Spartacus

A Tableau Prover for Hybrid Logic

Daniel Gotzmann
Graduate Seminar
Programming Systems Lab
2009-01-23
Advisor: Mark Kaminski
Responsible Professor: Gert Smolka

What is Spartacus?

e reasoner for hybrid logic
+ global modalities
+ reflexivity and transitivity
e pattern-based blocking
* technique to ensure termination

e different from traditional (chain-based) blocking

» see whether it 1s a useful optimization technique

 optimization techniques

Overview

* basic modal logic
e basic architecture of Spartacus

e extensions to the architecture for
+nominals

+ global modalities
e pattern-based blocking
 optimization techniques

e evaluation

Basic Modal Logic

t=pl-atltatitvt propositional logic

| <r>t | [r] t + modal operators

t: S—B predicates on states
tx t holds 1n state x

< >tx ;=dy.rXxyAty <r>t '

r] tx =Vy.rxy=ty] t)

Tableau Algorithm

e decide satisfiability of a term t
e start with branch 1 = {tx} (X not free in t)

e infer new constraints by application of tableau rules:

o (svix L (sAX
disjunction conjunction
sx|tx S X, tX
: <r>tx r|itx rX
diamond y fresh box Lt} Y
rxy,ty ty

e a branch I'1s closed 1if {sx, =sx} I

e a term 1s unsatisfiable if all branches are closed

Architecture

Node Store

for each state:

maintain a node that stores
inferred constraints

Backtracking Search

keep track of alternative branches

backtracking after

conflict

Agenda

store pending rule applications
different ordering heuristics

Nominals

yX =x=y state x is named y

e state equivalence implemented as disjoint set forest

e one node becomes representative, contains all constraints

e other nodes are replaced by forward pointers to the representative

y, t, &

@y tx =ty t holds 1n the state named y

e implementation: add t to the representative of y

Global Modalities

Etx

Etx :=3yty t holds in some state ty fresh

e implementation: create a new node and add t to 1t

e remember that a node for t has been created

. Atx
Atx =Vyty t holds in all states T y on branch

e implementation: add t to all nodes

e requires blocking for termination

Termination

A (<r>p)

1A<r> tX y fresh
Xy, ty

Atx yon
ty branch
[r]tx rXy

Termination

A (<r>p)

universal modalities:

<r>tXx y fresh

rxy,ty

Atx yon
ty branch
[r]tx rXy

Termination

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

Atx yon
ty branch
[r]tx rXxy

Termination

<r>p

N

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

Atx y on
ty branch
[r]tx rXxy

Termination

<r>p

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

Atx yon
ty branch
[r]tx rXxy

Termination

<r>p

p, <r>p

/

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

Atx y on
ty branch
[r]tx rXxy

Termination

<r>p

universal modalities:

I

<> p

p, <r>p

I

<r>tXx y fresh

rxy,ty

p, <r>p

naive approach:
not terminating!

Atx yon
ty branch
[r]tx rXxy
ty

Termination

<r>p

I

p, <r>p

self loop:
terminating!

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

Atx yon
ty branch
[r]tx rXxy
ty

Termination

<r>p

I

p, <r>p

self loop:
terminating!

general 1dea:
satisfy diamonds by
adding “safe” edges to
existing nodes

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

Atx yon
ty branch
[r]tx rXxy
ty

Pattern-Based Blocking

<r>p, [r] q;, [r] q,

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

blocked patterns:

Atx y on
ty branch
[r]tx rXxy
Ly

Pattern-Based Blocking

<r>p, [r] q;, [r] q,

I

p’ ql’ q2

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

blocked patterns:
(P> 41> Ao}

Atx y on
ty branch
rjtx rxy
ty

Pattern-Based Blocking

<r>p, [r] q;, [r] q,

I

p’ ql’ q2’ <r> p

/

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

blocked patterns:
P> 1> Ao}

Atx y on
ty branch
[r]tx rXxy
Ly

Pattern-Based Blocking

<r>p, [r] q;, [r] q,

I

p’ ql’ q2’ <r> p

<r> p 1s blocked,
hence not expanded

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

blocked patterns:
P> 1> Ao}

Atx y on
ty branch
[r]tx rXxy
Ly

Pattern-Based Blocking

<r>p, [r] q;, [r] q,

I

PG <r>p | Jr

<r> p 1s blocked,
hence not expanded

universal modalities:

<> p

<r>tXx y fresh

rxy,ty

blocked patterns:
P> 1> Ao}

Atx y on
ty branch
[r]tx rXxy
Ly

Pattern-Based Blocking

* necessary to guarantee termination

e useful optimization
e simple variant: store pattern only when node is created

 cager variant: update stored pattern when new box 1s propagated

* needed: efficient data structure to store and query for patterns

e three data structures
 tree-based (Hoffmann, Koehler, 1999)
* bitvector-based (Giunchiglia, Tacchella, 2000)

