 6 1.33
mCNF-c120v03d04 9 0.52 9 0.50 9 4.27
mCNF-c150v03d04 9 0.89 9 0.87 9 8.95
mCNF-c180v03d04 9 1.44 9 1.48 9 16.74
mCNF-c210v03d04 9 2.02 9 2.09 9 26.72
mCNF-c240v03d04 9 2.97 9 3.21 8 37.89
mCNF-c270v03d04 9 5.74 9 6.72 5 50.82
mCNF-c300v03d04 9 7.72 9 8.86 0
mCNF-c120v03d06 9 1.23 9 1.33 9 17.94
mCNF-c150v03d06 9 2.10 9 2.43 8 33.92
mCNF-c180v03d06 9 3.80 9 4.08 4 54.28
mCNF-c210v03d06 9 5.39 9 6.09 0
mCNF-c240v03d06 9 7.62 9 8.66 0
mCNF-c270v03d06 9 8.21 9 10.23 0
mCNF-c300v03d06 9 12.65 9 15.51 0
mCNF-c075v04d01 16 0.05 16 0.14 16 0.23
mCNF-c110v05d01 16 2.50 16 9.19 16 17.37
hCNF-C20 20 0.00 20 0.00 3 0.00
hCNF-C40 20 0.01 20 0.02 0
hCNF-C60 19 0.51 17 0.11 0
hCNF-C80 19 2.71 15 6.54 0
hCNF-C100 15 3.55 9 1.43 0
hCNF-C120 11 6.47 10 6.62 0
hCNF-C140 7 10.49 8 10.80 0
hCNF-C160 7 5.91 8 11.12 0
hCNF-C180 9 9.97 6 19.57 0
hCNF-C200 10 6.12 11 21.39 0
qbfML-C10-V8-D6 4 7.58 4 6.70 4 6.82
qbfML-C20-V8-D6 6 23.07 7 25.26 7 20.71
qbfML-C30-V8-D6 6 14.64 6 9.47 6 9.92
qbfML-C40-V8-D6 7 23.43 7 12.45 8 12.70
qbfML-C50-V8-D6 7 33.99 7 15.57 7 14.47

(b) Results for LWB benchmarks

eager on off
k_ph_n 21 0.28 20 2
k_ph_p 8 40.23 7 2
kt_ph_n 20 21 28.52 1

Table 5.13: Evaluation results for boolean constraint propagation

5.7. COMPARISON WITH OTHER SYSTEMS 61

Spartacus CWB FaCT++ HTab *SAT
I II

mCNF-c030v03d02 9 0.0 9 0.0 9 1.6 9 0.1 9 1.4 9 0.0
mCNF-c060v03d02 9 0.0 9 0.0 0 7 4.6 0 9 12.3
mCNF-c090v03d02 9 0.3 8 1.8 0 1 58.6 0 6 19.4
mCNF-c120v03d02 8 3.3 6 11.3 0 0 0 1 19.2
mCNF-c030v03d04 9 0.3 9 0.1 0 9 3.2 9 6.2 9 19.9
mCNF-c060v03d04 9 2.6 9 0.3 0 0 0 0
mCNF-c090v03d04 9 10.1 9 0.5 0 0 0 0
mCNF-c120v03d04 8 26.6 9 0.9 0 0 0 0
mCNF-c150v03d04 3 29.4 9 1.3 0 0 0 0
mCNF-c180v03d04 2 38.2 9 2.0 0 0 0 0
mCNF-c210v03d04 0 9 2.6 0 0 0 0
mCNF-c240v03d04 0 9 3.7 0 0 0 0
mCNF-c270v03d04 0 9 6.6 0 0 0 0
mCNF-c300v03d04 0 9 8.6 0 0 0 0
mCNF-c030v03d06 9 1.6 9 0.9 0 0 5 15.6 0
mCNF-c060v03d06 9 10.0 9 1.9 0 0 0 0
mCNF-c090v03d06 8 34.4 9 3.0 0 0 0 0
mCNF-c120v03d06 2 51.6 9 4.3 0 0 0 0
mCNF-c150v03d06 0 9 6.1 0 0 0 0
mCNF-c180v03d06 0 9 8.6 0 0 0 0
mCNF-c210v03d06 0 9 11.2 0 0 0 0
mCNF-c240v03d06 0 9 14.4 0 0 0 0
mCNF-c270v03d06 0 9 15.9 0 0 0 0
mCNF-c300v03d06 0 9 21.4 0 0 0 0
mCNF-c075v04d01 16 0.1 8 9.8 0 16 0.2 0 16 0.0
mCNF-c110v05d01 16 4.7 0 0 10 32.9 0 16 0.4

Table 5.14: Comparison on mCNF

Spartacus HTab
I II

hCNF-C20 20 0.0 20 0.3 20 0.1
hCNF-C40 20 0.0 14 2.4 20 0.1
hCNF-C60 19 0.5 7 0.9 19 0.7
hCNF-C80 19 2.8 0 13 1.5
hCNF-C100 15 3.9 0 7 2.7
hCNF-C120 11 6.9 0 4 6.0
hCNF-C140 7 11.5 0 4 2.2
hCNF-C160 7 6.4 0 7 3.1
hCNF-C180 9 10.9 0 7 3.9
hCNF-C200 10 6.8 0 9 2.0

