

Computational Aspects of
Non-Projective Dependency Grammars

final talk of diploma thesis
Programming Systems Lab, Saarland University, Prof. Gert Smolka

26 January 2006

by Robert Grabowski
supervised by Marco Kuhlmann

Introduction

Declarative Dependency Grammars
● declarative dependency grammars: describing

relations between heads and dependents
● well-formedness conditions on structures

instead of rules
● related work: TDG, CDG

...weil er es mir zu lesen versprach

subj
obj

vinf

obj

Introduction

Declarative Dependency Grammars
● general dependency grammar: very flexible
● large variety of linguistic phenomena easy to encode

in grammar
● but: complexity hard to analyse
● difficult to write efficient parsers

Introduction

Declarative Dependency Grammars
● Gaifman (1965):

– projective DG are strongly equivalent to
lexicalised context-free grammars

– recognizable in polynomial time

Introduction

Contents of Thesis
● used Lexicalised Configuration Grammars (LCG) as a

flexible framework for non-projective dependency
grammars

● analysed computational aspects of LCG grammar
parsing

● characterised mildly context-sensitive dependency
grammars

Introduction

Results
● isolated factors that contribute to parsing complexity
● stated conditions for parsing dependency grammars in

polynomial time
● developed a mildly context-sensitive dependency

grammar class and parsing schema
● used results to explain complexity of various

formalisms encoded in LCG

Overview
● Introduction
● Lexicalised Configuration Grammars
● Computational Factors
● Mildly Context-Sensitive Dependency Languages
● Summary

Lexicalised Configuration Grammars
● LCG talks about labelled drawings
● trees with a total order on the nodes
● may be non-projective
● edges and nodes are labelled

...weil er es mir zu lesen versprach

subj

obj vinf

obj

Lexicalised Configuration Grammars

Theories and Grammars
● theory:

defines a model class and a lexical constraint
language
– lexical constraints are defined locally
– must be checkable by a computable function

● grammar:
consists of lexical entries with
– specifications of incoming and outgoing edge labels
– local constraints from the constraint language

Lexicalised Configuration Grammars

Example: Lexicalised CFG
● theory:

– projective drawings
– precedence constraint (Á) on child nodes

● grammar:
– a grammar rule B → C b D is encoded

as a lexical entry for b:

word: b in: { B }
 out: { C, D }

 constraints: C Á b
b Á D

Lexicalised Configuration Grammars

Word Problem
● Is a sentence in the language defined by a grammar?
● also known as membership problem
● can be seen as constraint satisfaction problem

abc d

B

DC

Lexicalised Configuration Grammars

Word Problem
● Is a sentence in the language defined by a grammar?
● also known as membership problem
● can be seen as constraint satisfaction problem

word: c
in: { C }
out: ;

abc d

B

DC

word: b
in: { B }
out: { C, D }
constraints: C Á b, b Á D word: d

in: { D }
out: ;

word: a
in: ;
out: { B }

Overview
● Introduction
● Lexicalised Configuration Grammars
● Computational Factors

– Dimensions of Complexity
– Chart Parsers
– Isolating Computational Factors
– Improving Parsing Efficiency
– Complexity Matrix

● Mildly Context-Sensitive Dependency Languages
● Summary

Computational Factors

Dimensions of Complexity
● deciding the word problem depends on

– grammar size |G|
– input sentence length n

Computational Factors

Parsing Techniques
● LCG parser as constraint solver
● generic algorithms: inherent exponential time
● improvements not to be expected
● factors that influence recognition complexity hard to

isolate
● yet: for specific languages, there are efficient parsing

techniques

Computational Factors

Parsing Techniques
● valency descriptions in LCG form regular tree

grammar
● decision:

exploit tree structure for chart-based parser,
constraints as filters only

● later:
– hard-wire constraints
– "blind" parser that automatically satisfies constraints

Computational Factors

Chart Parsers
● efficient parsing technique
● parse items represent already recognized

substructures
● inference system

– defines how to derive new items by combining existing ones

● derived items are written to chart
– efficient retrieval

● no inference is done twice
● dynamic programming

Computational Factors

A Chart Parsing Schema for LCG

● parse item s: <I, Ω> represents partial drawing
– s: covered sentence positions (span)
– I: label of incoming edge
– Ω: labels of outgoing edges (valencies)
– sentence recognized iff {1,...,n}: <;, ;> derived