* based on array of lists (based on bitvector approach, compact representation)

Evaluation

e subset of TANCS-2000 benchmarks

e randomly generated quantified boolean formulas translated into

terms of basic modal logic
* “modalized” benchmarks
e created similarly to TANCS-2000 benchmarks
* each propositional variable 1s replaced by a modal term
containing only one propositional variable
e terms generated randomly by K-CNF-generator

* http://www.mrg.dist.unige.it/~tac/StarSAT/Sources4610712832/K-
CNF-generator.tar.gz

Pattern-Based Blocking

TANCS-2000 benchmarks

T
S
—
@\

120

T 1
& &
A § \o
(g\| —

320+
280+

paAJos swrjqoad

60

30

15

%

Va

t (seconds)

1mil

time 1

M eager/bitmatrix simple/tree @ no blocking

H eager/tree

M eager/list

Pattern-Based Blocking

benchmarks

“modalized”

T 1
S <
o A
Ao e

paAJos swrjqoad

60

30

15

%

Va

t (seconds)

1mil

time 1

Bl eager/bitmatrix 7 simple/tree @ no blocking

H eager/tree

M eager/list

Pattern-Based Blocking

generator

K-CNF-

terms generated by

rI

|| .

60

30

15

%

Va

216+
1981
180
162 -
144 -
126
108

paAJos swrjqoad

t (seconds)

1mil

time 1

M eager/bitmatrix simple/list ® no blocking

W eager/tree

M eager/list

Optimizations

e Term Normalization

* Backjumping

* Boolean Constraint Propagation

e Disjoint Branching

e Lazy Branching

e Caching of Unsatistiable Sets of Terms

Lazy Branching

e extension of lazy unfolding (Horrocks, 1997)
e related to “pure literal elimination” in DPLL (Davis et. al., 1962)

e delay branching on disjunctions containing propositional literals

e example:
(p Vv <r>q)x can be delayed 1f

e —px 1s not on the branch, and
* (7p Vv t)x 1s not being delayed

 only add disjunctions that cannot be delayed to the agenda

e lazy branching on boxes:
e only add disjunction ([r]s Vv ...)X to agenda when <r>tx on the branch

Lazy Branching

terms with large modal depth (K-CNF)

problems solved

V4 V%) 1 2 4 8 15 30 60
time limit (seconds)

H on B prop B box O off

Lazy Branching

terms with hard propositional subproblems (K-CNF)

20-
16-

=~

D)

2

S 12-

7))

=

=

2 %

S

.
4_
0_

V4 V%) 1 2 4 8 15 30 60
time limit (seconds)

H on B prop B box O off

Comparison

« CWB

* prototype reasoner for basic modal logic

* http://users.rsise.anu.edu.au/~linda/CWB.html

e FaCT++

e reasoner for the rich description logic SROIQ(D)
* http://code.google.com/p/factplusplus/

e HTab

e reasoner for hybrid logic

e http://www.glyc.dc.uba.ar/intohylo/htab.php
e *SAT

e reasoner for basic modal logic

e http://www.mrg.dist.unige.it/~tac/StarSAT.html

Comparison

TANCS-2000 benchmarks

320+

problems solved

V4 V%) 1 2 4 8 15 30 60
time limit (seconds)

B Spartacus B CWB B FaCT++ O HTab B *SAT

“modalized” benchmarks

Comparison

paAJos swrjqoad

time limit (seconds)

B *SAT

B CWB B FaCT++ O HTab

B Spartacus

Comparison

terms generated by K-CNF-generator

216+

1981

180

162 -

144 -

126

108

problems solved

L4 V%) 2 4 8 15 60
time limit (seconds)
B Spartacus B CWB B FaCT++ O HTab B *SAT

Contributions

e Spartacus 1s a competitive reasoner for hybrid logic
e the first implementation of pattern-based blocking
e evaluation of data structures for storing patterns

* novel optimization technique: lazy branching

not presented here but in the thesis:

e evaluation of
 optimization techniques

* rule application strategies

Conclusion

* modal reasoning successtul but
e still room for improvement
* optimizations important

e pattern-based blocking

* technique to achieve termination (global modalities, transitivity)

e promising optimization technique (as shown by evaluation)

Outlook

e improve rule application heuristics

* more features from description logic
e role hierarchies

e graded modalities
* PDL, p-calculus?
e caching (learning from failure)?

e converse modalities?