Table 5.15: Comparison on hCNF

62 CHAPTER 5. EVALUATION

Spartacus CWB FaCT++ HTab *SAT
I II

qbfS-C10-V4-D4 8 0.0 8 0.0 8 0.4 8 0.0 8 0.2 8 0.0
qbfS-C20-V4-D4 8 0.0 8 0.0 8 3.2 8 0.1 8 0.5 8 0.1
qbfS-C30-V4-D4 8 0.1 8 0.0 5 8.4 8 0.7 7 1.6 8 0.2
qbfS-C40-V4-D4 8 0.1 8 0.0 4 13.4 8 0.8 8 1.9 8 0.2
qbfS-C50-V4-D4 8 0.1 8 0.0 2 18.3 8 0.3 8 1.4 8 0.2
qbfS-C10-V4-D6 8 0.0 8 0.0 8 1.3 8 0.0 8 1.0 8 0.0
qbfS-C20-V4-D6 8 0.0 8 0.0 7 7.0 8 0.1 7 5.7 8 0.4
qbfS-C30-V4-D6 8 0.2 8 0.1 3 14.8 5 11.3 4 27.8 8 1.4
qbfS-C40-V4-D6 8 0.2 8 0.1 1 6.8 6 2.2 2 39.1 8 1.2
qbfS-C50-V4-D6 8 0.2 8 0.1 0 6 6.7 1 36.8 8 1.0
qbfS-C10-V8-D4 8 0.0 8 0.0 8 2.6 8 0.0 7 7.3 8 0.1
qbfS-C20-V8-D4 8 0.1 8 0.0 4 16.9 7 0.2 1 39.6 8 0.7
qbfS-C30-V8-D4 8 0.2 8 0.1 0 2 24.7 0 8 8.3
qbfS-C40-V8-D4 8 0.6 8 0.3 0 2 30.9 0 8 13.4
qbfS-C50-V8-D4 8 2.0 8 0.4 0 2 9.4 0 8 21.5
qbfS-C10-V8-D6 8 0.0 8 0.0 8 6.5 8 0.2 4 26.4 8 0.1
qbfS-C20-V8-D6 8 0.1 8 0.1 0 7 8.0 0 8 0.9
qbfS-C30-V8-D6 8 0.6 8 0.4 0 0 0 8 18.1
qbfS-C40-V8-D6 8 4.0 8 1.1 0 0 0 2 34.0
qbfS-C50-V8-D6 7 15.3 8 5.1 0 0 0 0
qbfS-C10-V16-D4 8 0.0 8 0.0 7 19.4 8 0.1 0 8 0.1
qbfS-C20-V16-D4 8 0.1 8 0.1 0 7 1.3 0 8 1.6
qbfS-C30-V16-D4 8 1.2 8 0.6 0 3 25.2 0 8 19.2
qbfS-C40-V16-D4 8 0.8 8 0.5 0 0 0 0
qbfS-C50-V16-D4 6 14.3 8 9.9 0 0 0 0
qbfS-C10-V16-D6 8 0.0 8 0.0 6 18.1 8 0.1 0 8 0.1
qbfS-C20-V16-D6 8 0.2 8 0.1 0 7 7.4 0 8 1.5
qbfS-C30-V16-D6 8 0.5 8 0.3 0 0 0 7 25.1
qbfS-C40-V16-D6 8 3.4 8 1.8 0 1 3.3 0 1 46.6
qbfS-C50-V16-D6 7 5.9 8 5.3 0 0 0 0
qbfL-C10-V4-D4 8 2.5 8 1.4 8 19.9 8 0.5 7 3.7 3 43.1
qbfL-C20-V4-D4 8 5.4 8 4.0 5 27.9 8 3.3 1 18.4 0
qbfL-C30-V4-D4 8 5.9 8 3.6 5 25.3 8 1.6 1 36.1 1 1.3
qbfL-C40-V4-D4 8 4.9 8 1.2 6 40.1 8 0.3 1 28.4 7 28.9
qbfL-C50-V4-D4 8 6.0 8 1.5 3 54.9 8 0.6 2 38.8 4 6.7
qbfL-C10-V4-D6 4 30.2 8 27.1 1 16.6 6 22.4 2 15.9 0
qbfL-C20-V4-D6 0 1 21.7 0 1 13.9 0 0
qbfL-C30-V4-D6 0 1 17.6 0 0 0 0
qbfL-C40-V4-D6 0 5 6.9 0 6 6.8 0 0
qbfL-C50-V4-D6 0 8 7.4 0 8 7.0 0 0