<in: I, out: Ω> 2 Lex(wi)
{i}: <I, Ω>

LOOKUP

s: <I, I1] ¢¢¢] Ik>
COMBINE

s1: <I1, ;> ¢¢¢

s © s1 © ¢¢¢ © sk: <I, ;>
sk: <Ik, ;>

Computational Factors

A Chart Parser for LCG
● approximating complexity:

– combination rule dominates time complexity

– at most |P|k+1 possibilities for instantiation,
where |P| is the number of possible parse items

P P1 P2 ¢¢¢ Pk
COMBINE

C

Computational Factors

Isolating Computational Factors
number of possible items depends on:
● span representation

– worst case: set of integers (exponential in n)

● valency representation
– worst case: sets (exponential in |G|)

Computational Factors

Isolating Computational Factors
time complexity is influenced by:
● number of possible items
● number of items to combine

– worst case: "wide" rules (exponential in |G|)

● constraint behavior
– worst case: no restriction (exponential in |G| and n)

Computational Factors

Improving Efficiency
achieving polynomiality with respect to n:
● restrict gap degree to g

– spans representable as 2¤(g+1) integers
– number of possible spans: n2¤(g+1)

{ 2,3,4,5,8,9 } → (2,5,8,9)
2n n4

Computational Factors

Improving Efficiency
achieving polynomiality with respect to |G|
● combine constant number of items at once

– store intermediate items in chart

● define a combination order for valencies
– valencies representable as list

{1,2} {3} {4,5}
{1,2,3,4,5}

{1,2} {3}
{1,2,3} {4,5}

{1,2,3,4,5}

{1,2} {4,5}
{1,2,4,5} {3}

{1,2,3,4,5}

{3} {4,5}
{3,4,5} {1,2}

{1,2,3,4,5}
→

Computational Factors

Improving Efficiency – A Trade-Off
achieving polynomiality with respect to n and |G|:
● combine a constant number at once
● a) combine in defined order

– intermediate results may have unrestricted gap,
exponential in n

● b) require gap restriction
– parser may have to search for a combination order,

exponential in |G|
– result: for well-nested drawings, there is always a

combination order

Computational Factors

Example for Trade-Off
● unordered context-free grammars (UCFG):

CFG with free valency precedence
– lexical entry for word a:

– parse items for drawings
under B,C,D already in chart

● combine order B,C,D: items with gap degree 1
● or force gap degree 0 for all items:

have to find a fitting combination order

ab d c

B D C

 A in: { A }
 out:{ B, C, D }

Computational Factors

Example for Trade-Off
● unordered context-free grammars (UCFG):

CFG with free valency precedence
– lexical entry for word a:

– parse items for drawings
under B,C,D already in chart

● combine order B,C,D: items with gap degree 1
● or force gap degree 0 for all items:

have to find a fitting combination order

 in: { A }
 out:{ B, C, D }

ab d c

B D C

 A

Computational Factors

Example for Trade-Off
● unordered context-free grammars (UCFG):

CFG with free valency precedence
– lexical entry for word a:

– parse items for drawings
under B,C,D already in chart

● combine order B,C,D: items with gap degree 1
● or force gap degree 0 for all items:

have to find a fitting combination order

 in: { A }
 out:{ B, C, D }

ab d c

B D C

 A

Computational Factors

Example for Trade-Off
● unordered context-free grammars (UCFG):

CFG with free valency precedence
– lexical entry for word a:

– parse items for drawings
under B,C,D already in chart

● combine order B,C,D: items with gap degree 1
● or force gap degree 0 for all items:

have to find a fitting combination order

 in: { A }
 out:{ B, C, D }

ab d c

B D C

 A

Computational Factors

Constraint Complexity
● constraints check all combined subdrawings
● problem: each parse item may represent exponential

number of found subdrawings
● achieving polynomiality:

– constraints may only check parse items directly

Computational Factors

Making Use of Constraints
● constraints as filter
● strong constraints: built into parser

– context-free grammars:
fully specified local precedence

– used as combination order, require adjacent spans

● weaker constraints: solutions built into parser
– grammars with underspecified valency precedences
– find all constraint solutions: exponential in |G|
– satisfying precedences as combination orders