References

hybrid logic

C. Areces and B. ten Cate. Hybrid Logics. In P. Blackburn, J. van Benthem, and F. Wolter, editors, Handbook of
Modal Logic. Elsevier, 2007.

pattern-based blocking

M. Kaminski and G. Smolka. Hybrid Tableaux for the Difference Modality. In Proc. 5th Workshop on Methods for
Modalities (M4M-5), pp. 269-284, Cachan, France, November 2007. To Appear in ENTCS

M. Kaminski and G. Smolka. Terminating tableau systems for hybrid logic with difference and converse. Technical
report, Saarland University, 2008.

data structures for pattern-based blocking

J. Hoffmann and J. Koehler. A New Method to Index and Query Sets. In Proceedings of the 16th International Joint
Conference on Artificial Intelligence, pp. 462-467, 1999.

E. Giunchiglia and O. Tacchella. A subset-matching size-bounded cache for satisfiability of modal logics. In
Proceedings International Conference Tableaux’2000, pp. 237-251. 2000.

optimizations

Marcello D’ Agostino. Are tableaux an improvement on truth-tables? Cut-free proofs and bivalence. Journal of Logic,
Language, and Information, 1(3):235-252, 1992.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Communications of the ACM,
5:394-397, 1962.

J. W. Freeman. Improvements to Propositional Satisfiability Search Algorithms. PhD thesis, Departement of
computer and Information science, University of Pennsylvania, Philadelphia, 1995.

I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD thesis, University of Manchester,
1997.

I. Horrocks, U. Hustadt, U. Sattler, and R. Schmidt. Computational modal logic. In P. Blackburn, J. van Benthem,
and F. Wolter, editors, Handbook of Modal Logic, chapter 4, pages 181-245. Elsevier, 2006.

D. Tsarkov, 1. Horrocks, and P. F. Patel-Schneider. Optimizing terminological reasoning for expressive description
logics. J. of Automated Reasoning, 39 (3):277-316, 2007.

Lazy Branching

TANCS-2000 benchmarks

problems solved

V4 V%) 1 2 4 8 15 30 60
time limit (seconds)

H on B prop B box O off

Lazy Branching

“modalized” benchmarks

80
40

400 -
360 -
320+
T 280- I I
g 240- I I
g 2004 I I
% 160 I I
(=N 4
120 I I
1 |
il

V4 V%) 1 2 4 8 15 30 60
time limit (seconds)

H on B prop B box O off

Lazy Branching

terms generated by K-CNF-generator

-----d
| 1 | { [[[[[| |

4

E !

e 1 |l

: 126 I I

S 108- I I
O

% 90 I I

5 729 I I

54 I I

36 I I

1 11

V4 V%) 1 2 4 8 15 30 60
time limit (seconds)

H on B prop B box O off

Reflexivity and Transitivity

Reflexivity

[r] t x
t X

r reflexive

Transitivity

rltx rXxy

r transitive

[r] ty

e requires blocking for termination

Term Normalization

e cach subterm of input represented by index (integer)

 obviously equivalent terms have same index

*e.g., (pAq)and(qAp)
e indices of t and -t differ only in least significant bit
 obviously unsatisfiable terms mapped to O

*e.g (pATPp)
 obviously valid terms mapped to 1

ec.g, (pVv P

see also: Horrocks (1997)

Backjumping

PoX, 70X, (Pr VX, (P2 V)X

useless!
conflict independent
from choice at

* idea: for each term t: store branching points, on which t depends
* jump back to closest participating branching point

see also: Horrocks (1997)

Boolean Constraint Propagation

 before branching: eliminate disjuncts that obviously lead to conflict

e can eliminate all but one disjunct: add i1t deterministically
e can eliminate all disjuncts: backtrack immediately

 simple version: look at first disjunction on agenda only
e cager version: find disjunction on agenda that can be simplified

e currently: search the entire agenda
e better: watched literals

see also: Freeman (1995)

Disjoint Branching

(svit)x (svit)x
sx | tx y sX | =sx, tx

e replace branching rule

 enfores semantically disjoint branches

e potential drawback: adding —sx may require solving hard subproblem

 (weaker) alternative: no-good lists
e remember failed alternatives

see also: D’ Agostino (1992), Horrocks et. al. (2006), Tsarkov et. al. (2007)

Lines of Code

e total 4500
ecore 1700
* tableau algorithm 300
e agenda 400
e node store 850
 backtracking search 150
* blocking 300
* core 150
e pattern stores 150
e additional infrastructure 600
e data structures 950

* preprocessing 950

BIQENEIES,

LA 0eysIESUn,

Ln3al Ln3al
A
mmw_m_“.__m HORoE saAleLIale aAlELLIA][E
mc__u.mhmi sah 25004 JagLuaLIa. as00y2
ou
sUDoE Jasounizip
Auipuad ppe uonae saf ASaLauely Auraelyoeq
asleula]e aHO0ALI
A
ou
epualy Yaeas Buixaelroeg
Sah
Ja|geddde Apaso|a
ou S3|nJ mau o Lau el =ah
L] SILIENSUDD PRE e
apou [eniul oy A
Luda] ndur ppe
ry 2U01S AP0

Aligeysies Jo) palsal
ag 07 Ldag ndul