Table 5.16: Comparison on non-modalized QBFs

5.7. COMPARISON WITH OTHER SYSTEMS 63

Spartacus CWB FaCT++ HTab *SAT
I II

qbfMS-C10-V4-D4 8 0.0 8 0.0 8 3.1 8 0.0 0 8 0.1
qbfMS-C20-V4-D4 8 0.2 8 0.1 3 18.2 8 0.1 0 8 0.4
qbfMS-C30-V4-D4 8 0.4 8 0.2 0 8 8.0 0 8 0.7
qbfMS-C40-V4-D4 8 0.6 8 0.3 0 8 2.7 0 8 0.9
qbfMS-C50-V4-D4 8 0.7 8 0.5 2 15.7 7 1.1 0 8 0.6
qbfMS-C10-V4-D6 8 0.0 8 0.0 8 9.2 8 0.0 0 8 0.1
qbfMS-C20-V4-D6 8 0.9 8 0.2 0 7 12.7 0 8 1.4
qbfMS-C30-V4-D6 8 6.7 8 0.5 0 3 3.7 0 8 4.5
qbfMS-C40-V4-D6 8 12.0 8 1.1 0 4 8.0 0 8 12.3
qbfMS-C50-V4-D6 8 6.6 8 1.9 0 3 8.6 0 8 7.2
qbfMS-C10-V8-D4 8 0.1 8 0.0 6 14.1 8 0.1 0 8 0.1
qbfMS-C20-V8-D4 8 0.5 8 0.2 0 7 1.4 0 8 3.1
qbfMS-C30-V8-D4 8 6.5 8 0.8 0 2 1.3 0 5 22.5
qbfMS-C40-V8-D4 3 35.3 8 11.7 0 0 0 2 25.9
qbfMS-C50-V8-D4 6 27.5 8 9.0 0 2 41.8 0 3 31.8
qbfMS-C10-V8-D6 8 0.1 8 0.1 0 8 2.2 0 8 0.2
qbfMS-C20-V8-D6 8 1.5 8 0.4 0 6 8.1 0 8 6.4
qbfMS-C30-V8-D6 7 8.4 8 2.0 0 1 30.4 0 2 22.0
qbfMS-C40-V8-D6 1 17.7 7 11.8 0 1 25.7 0 0
qbfMS-C50-V8-D6 0 6 34.3 0 0 0 0
qbfMS-C10-V16-D4 8 0.1 8 0.1 1 23.4 8 0.1 0 8 0.3
qbfMS-C20-V16-D4 8 5.9 8 0.5 0 8 7.4 0 8 7.0
qbfMS-C30-V16-D4 6 18.9 8 5.2 0 0 0 1 29.3
qbfMS-C40-V16-D4 0 4 24.0 0 0 0 0
qbfMS-C50-V16-D4 0 3 30.8 0 0 0 0
qbfMS-C10-V16-D6 8 0.1 8 0.1 0 8 0.1 0 8 0.4
qbfMS-C20-V16-D6 8 1.6 8 0.5 0 7 6.8 0 8 8.3
qbfMS-C30-V16-D6 5 21.1 8 9.4 0 0 0 2 38.6
qbfMS-C40-V16-D6 2 14.1 5 14.7 0 0 0 0
qbfMS-C50-V16-D6 0 1 24.4 0 0 0 0
qbfML-C10-V4-D4 8 0.2 5 30.8 0 8 8.0 0 8 0.5
qbfML-C20-V4-D4 8 0.2 0 0 8 7.6 0 8 1.0
qbfML-C30-V4-D4 8 0.3 0 0 8 17.2 0 8 1.8
qbfML-C40-V4-D4 8 0.4 0 0 8 15.1 0 8 2.3
qbfML-C50-V4-D4 8 0.6 0 0 6 20.6 0 8 3.4
qbfML-C10-V4-D6 8 0.3 0 0 8 14.2 0 8 0.6
qbfML-C20-V4-D6 8 0.5 0 0 3 30.1 0 8 1.5
qbfML-C30-V4-D6 8 0.6 0 0 7 32.3 0 8 1.7
qbfML-C40-V4-D6 8 0.8 0 0 3 42.0 0 8 4.6
qbfML-C50-V4-D6 8 1.1 0 0 0 0 8 6.3
qbfML-C10-V8-D4 8 0.5 0 0 2 40.5 0 7 7.6
qbfML-C20-V8-D4 8 1.0 0 0 0 0 6 40.1
qbfML-C30-V8-D4 8 1.3 0 0 0 0 4 33.6
qbfML-C40-V8-D4 8 1.6 0 0 0 0 0
qbfML-C50-V8-D4 8 2.0 0 0 0 0 1 56.9
qbfML-C10-V8-D6 8 0.9 0 0 0 0 8 15.7
qbfML-C20-V8-D6 8 2.0 0 0 0 0 7 33.6
qbfML-C30-V8-D6 8 2.8 0 0 0 0 3 34.4
qbfML-C40-V8-D6 8 3.4 0 0 0 0 0
qbfML-C50-V8-D6 8 4.1 0 0 0 0 0