Computational Factors

Complexity Matrix
● encoded formalisms in LCG
● analysed which restrictions can be made on parsing

schema without losing completeness
● positioned formalisms in a matrix according to

complexity
● schema can explain complexity of formalisms

Computational Factors

Complexity Matrix

● projective languages are polynomial in n
● what about non-projective languages?

complexity
with respect to...

sentence length n

gr
am

m
ar

 s
iz

e
|G

|

exponential polynomial

ex
po

ne
nt

ia
l

po
ly

no
m

ia
l

LSL
SCR LUCFL

LCFLLUCFL

Overview
● Introduction
● Lexicalised Configuration Grammars
● Computational Factors
● Mildly Context-Sensitive Dependency Languages
● Summary

Mildly Context-Sensitive Dependency Languages

Mildly Context-Sensitive Languages
● an important subclass

of context-sensitive
languages

● believed to
sufficiently account for
many natural languages

● examples:
TAG, MCTAG, CCG, HG

all languages
recursively
enumerable

context-
sensitive

mildly
context-sensitive

context-free

regular

Mildly Context-Sensitive Dependency Languages

Characterisation
● result:

characterisation of mildly context-sensitive depedency
languages
– bounded gap degree
– underlying tree language is regular
– recognizable in deterministic polynomial time

● no sufficient conditions

Mildly Context-Sensitive Dependency Languages

MCS-LCG
● developed a class of mildly context-sensitive LCG

grammars, and a polynomial time parsing schema

abc d

B

DC

word: b
in: { B }
out: { C, D }
constraints: b ¿ D1

word: a
in: ;
out: { B }
constraints: B1 Á a, a Á B2

B1
B2

Mildly Context-Sensitive Dependency Languages

Results
● context-free valency constraints are a special case of

valency part constraints
● TAG grammars can be encoded with fully specified

valency part precedences

Mildly Context-Sensitive Dependency Languages

Complexity Matrix

complexity
with respect to...

sentence length n

gr
am

m
ar

 s
iz

e
|G

|
exponential polynomial

ex
po

ne
nt

ia
l

po
ly

no
m

ia
l

LSL
SCR

LUCFL
MCSL

LCFL
TAGLUCFL

Overview
● Introduction
● Lexicalised Configuration Grammars
● Computational Factors
● Mildly Context-Sensitive Dependency Languages
● Summary

Summary
● isolated factors that contribute to complexity of

recognizing depedency languages
● restricted factors to improve efficiency
● characterised a class of efficiently recognizable non-

projective dependency grammars

Summary

Future Work
● find fragment for any PTIME language
● encode other grammar formalisms

– MCTAG
– CCG

● make use of results in XDG

Summary

References
● Robert Grabowski, Marco Kuhlmann, Mathias Möhl: Lexicalised Configuration

Grammars. In: Second International Workshop on Constraint Solving and Language
Processing, Sitges, Spain (2005).

● G. Edward Barton, Jr.: On the Complexity of ID/LP Parsing. Computational
Linguistics, volume 11, number 4 (1985), 205-218.

● Oliver Suhre: Computational aspects of a grammar formalism for languages with freer
word order. Diploma thesis, Universität Tübingen (1999).

● Mike Daniels, W. Detmar Meurers: Improving the efficiency of parsing with
discontinuous constituents. In: Proceedings of the 7th International Workshop on
Natural Language Understanding and Logic Programming, Copenhagen (2002), 49–
68.

● Denys Duchier, Joachim Niehren: Dominance constraints with set operators. In:
Proceedings of the First International Conference on Computational Logic, volume
1861 of Lecture Notes in Computer Science, Springer (2000), 326–341.

Summary

References
● K. Vijay-Shanker, David J. Weir, Aravind K. Joshi: Characterizing structural

descriptions produced by various grammatical formalisms. In: 25th Annual Meeting of
the ACL, Stanford, USA (1987), 104-111.

● Marcus Kracht: The Mathematics of Language. de Gruyter, Berlin (2003).

● James D. McCawley: Concerning the base component of a transformational
grammar. Foundations of Language, volume 4 (1968), 243–269.

● Hiroshi Maruyama: Structural Disambiguation with Constraint Propagation. In: 28th
Annual Meeting of the ACL, Pittsburgh, USA (1990), 31-38.

