
Higher-order Recursive Types

Working Notes, 21st March 2002

Gert Smolka

We are interested in a lambda calculus whose expressions describe types
that are possibly higher-order and recursive. Types are modelled as trees,
which can be seen as possibly in�nite, normal lambda expressions in de
Bruijn's notation.
In general, equivalence of type expressions is undecidable. We are inter-

ested in subclasses for which equivalence is e�ciently decidable. We de�ne a
subclass whose equivalence problem can be solved in O(n log n) time.

1 Trees and Graphs

As usual, we de�ne a tree as a function from a tree domain (possibly in�nite) to a set of
so-called labels. We consider nonempty, ordered trees whose domains are pre�x-closed
subsets of N∗. A tree is called regular if it has only �nitely many distinct subtrees.

Trees can be described by graphs whose edges are labeled with natural numbers. Each
node of such a graph describes exactly one tree. The graph itself describes a set of trees
that is closed under taking subtrees.

A graph together with one of its nodes can be seen as a kind of automaton, which
accepts the elements of the tree the node (acting as initial state) describes (up to details
concerning the �nal states).

The trees described by a �nite graph are all regular. For every regular tree t there is a
�nite graph whose nodes describe exactly the subtrees of t.

A graph is minimal if di�erent nodes of the graph describe di�erent trees. Minimal
graphs are unique up to renaming of nodes; that is, for a �nite set of regular trees there
is one and only one minimal graph representing it (up to renaming of nodes). A �nite

1

graph can be minimized in O(n log n) time by an algorithm known as graph partioning
(originally devised by Hopcroft (1971) for minimizing automata).

2 Rho Calculus

Regular trees can be described by so-called µ-expressions (e.g., µx.f(a, x)). We de�ne
the rho calculus as the system that, given a set of labels f ∈ F and a set of variables
x ∈ X, consists of the expressions

M = fM1 . . .Mn | x | µx.M (M not a variable)

and the reduction rule

(µ) µx.M → M [µx.M /x]

We need to de�ne which tree is denoted by an expression (given an environment E
mapping its free variables to trees). This can be done by �rst de�ning inductively an
acceptance relation

(π, u), E `M

and then de�ning the denotation function as

[[M]]E = {(π, u) | (π, u), E `M}

The de�nition of the acceptance relations involves µ-reductions that are applied when
needed:

(π, u), E `M [µx.M /x]
(π, u), E ` µx.M

The equation corresponding to the µ-rule is not a complete characterisation of the µ-
operator. For instance, it fails to establish the equivalence of the expressions µx.f(gx)
and f(µx.g(fx)).

There is the minor complication that certain µ-expressions do not describe trees, for in-
stance, µx.x and f(µx.x). This degenerate µ-expressions can be excluded by a straight-
forward syntactic condition, which requires that the M in µx.M is not a variable.1

The natural computer representation for regular trees are graphs. Expressions are used
as a convenient representation for input and output. In contrast to trees, graphs can
1 Degenerate expressions could be taken as descriptions of the empty tree. However, excluding the
empty tree and degenerate expressions seems to save a lot of complications.

2

express structure sharing. Minimal graphs are graphs with maximal structure sharing.
Expressions with a let construct can also express structure sharing.

Chapter 21 of Benjamin Pierces's book [2002] studies a variant of the rho calculus.

Problem 1 De�ne the acceptance relation for the rho calculus.

Problem 2 Show that the equivalence problem of the rho calculus can be decided in

O(n log n) time by the graph partitioning algorithm mentioned in the previous section.

Problem 3 De�ne a denotational semantics for the rho calculus (i.e., a denotation func-

tion de�ned by structural induction on expressions).

3 Lambda Mu Calculus

The canonical framework for the description of higher-order recursive objects is the simply
typed lambda calculus with �xed point combinators:

fixσ : (σ → σ)→ σ

(fix) fixσ = λf : σ → σ. f(fixσf)

We assume the usual axioms (α), (β) and (η).

The µ-operator of the rho calculus can be expressed with �xed point combinators:

µx : σ.M
def= fixσ(λx : σ.M)

Moreover, the µ-rule from the rho calculus

(µ) µx : σ.M → M [µx : σ.M / x]

can be simulated by one application of the �x-rule and two applications of the β-rule.
On the other hand, the �xed point combinators can be expressed with the µ-operator:

fixσ = λf : σ → σ. f(µx : σ.fx)

Moreover, from the equations corresponding to the µ-rule we can derive the axioms for
the �xed point combinators. We conclude that the simply typed lambda �x calculus has
the same expressivity and the same axiomatic equivalence as the simply typed lambda

mu calculus, where the �xed point operators are replaced by the µ-operator. We prefer
to work with the lambda mu calculus since it facilitates the formulation of constrained
versions of recursion.