Table 5.17: Comparison on modalized QBFs

64 CHAPTER 5. EVALUATION

Spartacus CWB FaCT++ HTab *SAT
I II

k_branch_n 9 10 12 37.2 10 4 12 48.2
k_branch_p 11 16 21 6.2 9 5 18
k_d4_n 21 0.2 21 0.6 21 7.3 21 27.6 6 21 0.2
k_d4_p 21 0.1 21 0.1 21 3.7 21 0.0 21 50.1 21 0.0
k_dum_n 21 0.0 21 0.0 21 0.1 21 0.0 21 0.1 21 0.0
k_dum_p 21 0.0 21 0.0 21 0.1 21 0.0 21 0.1 21 0.0
k_grz_n 21 0.0 21 0.0 21 0.4 21 0.0 21 0.1 21 0.0
k_grz_p 21 0.0 21 0.0 21 0.5 21 0.0 21 0.1 21 0.0
k_lin_n 21 0.0 21 0.0 21 13.6 21 0.1 21 0.1 13
k_lin_p 21 0.0 21 0.0 21 0.2 21 0.0 21 0.1 21 0.0
k_path_n 21 0.6 21 0.6 21 50.9 21 0.1 9 21 0.2
k_path_p 21 0.6 21 0.5 21 46.5 21 0.1 10 21 0.1
k_ph_n 21 1.2 21 1.2 9 13 16 21 1.9
k_ph_p 8 47.0 8 41.4 7 7 6 8 3.8
k_poly_n 21 0.2 21 0.2 21 9.6 21 0.1 21 2.1 21 0.1
k_poly_p 21 0.2 21 0.1 21 7.9 21 0.1 21 2.6 21 0.1
k_t4p_n 21 0.1 21 0.0 21 4.1 21 0.3 5 21 0.1
k_t4p_p 21 0.0 21 0.0 21 3.3 21 0.1 8 21 0.0

Table 5.18: Comparison on LWB benchmarks (K)

In particular, we compare the running time of Spartacus with the running times
of the following systems:

• CWB [27] – A prototype reasoner for basic modal logic with reflexivity
and transitivity, implemented in C++. CWB can use different caching
techniques. For the comparison, we used the options -oa (all optimizations)
and -ogc (global caching non-DFS).

• FaCT++ [64], version 1.2.1 – A reasoner for the very rich description logic
SROIQ(D) [37]. FaCT++ is implemented in C++. We used the default
settings.

• HTab [31], version 1.3.5 – A reasoner for the hybrid logic H(@, E,D),
implemented in Haskell. In addition to global modalities supported by
Spartacus, HTab supports the difference modality D. We used the default
settings.

• *SAT [60], version 1.3 – A reasoner for the basic modal logic K, im-
plemented in C. *SAT implements both satisfiability and unsatisfiability
caching. We used the default compile-time and run-time settings.

Spartacus is implemented in Standard ML and compiled with MLton1.

Since we have not determined a single configuration that performs well on all
sets of terms we investigated, we have selected two configurations of Spartacus
to be compared to other systems. They differ in the used ordering heuristic and
in the employed data structure for pattern-based blocking as follows:

I: Ordering heuristic B as described in Section 5.3 is employed. The tree-based
pattern store is used for blocking.

1available from http://mlton.org/

5.7. COMPARISON WITH OTHER SYSTEMS 65

Spartacus CWB
I II

kt_45_n 21 0.1 21 0.1 21 4.1
kt_45_p 21 0.1 21 0.1 21 2.3
kt_branch_n 9 10 12 28.2
kt_branch_p 21 0.1 16 21 0.6
kt_dum_n 21 0.0 21 0.0 21 0.2
kt_dum_p 21 0.0 21 0.0 21 0.3
kt_grz_n 21 0.0 21 0.0 21 0.5
kt_grz_p 21 0.0 21 0.0 21 0.5
kt_md_n 7 13.4 7 13.4 7 10.6
kt_md_p 5 6 25.4 5
kt_path_n 21 36.9 21 36.8 5
kt_path_p 21 30.3 21 25.7 6
kt_ph_n 14 20 49.7 8
kt_ph_p 7 8 36.1 6
kt_poly_n 8 10 29.7 9
kt_poly_p 5 21 1.6 18
kt_t4p_n 21 0.1 21 0.1 21 40.5
kt_t4p_p 21 0.1 21 1.5 21 9.8
s4_45_n 21 1.3 21 0.3 21 30.9
s4_45_p 21 0.0 21 0.1 21 18.8
s4_branch_n 9 13 59.7 12
s4_branch_p 21 0.6 19 21 0.4
s4_grz_n 21 0.1 21 0.0 13
s4_grz_p 21 0.0 21 0.0 21 0.9
s4_ipc_n 21 2.7 21 2.1 11
s4_ipc_p 21 3.0 12 21 0.6
s4_md_n 21 24.8 21 19.7 10
s4_md_p 9 50.5 9 37.1 9 31.8
s4_path_n 16 51.1 16 48.9 2
s4_path_p 17 57.4 17 52.6 4
s4_ph_n 10 34.9 9 3
s4_ph_p 5 8 37.4 6
s4_s5_n 16 57.2 16 54.5 9
s4_s5_p 21 32.1 21 0.0 21 1.1
s4_t4p_n 21 0.3 21 0.3 17
s4_t4p_p 21 0.1 21 0.2 21 6.4

Table 5.19: Comparison on LWB benchmarks (KT and S4)

66 CHAPTER 5. EVALUATION

II: Ordering heuristic D as described in Section 5.3 is employed. The list-based
pattern store is used for blocking.

