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What is Spartacus?

e reasoner for hybrid logic
+ global modalities
+ reflexivity and transitivity
e pattern-based blocking
* technique to ensure termination

e different from traditional (chain-based) blocking

» see whether it 1s a useful optimization technique

 optimization techniques



Overview

* basic modal logic
e basic architecture of Spartacus

e extensions to the architecture for
+nominals

+ global modalities
e pattern-based blocking
 optimization techniques

e evaluation



Basic Modal Logic

t=pl-atltatitvt propositional logic

| <r>t | [r] t + modal operators

t: S—B predicates on states
tx t holds 1n state x

< >tx ;=dy.rXxyAty <r>t '

r] tx =Vy.rxy=ty ] t )




Tableau Algorithm

e decide satisfiability of a term t
e start with branch 1 = {tx} (X not free in t)

e infer new constraints by application of tableau rules:

o (svix L (sAX
disjunction conjunction
sx|tx S X, tX
: <r>tx r|itx rX
diamond y fresh box Lt} Y
rxy,ty ty

e a branch I'1s closed 1if {sx, =sx} I

e a term 1s unsatisfiable if all branches are closed




Architecture

Node Store

for each state:

maintain a node that stores
inferred constraints

Backtracking Search

keep track of alternative branches

backtracking after

conflict

Agenda

store pending rule applications
different ordering heuristics




Nominals

yX  =x=y state x is named y

e state equivalence implemented as disjoint set forest

e one node becomes representative, contains all constraints

e other nodes are replaced by forward pointers to the representative

y, t, &

@y tx =ty t holds 1n the state named y

e implementation: add t to the representative of y




Global Modalities

Etx

Etx :=3yty t holds in some state ty fresh

e implementation: create a new node and add t to 1t

e remember that a node for t has been created

. Atx
Atx =Vyty t holds in all states T y on branch

e implementation: add t to all nodes

e requires blocking for termination



Termination

A (<r>p)

1A<r> tX y fresh
Xy, ty

Atx yon
ty branch
[r]tx rXy




Termination
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Termination
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Termination
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Termination

<r>p

universal modalities:

I

<> p

p, <r>p

I

<r>tXx y fresh

rxy,ty

p, <r>p

naive approach:
not terminating!
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Termination
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Termination

<r>p

I

p, <r>p

self loop:
terminating!

general 1dea:
satisfy diamonds by
adding “safe” edges to
existing nodes

universal modalities:
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Atx yon
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Pattern-Based Blocking

<r>p, [r] q;, [r] q,

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

blocked patterns:

Atx y on
ty branch
[r]tx rXxy
Ly



Pattern-Based Blocking

<r>p, [r] q;, [r] q,

I

p’ ql’ q2

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

blocked patterns:
(P> 41> Ao}

Atx y on
ty branch
rjtx rxy
ty



Pattern-Based Blocking

<r>p, [r] q;, [r] q,

I

p’ ql’ q2’ <r> p

/

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

blocked patterns:
P> 1> Ao}

Atx y on
ty branch
[r]tx rXxy
Ly



Pattern-Based Blocking
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Pattern-Based Blocking
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Pattern-Based Blocking

* necessary to guarantee termination

e useful optimization
e simple variant: store pattern only when node is created

 cager variant: update stored pattern when new box 1s propagated

* needed: efficient data structure to store and query for patterns

e three data structures
 tree-based (Hoffmann, Koehler, 1999)
* bitvector-based (Giunchiglia, Tacchella, 2000)

* based on array of lists (based on bitvector approach, compact representation)



Evaluation

e subset of TANCS-2000 benchmarks

e randomly generated quantified boolean formulas translated into

terms of basic modal logic
* “modalized” benchmarks
e created similarly to TANCS-2000 benchmarks
* each propositional variable 1s replaced by a modal term
containing only one propositional variable
e terms generated randomly by K-CNF-generator

* http://www.mrg.dist.unige.it/~tac/StarSAT/Sources4610712832/K-
CNF-generator.tar.gz