3

It is well-known that reduction in the simply typed lambda �x calculus is con�uent
and that lambda reduction (i.e., reduction with the β- and η-rule) is terminating (see,
e.g., [Mitchell]). Hence equivalence of expressions not containing a �xed point operator is
decidable. In general, equivalence of expressions in the lambda �x calculus is undecidable.

It is easy to see that the termination result for lambda reduction carries over to the
lambda mu calculus. We also expect that the lambda mu calculus is con�uent, but
the proof of this result is not obvious since reduction in the lambda �x calculus cannot
be fully simulated in the lambda mu calculus. Ariola and Klop [LICS 1994, Section 8]
consider an untyped lambda mu calculus without the η-rule, which is con�uent since it
is an orthogonal, combinatory reduction system.

Problem 4 Show that the lambda mu calculus is con�uent.

A head normal form is an expression that has the property that no reduction rule applies
at the top level, even after preparatory reduction steps at lower levels. The set of head
normal forms is de�ned inductively as follows:

1. M0 . . .Mn is a head normal form if M0 is a constant or a variable.

2. λx.M0 . . .Mn is a head normal form if M0 is a constant or a variable and Mn 6= x.

3. λx.λy.M is a head normal form if λy.M is a head normal form.

We say that M ′ is a head normal form of M if M ′ is a head normal form and M →∗ M ′.

Problem 5 Suppose M and M ′ are head normal forms of the same expression. Then

either M and M ′ are both lambda abstractions, or there exist n ∈ N and expressions F ,

M1, . . . , Mn and M ′
1, . . . , M ′

n such that M = FM1 . . .Mn, M ′ = FM ′
1 . . .M ′

n, and F is

a constant or a variable.

Problem 6 Show that the existence of head normal forms is undecidable.

4 Tau Calculus and Lambda Trees

The tau calculus is the specialized simply typed lambda mu calculus that has only one
base type ∗. For the expressions of the tau calculus we de�ne an equivalence that is
weaker than the canonical equivalence (de�ned by the axioms).2 The need for weak
equivalence was already motivated in the context of the rho calculus; for instance, we
would like that the expressions µx.f(gx) and f(µx.g(fx)), which are not equivalent,

2 Weaker means, that expression that are equivalent are also weakly equivalent, and that weakly
equivalent expressions are not necessarily equivalent.

4

be weakly equivalent. For µ-free expressions, weak equivalence should coincide with
canonical equivalence.

We will de�ne weak equivalence for the tau calculus in a similar way as it was done for
the rho calculus. This time we take so-called lambda trees as denotations of expressions.

Finite lambda trees correspond to closed and normal expressions, where variable bindings
are represented with de Bruijn's notation.3 For instance, the expression

λx.λy.λz.(xz)(yz)

corresponds to the lambda tree

λ(λ(λ(2@0)(1@0)))

where the labels λ and @ (written in in�x notation) represent lambda abstraction and
application. Nodes labeled with de Bruijn indices (i.e., natural numbers) are called alpha

nodes. Constants appear as leaves of lambda trees.

In�nite lambda trees can be seen as in�nite, closed, and normal expressions.

If an expression is in head normal form, its top level corresponds exactly to the top level
of the denoted lambda tree.

A convergence property is a set S of expressions as follows:

1. S is closed under reduction.

2. S is closed under taking subexpressions.

3. Every expression in S has a head normal form.

The union of convergence properties is again a convergence property. Hence there exists
a largest convergence property. An expression is called convergent if and only if it is an
element of the largest convergence property.

Problem 7 Show that convergence is undecidable.

Nonconvergent expressions in the tau calculus correspond to degenerate expressions in
the rho calculus. We will de�ne weak equivalence only for convergent expressions.

Intuitively, convergent expressions have possibly in�nite normal forms. We express this
intuition by de�ning an acceptance relation

(π, u), E `M

that relates lambda trees and convergent expressions.
3 Note that a normal expression cannot contain the µ-operator.

5

Problem 8 De�ne the acceptance relation for convergent expressions.

5 Higher-order and Recursive Types

We model higher-order recursive types as possibly in�nite lambda trees, and we use the
tau calculus for describing them.4 To avoid confusion, the simple types of the tau calculus
are called kinds. There is only one base kind ∗. Types that can be described by closed
expressions of kind ∗ are called proper types. Types that can be described by closed
expressions of a functional kind are called higher-order types.

An expression is called lambda normal if it cannot be reduced with the β- or η-rule. An
expression is called weakly lambda normal if it is lambda normal and lambda normality
is preserved by iterated µ-reduction.