Both configurations share the following settings:

• disjuncts are processed in the following order: negated nominals, proposi-
tional literals, diamonds, boxes, satisfaction terms, existential modalities,
nominals, universal modalities, conjunctions

• backjumping is enabled

• the eager variant of pattern-based blocking is employed

• the eager variant of boolean constraint propagation is employed

• disjoint branching is enabled

• lazy branching is fully enabled

• caching is disabled

In the tests, shown in Tables 5.14-5.19, the two configurations we have chosen for
comparison seem to have complementary strengths and weaknesses. So, config-
uration I performs significantly better on our hybrid samples and on modalized
QBFs, while configuration II is more effective on non-modalized QBFs and on
the class mCNF-*v03*. Unfortunately, we were not able to find a single setting
that would combine the strengths of the two configurations.

This said, the results of the comparison suggest that Spartacus is very com-
petitive with the other systems in so far as reasoning performance is concerned.
As shown in Section 5.2, an important factor contributing to this performance is
pattern-based blocking. Since pattern-based blocking can be seen as a particular
form of satisfiability caching, we expected it to have similar effects on perfor-
mance as observed for *SAT [61] and CWB [27]. The comparisons with *SAT
on QBFs and with CWB on the LWB benchmarks fully confirm this expectation.

Chapter 6

Conclusion

This chapter concludes the thesis with a summary and an outlook on possible
future work.

6.1 Summary

Spartacus is a tableau-based prover for hybrid logic with global modalities,
reflexive, transitive and serial relations. Termination in the presence of global
modalities and transitivity is achieved through pattern-based blocking.

One of the key motivations for our work was to evaluate the effectiveness of
pattern-based blocking in practice. The evaluation shows that the performance
can improve significantly when pattern-based blocking is used. Performance of
pattern-based blocking depends on the data structure used for storing patterns.
We have implemented three data structures that seemed to be promising for that
purpose, which are based on lists, bit matrices and trees, respectively. While the
tree-based data structure outperforms the data structures based on bit matrices
and lists in many cases, we have also encountered several classes of hybrid terms
where the list-based data structure performs significantly better.

We have also integrated other optimization techniques into Spartacus, including
normalization of terms, backjumping, boolean constraint propagation, disjoint
branching, lazy branching and caching of unsatisfiable terms.

We have investigated a novel optimization technique called lazy branching, which
aims at reducing the search space by delaying branching on disjunctions that
contain propositional literals or boxes. Although we have encountered several
cases where lazy branching can have an adverse effect on performance, there are
many cases where it seems to be an interesting optimization technique.

67

68 CHAPTER 6. CONCLUSION

6.2 Outlook

This section discusses several issues that remained open during the work on this
thesis but which might be interesting subjects for future investigation. It also
mentions optimizations that may be integrated into future versions of Sparta-
cus.

6.2.1 Difference Modality

It seems to be possible to add support for the difference modality D and its
dual D̄ to Spartacus with moderate effort.

Since the tableau rule for D is a nominal generating rule, a blocking condition is
required to achieve termination in the presence of the difference modality [42].
Hence, some control mechanism must be implemented that keeps track of whether
difference modalities are blocked. The operator D̄, on the other hand, can be
handled using the existing infrastructure for global modalities with only minor
modifications.

6.2.2 Branching Heuristics

Currently, Spartacus allows for ordering heuristics that order disjunctions ac-
cording to their dependency sets or the age of the corresponding nodes. Several
more sophisticated heuristics have been proposed, which might have a positive
effect on performance. For instance, learning-based disjunct selection [57] is an
ordering heuristic that assigns priorities to disjuncts based on how often they
have been involved in a clash. Other examples include ordering strategies based
on the size or the maximum modal depth of the disjuncts [63].

For such heuristics, it may be reasonable to assign priorities to disjuncts instead of
disjunctions. As a consequence, it would not be possible to handle disjunctions on
the agenda in the same way as it is currently the case. In particular, an efficient
mechanism to determine which disjunctions are satisfied by the selection of a
certain disjunct seems necessary.

6.2.3 Optimization Techniques

There are several ideas how the optimization techniques implemented so far could
be extended in order to improve their effectiveness.

The eager variant of boolean constraint propagation could be improved if watched
literals were used to determine disjunctions that can be handled deterministically.

Lazy branching on disjunctions that contain boxes can be improved for terms
that contain more than one relational variable. Currently, branching on such dis-
junctions is only delayed as long as no diamond has been derived as a constraint
on the corresponding node. A more sophisticated version would delay disjunc-
tions that contain r-boxes until an r-diamond is added to the corresponding

6.2. OUTLOOK 69

node. A variant of lazy branching that delays disjunctions that contain negated
nominals is not implemented yet.