Pattern-Based Blocking
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Pattern-Based Blocking

benchmarks
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Pattern-Based Blocking
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Optimizations

e Term Normalization

* Backjumping

* Boolean Constraint Propagation

e Disjoint Branching

e Lazy Branching

e Caching of Unsatistiable Sets of Terms



Lazy Branching

e extension of lazy unfolding (Horrocks, 1997)
e related to “pure literal elimination” in DPLL (Davis et. al., 1962)

e delay branching on disjunctions containing propositional literals

e example:
(p Vv <r>q)x can be delayed 1f

e —px 1s not on the branch, and
* (7p Vv t)x 1s not being delayed

 only add disjunctions that cannot be delayed to the agenda

e lazy branching on boxes:
e only add disjunction ([r]s Vv ...)X to agenda when <r>tx on the branch



Lazy Branching

terms with large modal depth (K-CNF)
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Lazy Branching

terms with hard propositional subproblems (K-CNF)
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Comparison

« CWB

* prototype reasoner for basic modal logic

* http://users.rsise.anu.edu.au/~linda/CWB.html

e FaCT++

e reasoner for the rich description logic SROIQ(D)
* http://code.google.com/p/factplusplus/

e HTab

e reasoner for hybrid logic

e http://www.glyc.dc.uba.ar/intohylo/htab.php
e *SAT

e reasoner for basic modal logic

e http://www.mrg.dist.unige.it/~tac/StarSAT.html



Comparison

TANCS-2000 benchmarks
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“modalized” benchmarks
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Comparison

terms generated by K-CNF-generator
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Contributions

e Spartacus 1s a competitive reasoner for hybrid logic
e the first implementation of pattern-based blocking
e evaluation of data structures for storing patterns

* novel optimization technique: lazy branching

not presented here but in the thesis:

e evaluation of
 optimization techniques

* rule application strategies



Conclusion

* modal reasoning successtul but
e still room for improvement
* optimizations important

e pattern-based blocking

* technique to achieve termination (global modalities, transitivity)

e promising optimization technique (as shown by evaluation)



Outlook

e improve rule application heuristics

* more features from description logic
e role hierarchies

e graded modalities
* PDL, p-calculus?
e caching (learning from failure)?

e converse modalities?
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Lazy Branching
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Lazy Branching

“modalized” benchmarks
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Lazy Branching

terms generated by K-CNF-generator
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Reflexivity and Transitivity

Reflexivity

[r] t x
t X

r reflexive

Transitivity

rltx rXxy

r transitive

[r] ty

e requires blocking for termination



Term Normalization

e cach subterm of input represented by index (integer)

 obviously equivalent terms have same index

*e.g., (pAq)and(qAp)
e indices of t and -t differ only in least significant bit
 obviously unsatisfiable terms mapped to O

*e.g (pATPp)
 obviously valid terms mapped to 1

ec.g, (pVv P

see also: Horrocks (1997)



Backjumping

PoX, 70X, (Pr VX, (P2 V )X

useless!
conflict independent
from choice at

* idea: for each term t: store branching points, on which t depends
* jump back to closest participating branching point

see also: Horrocks (1997)



Boolean Constraint Propagation

 before branching: eliminate disjuncts that obviously lead to conflict

e can eliminate all but one disjunct: add i1t deterministically
e can eliminate all disjuncts: backtrack immediately

 simple version: look at first disjunction on agenda only
e cager version: find disjunction on agenda that can be simplified

e currently: search the entire agenda
e better: watched literals

see also: Freeman (1995)



Disjoint Branching

(svit)x (svit)x
sx | tx y sX | =sx, tx

e replace branching rule

 enfores semantically disjoint branches

e potential drawback: adding —sx may require solving hard subproblem

 (weaker) alternative: no-good lists
e remember failed alternatives

see also: D’ Agostino (1992), Horrocks et. al. (2006), Tsarkov et. al. (2007)



Lines of Code

e total 4500
ecore 1700
* tableau algorithm 300
e agenda 400
e node store 850
 backtracking search 150
* blocking 300
* core 150
e pattern stores 150
e additional infrastructure 600
e data structures 950

* preprocessing 950
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