Consider the following higher-order type expressions:

A = λx : ∗. µy : ∗. 1 + (x× y)
B = µf : ∗ → ∗. λx : ∗. 1 + (x× fx)

Both expressions describe the same higher-order type (a function mapping a type x to
the type of lists over x). We consider the expressions A1 and B1, which describe the
proper type of list over 1. A single β-reduction

A1
β→ µy : ∗. 1 + (1× y)
µ→ 1 + (1× (µy : ∗. 1 + (1× y)))
β← 1 + (1×A1)

yields a weakly lambda normal expression that describes the proper type described by
A1. The situation is more complicated for B1. We need a µ-reduction followed by a
β-reduction

B1
µ→ (λx : ∗. 1 + (x×Bx)) 1
β→ 1 + (1×B1)

4 We follow the so-called equi-recursive approach to recursive types, which treats recursive types exactly
as one would expect from the statement that a recursive type is an in�nite tree. The rho calculus
can be used to describe regular recursive types. In contrast, the iso-recursive approach to recursive
types is a formal trick that takes a recursive type and its unfolding as di�erent (see Mitchell's book,
for instance). In the iso-recursive approach the two type expressions µx.1 + x and 1 + (µx.1 + x)
describe di�erent types; in the equi-recursive approach they describe the same type.

6

to unravel the top level of the described type. The lambda-abstraction is not removed,
and we need in�nitely many β-reductions to unravel the described type completely (which
is a regular tree).

The tau calculus can describe nonregular types. For instance:

C = µf : ∗ → ∗. λx : ∗. 1 + (x× f(x + x))
C1 = 1 + (1× C(1 + 1))

= 1 + (1× (1 + ((1 + 1)× C((1 + 1) + (1 + 1)))))

In languages with polymorphic recursion (not SML) there are useful applications of
nonregular types (see Okasaki's book on functional data structures).

6 Decidability of Type Expression Equivalence

We are interested in formal systems where well-typedness is a decidable property. For
this to be the case, equivalence of expressions describing types must be decidable.

Marvin Solomon [POPL 1978] has shown that equivalence is decidable for type expres-
sions with �rst-order recursion (i.e., µσ occurs only with kinds σ = ∗ → · · · → ∗) and
parameters of the base kind ∗. Solomon shows that the problem is equivalent to the de-
terministic push-down automata equivalence problem (which at the time was still open
but has now been settled as decidable [Sénizergues, ICALP 1997]).

It seems that equivalence of expressions that use recursion only for the base kind (i.e.,
contain µσ only with kind σ = ∗) is decidable.

We are interested in a subclass of expressions for which equivalence is decidable. The
�rst restriction, called BR (basic recursion), requires that all µ-variables have kind ∗. BR
yields that µ-reduction preserves β-normality (normality with respect to β-reduction).

It seems that equivalence of expressions restricted to BR is decidable.

We can now λ-normalize an expression as follows: First, we normalize with respect to β
and η. Then we apply µ-reduction to a bottom-most subexpression

λx. µy. M where x free in M

and try to apply η-reduction. After �nitely many steps we reach a λ-normal expression,
for which µ-reduction preserves λ-normality.

7

7 De�nition of Lambda Trees

Lambda trees are trees with variable bindings. Finite lambda trees correspond exactly to
lambda terms in de Bruijn's Notation that are normal with respect to β- and η-reduction.
We are interested in in�nite lambda trees since they may serve as a semantics for recursive
and higher-order types.

We assume a set X and two distinct objects @ and λ such that X, {@, λ} and the set of
positive integers are pairwise disjoint.

A lambda tree over X is a tree as follows:

1. Each node is labeled with one of the following: an element of X, a positive integer,
@ or λ. Nodes labeled with @ are called application nodes, nodes labeled with λ
are called λ-nodes, and nodes labeled with a positive integer are called α-nodes.
Alpha nodes represent bound or unbound variables.

2. Nodes labeled with elements of X or positive integers must be leaves.

3. Application nodes must have exactly two and lambda nodes must have exactly one
successor.

4. There are neither β- nor η-redexes.

5. There is a �xed k ∈ N such that every α-node labeled with n is below of at least
n− k di�erent λ-nodes.

Regular trees always satisfy condition (5).

It is easy to see that subtrees of lambda trees are lambda trees.

An α-node labeled with n is bound by the n'th λ-node that is above it. This minor
derivation from the de Bruijn Notation is convenient for the following de�nition.

The degree of a lambda tree is the least k such that condition (5) is satis�ed. A lambda
tree of degree 0 contains no unbound variable and is called closed. A lambda tree of
positive degree contains unbound variables and is called open.

8