6.2.4 Evaluation

We have compared the practical fitness of several ordering heuristics and op-
timizations on different classes of formulas. However, we did not determine a
single configuration that performs reasonably well on all classes of formulas in-
vestigated. This is unfortunate, as users may be required to perform the possibly
daunting task of finding a good configuration themselves.

It would be desirable if, for each input term, a configuration that is likely to
be good could be suggested automatically based on features of the input term
like modal depth, number of variables or operator frequencies. Further evalua-
tion might reveal relationships between features of input terms and promising
configurations.

70 CHAPTER 6. CONCLUSION

Appendix A

Input Syntax

File := Disjunction | Restrictions Disjunction
Disjunction := Conjunction ['|' Disjunction]
Conjunction := Literal ['&' Conjunction]
Literal := '0' | '1' | Var | '='Var | '~' Literal

| '<' Var '>' Literal | '[' Var ']' Literal
| 'A' Literal | 'E' Literal |
| '@' Var Literal | Var ':' Literal |
| '(' Disjunction ')'

Var := [a− z][a− z 0− 9]∗

Varlist := Var [, Varlist]
Restrictions := Restriction [Restrictions]
Restriction := Reflexivity | Transitivity | Seriality |
Reflexivity := '{reflexive: *}' | '{reflexive:' Varlist '}'
Transitivity := '{transitive: *}' | '{transitive:' Varlist '}'
Seriality := '{serial: *}' | '{serial:' Varlist '}'

71

72 APPENDIX A. INPUT SYNTAX

Bibliography

[1] Carlos Areces and Maarten de Rijke. From description to hybrid logics, and back.
In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev, editors, Advances
in Modal Logic. Volume 3. CSLI Publications, 2001.

[2] Carlos Areces and Juan Heguiabehere. Hylores 1.0: Direct resolution for hybrid log-
ics. In A. Voronkov, editor, Proceedings of CADE-18, pages 156–160, Copenhagen,
Denmark, July 2002.

[3] Carlos Areces and Juan Heguiabehere. hgen: A random cnf formula generator for
hybrid languages. In Methods for Modalities 3 - M4M-3, Nancy, France, Nancy,
France, September 2003.

[4] Carlos Areces and Balder ten Cate. Hybrid logics. In Patrick Blackburn, F. Wolter,
and Johan van Benthem, editors, Handbook of Modal Logics. Elsevier, 2006.

[5] Andrew Baker. Intelligent Backtracking on Constraint Satisfaction Problems: Ex-
perimental and Theoretical Results. PhD thesis, U. of Oregon, 1995.

[6] Peter Balsiger, Alain Heuerding, and Stefan Schwendimann. A benchmark method
for the propositional modal logics K, KT, S4. J. Autom. Reasoning, 24(3):297–317,
2000.

[7] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper tableaux. In
José Júlio Alferes, Luís Moniz Pereira, and Ewa Orłowska, editors, Proc. Euro-
pean Workshop: Logics in Artificial Intelligence, JELIA, volume 1126 of LNCS,
pages 1–17. Springer-Verlag, 1996.

[8] Sean Bechhofer. Hoolet, 2004. URL http://owl.man.ac.uk/hoolet/.

[9] Christoph Benzmüller and Lawrence Paulson. Festschrift in honour of Peter B. An-
drews on his 70th birthday. Studies in Logic and the Foundations of Mathematics,
chapter Exploring Properties of Normal Multimodal Logics in Simple Type Theory
with LEO-II. IFCoLog, 2008. To appear.

[10] Evert W. Beth. Semantic entailment and formal derivability. Medlingen der Konin-
klijke Nederlandse Akademie van Wetenschapen, 18(13):309–342, 1955.

[11] Patrick Blackburn and Miroslava Tzakova. Hybrid completeness. Logic Journal of
the IGPL, 6(4):625–650, 1998.

[12] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge
University Press, Cambridge, England, 2001. ISBN 0 521 52714 7 (pbk).

[13] Thomas Bolander and Patrick Blackburn. Termination for hybrid tableaus. J. Log.
Comput, 17(3):517–554, 2007.

73

74 BIBLIOGRAPHY

[14] Thomas Bolander and Torben Braüner. Tableau-based decision procedures for
hybrid logic. J. Log. Comput., 16(6):737–763, 2006.

[15] Alex Borgida, Maurizio Lenzerini, and Riccardo Rosati. Description logics for
databases. In Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter Patel-Schneider, editors, The Description Logic Handbook: The-
ory, Implementation and Applications, pages 462–484. Cambridge University Press,
Cambridge, England, 2003.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, Cambridge, MA, 2001.

[17] Marcello D’Agostino. Are tableaux an improvement on truth-tables? Cut-free
proofs and bivalence. Journal of Logic, Language, and Information, 1(3):235–252,
1992.

[18] Francesco M. Donini and Fabio Massacci. EXPTIME tableaux for ALC. Artif.
Intell, 124(1):87–138, 2000.

[19] Melvin Fitting. Tableau methods of proof for modal logics. Notre Dame Journal
of Formal Logic, XIII(2), 1972.

[20] Enrico Franconi. Natural language processing. In Franz Baader, Diego Calvanese,
Deborah L. McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors, The
Description Logic Handbook: Theory, Implementation and Applications, pages 450–
461. Cambridge University Press, Cambridge, England, 2003.

[21] Jon W. Freeman. Improvements to Propositional Satisfiability Search Algorithms.
PhD thesis, Departement of computer and Information science, University of Penn-
sylvania, Philadelphia, 1995.

[22] Daniel Gallin. Intensional and Higher-Order Modal Logic, volume 19 of Mathemat-
ics Studies. North-Holland, Amsterdam, 1975.

[23] L. T. F. Gamut. Logic, Language and Meaning, volume 2. The University of
Chicago Press, 1991.

[24] J. Gaschnig. Performance Measurement and Analysis of Certain Search Algorithms.
PhD thesis, Carnegie-Mellon University, Pittsburgh (PA), USA, 1979.

[25] Enrico Giunchiglia and Armando Tacchella. A subset-matching size-bounded cache
for satisfiability in modal logics. In Roy Dyckhoff, editor, TABLEAUX, volume
1847 of Lecture Notes in Computer Science, pages 237–251. Springer, 2000. ISBN
3-540-67697-X.

[26] Fausto Giunchiglia and Roberto Sebastiani. Building decision procedures for modal
logics from propositional decision procedures — the case study of modal K. Lecture
Notes in Computer Science, 1104:583–??, 1996. ISSN 0302-9743.

[27] Rajeev Goré and Linda Postniece. An experimental evaluation of global caching
for (system description). In Alessandro Armando, Peter Baumgartner, and Gilles
Dowek, editors, IJCAR, volume 5195 of Lecture Notes in Computer Science, pages
299–305. Springer, 2008. ISBN 978-3-540-71069-1.

[28] Volker Haarslev and Ralf Möller. RACER system description. In Rajeev Goré,
Alexander Leitsch, and Tobias Nipkow, editors, IJCAR, volume 2083 of Lecture
Notes in Computer Science, pages 701–706. Springer, 2001. ISBN 3-540-42254-4.

BIBLIOGRAPHY 75

[29] Moritz Hardt and Gert Smolka. Higher-order syntax and saturation algorithms
for hybrid logic. Electronic Notes in Theoretical Computer Science, 174(6):15–27,
2007. Proceedings of the International Workshop on Hybrid Logic (HyLo 2006).

[30] K. Jaakko J. Hintikka. Form and content in quantification theory. Acta Philosophica
Fennica, 8:7–55, 1955.

[31] Guillaume Hoffmann and Carlos Areces. HTab : a terminating tableaux system for
hybrid logic. In Stéphane Demri and Carlos Areces, editors, Method For Modalities
5, Cachan, France, 2007.

[32] Jörg Hoffmann and Jana Koehler. A new method to index and query sets. In
Thomas Dean, editor, IJCAI, pages 462–467. Morgan Kaufmann, 1999. ISBN 1-
55860-613-0.

[33] Ian Horrocks. Optimising Tableaux Decision Procedures for Description Logics.
PhD thesis, University of Manchester, 1997.

[34] Ian Horrocks and Peter F. Patel-Schneider. Optimizing description logic subsump-
tion. J. of Logic and Computation, 9(3):267–293, 1999.

[35] Ian Horrocks, Deborah McGuinness, and Christopher Welty. Digital libraries
and web-based information systems. In Franz Baader, Diego Calvanese, Deborah
McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors, The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications, chapter 14, pages
427–449. Cambridge University Press, 2003. ISBN 0-521-78176-0.

[36] Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt. Computational
modal logic. In Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors,
Handbook of Modal Logic, chapter 4, pages 181–245. Elsevier, 2006.

[37] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ.
In Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR 2006), pages 57–67. AAAI Press, 2006. ISBN 978-1-57735-271-6.

[38] Ullrich Hustadt and Renate A. Schmidt. MSPASS: Modal reasoning by translation
and first-order resolution. In Roy Dyckhoff, editor, Proceedings of the International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX 2000), volume 1847 of LNAI, pages 67–71. Springer, 2000. ISBN
3-540-67697-X.

[39] Ullrich Hustadt and Renate A. Schmidt. Simplification and backjumping in modal
tableau. In Harrie de Swart, editor, Proceedings of the International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX-
98), volume 1397 of LNAI, pages 187–201, Berlin, May 5–8 1998. Springer. ISBN
3-540-64406-7.

[40] Mark Kaminski and Gert Smolka. Terminating tableau systems for hybrid logic
with difference and converse. Technical report, Saarland University, 2008.

[41] Mark Kaminski and Gert Smolka. A straightforward saturation-based decision
procedure for hybrid logic. In Jörgen Villadsen, Thomas Bolander, and Tor-
ben Braüner, editors, International Workshop on Hybrid Logic 2007 (HyLo 2007),
Dublin, Ireland, 2007.

[42] Mark Kaminski and Gert Smolka. Hybrid tableaux for the difference modality. In
Carlos Areces and Stéphane Demri, editors, Proc. 5th Workshop on Methods for
Modalities (M4M-5), Cachan, France, 2007. To appear in ENTCS.

76 BIBLIOGRAPHY

[43] Donald E. Knuth. The Art of Computer Programming: Sorting and Searching,
volume 3. Addison-Wesley, Reading MA, second edition, 1998. ISBN 0-201-89685-
0.

[44] Saul A. Kripke. Semantical analysis of modal logic I: Normal modal propositional
calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9:
67–96, 1963.

[45] Richard E. Ladner. The computational complexity of provability in systems of
modal propositional logic. SIAM J. Comput, 6(3):467–480, 1977.

[46] Fabio Massacci. Strongly analytic tableaux for normal modal logics. In Alan
Bundy, editor, Proceedings of the Twelfth International Conference on Automated
Deduction (CADE’94), volume 814 of Lecture Notes in Artificial Intelligence, pages
723–737, Berlin, 1994. Springer-Verlag.

[47] Fabio Massacci. Design and results of the Tableaux-99 Non-classical (Modal) Sys-
tems comparison. In Neil V. Murray, editor, Proceedings of the International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX-99), volume 1617 of LNAI, pages 14–18, Berlin, June 07–11 1999.
Springer. ISBN 3-540-66086-0.

[48] Fabio Massacci and Francesco M. Donini. Design and results of TANCS-2000
non-classical (modal) systems comparison. In Roy Dyckhoff, editor, TABLEAUX,
volume 1847 of Lecture Notes in Computer Science, pages 52–56. Springer, 2000.
ISBN 3-540-67697-X.

[49] David G. Mitchell. A SAT solver primer. Bulletin of the EATCS, 85:112–132, 2005.

[50] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Design Automation Conference (DAC’01), June 2001.

[51] Boris Motik, Rob Shearer, and Ian Horrocks. Optimizing the Nominal Introduction
Rule in (Hyper)Tableau Calculi. In Proc. of the 21st Int. Workshop on Description
Logics (DL 2008), Dresden, Germany, May 13–16 2008. To appear.

[52] Peter F. Patel-Schneider. System description: DLP. In David A. McAllester,
editor, CADE, volume 1831 of Lecture Notes in Computer Science, pages 297–301.
Springer, 2000. ISBN 3-540-67664-3.

[53] Alan L. Rector. Medical informatics. In Franz Baader, Diego Calvanese, Deborah L.
McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors, The Description
Logic Handbook: Theory, Implementation and Applications, pages 406–426. Cam-
bridge University Press, Cambridge, England, 2003.

[54] Klaus Schild. A correspondence theory for terminological logics: Preliminary re-
port. In IJCAI, pages 466–471, 1991.

[55] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48(1):1–26, 1991.

[56] João P. Marques Silva and Karem A. Sakallah. Conflict analysis in search algo-
rithms for satisfiability. In ICTAI, pages 467–469, 1996.

[57] Evren Sirin, Bernardo Cuenca Grau, and Bijan Parsia. From wine to water: Op-
timizing description logic reasoning for nominals. In Patrick Doherty, John My-
lopoulos, and Christopher A. Welty, editors, KR, pages 90–99. AAAI Press, 2006.
ISBN 978-1-57735-271-6.

BIBLIOGRAPHY 77

[58] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. J. Web Sem, 5(2):51–53, 2007.

[59] Richard M. Stallman and Gerald J. Sussman. Forward reasoning and dependency-
directed backtracking. Artificial Intelligence, 9(2):135–196, 1977.

[60] Armando Tacchella. *SAT system description. In Patrick Lambrix, Alexander
Borgida, Maurizio Lenzerini, Ralf Möller, and Peter F. Patel-Schneider, editors,
Description Logics, volume 22 of CEUR Workshop Proceedings. CEUR-WS.org,
1999.

[61] Armando Tacchella. Evaluating ∗SAT on TANCS 2000 benchmarks. In Roy Dy-
ckhoff, editor, TABLEAUX, volume 1847 of Lecture Notes in Computer Science,
pages 77–81. Springer, 2000. ISBN 3-540-67697-X.

[62] Armando Tacchella and Roberto Sebastiani. K-CNF-generator, 1999. URL
http://www.mrg.dist.unige.it/˜tac/StarSAT/getting_StarSAT.html.

[63] Dmitry Tsarkov and Ian Horrocks. Ordering heuristics for description logic reason-
ing. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005),
pages 609–614, 2005.

[64] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System de-
scription. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–297. Springer,
2006.

[65] Dmitry Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider. Optimizing termino-
logical reasoning for expressive description logics. J. of Automated Reasoning, 39
(3):277–316, 2007.

[66] Christopher A. Welty. Software engineering. In Franz Baader, Diego Calvanese,
Deborah L. McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors, The
Description Logic Handbook: Theory, Implementation and Applications, pages 373–
385. Cambridge University Press, Cambridge, England, 2003.

