
A Semantics for Lazy Types
Bachelor’s Thesis

Georg Neis
Advisor: Andreas Rossberg
Programming Systems Lab

Saarland University

October 11, 2006

topic of the thesis

◮ goal: model the combination of lazy linking and dynamic type
checking

◮ example: Alice ML
◮ components: dynamic modules
◮ import spec from url

◮ dynamic type checking at link-time
◮ lazy futures
◮ import statement

lazy unpack (acquire url) : sig spec end

our model

◮ based on Fω (with pairs and existential types)

terms e ::= x | λx :τ.e | e1 e2 | λα:κ.e | e τ |
〈e1, e2〉 | let 〈x1, x2〉 = e1 in e2 |
〈τ1, e〉:τ2 | let 〈α, x〉 = e1 in e2

types τ ::= α | τ1 → τ2 | τ1 × τ2 |
∀α:κ.τ | ∃α:κ.τ | λα:κ.τ |
τ1 τ2 | 〈τ1, τ2〉 | τ.1 | τ.2

kinds κ ::= Ω | κ1 → κ2 | κ1 × κ2

our model

intensional type analysis

◮ typecase for comparing type expressions

◮ e ::= · · · | tcase e0:τ of x :τ ′ then e1 else e2

◮ operational semantics:
E [tcase v :τ of x :τ ′ then e1 else e2] −→ E [e1[x :=v]] (τ equals τ ′)
E [tcase v :τ of x :τ ′ then e1 else e2] −→ E [e2] (otherwise)

◮ equivalence checking explicit

our model

lazy evaluation

◮ e ::= · · · | lazy 〈ζ, x〉 = e1 in e2

◮ lazy variant of opening existential packages

◮ we distinguish between regular (α) and lazy (ζ) type variables

◮ operational semantics:
◮ L ::= | lazy 〈ζ, x〉 = e in L
◮ LE [lazy 〈ζ, x〉 = e1 in e2] −→ L[lazy 〈ζ, x〉 = e1 in E [e2]]

lazy terms

◮ triggering evaluation: turning lazy into let

◮ strict positions

lazy terms

◮ triggering evaluation: turning lazy into let

◮ strict positions

◮ for lazy term variables:
◮ S ::= e | τ | let 〈x1, x2〉 = in e | let 〈α, x〉 = in e
◮ L1[lazy 〈ζ, x〉 = e in L2ES [x]] −→

L1[let 〈α, x〉 = e in (L2ES [x])[ζ := α]]

lazy types

◮ “value” of run-time types only needed by tcase

◮ due to lazy linking, type expressions may contain lazy type
variables

◮ comparison needs to know the types they represent

◮ example: LE [tcase x :(ζ × ζ) of x ′:(int × int) then e1 else e2]

1st strategy

◮ type equivalence checking through normalize-and-compare

◮ LE [tcase v :ν of x :ν then e1 else e2] −→ LE [e1[x := v]]

◮ LE [tcase v :ν of x :ν ′ then e1 else e2] −→ LE [e2] (ν 6= ν ′)

normal forms ν ::= p | ν1 → ν2 | ν1 × ν2 | ∀α:κ.ν |

∃α:κ.ν | λα:κ.ν | 〈ν1, ν2〉

normal paths p ::= α | p ν | p.1 | p.2

1st strategy

◮ normalization: applicative order reduction

◮ elimination of lazy type variables as they are encountered

C ::= tcase v : of x :τ then e1 else e2 |

tcase v :ν of x : then e1 else e2

T ::= | T → τ | ν → T | T × τ | ν × T |

∀α:κ.T | ∃α:κ.T | λα:κ.T |

T τ | ν T | 〈T , τ〉 | 〈ν,T 〉 | T .1 | T .2

LECT [(λα:κ.ν) ν ′] −→ LECT [ν[α := ν ′]]
LECT [〈ν1, ν2〉.1] −→ LECT [ν1]
LECT [〈ν1, ν2〉.2] −→ LECT [ν2]

L1[lazy 〈ζ, x〉 = e1 in L2ECT [ζ]] −→ L1[let 〈α, x〉 = e1 in
(L2ECT [ζ])[ζ := α]]

degree of laziness

◮ laziness can be improved

◮ consider:
◮ lazy 〈ζ, x〉 = e in tcase x :((λα:Ω.int) ζ) of x ′:int then e1 else e2

◮ lazy 〈ζ, x〉 = e in tcase x :(ζ→ int) of x ′:(int×int) then e1 else e2

◮ ideas for a lazier strategy:
◮ call-by-name
◮ shape-comparison during normalization

2nd strategy

◮ algorithm:

1. reduce the types to weak head normal form

ω ::= q | τ1 → τ2 | τ1 × τ2 | ∀α:κ.τ | ∃α:κ.τ | λα:κ.τ | 〈τ1, τ2〉

q ::= α | q τ | q.1 | q.2

2. compare their heads
3. if different, abort by reducing to the else-branch
4. otherwise descend and repeat this procedure

2nd strategy

◮ algorithm:

1. reduce the types to weak head normal form

ω ::= q | τ1 → τ2 | τ1 × τ2 | ∀α:κ.τ | ∃α:κ.τ | λα:κ.τ | 〈τ1, τ2〉

q ::= α | q τ | q.1 | q.2

2. compare their heads
3. if different, abort by reducing to the else-branch
4. otherwise descend and repeat this procedure

◮ first typecase rule as before:
LE [tcase v :ν of x :ν then e1 else e2] −→ LE [e1[x := v]]

◮ LE [tcase v :τ of x :τ ′ then e1 else e2] −→ LE [e2]
if (tcase v :τ of x :τ ′ then e1 else e2) = B [ω][ω′] with ω 6∼ ω′

or (tcase v :τ of x :τ ′ then e1 else e2) = P [q][q′] with q 6∼ q′

2nd strategy

◮ binary contexts determine how to descend into types of the
same shape

B ::= tcase v : of x : then e1 else e2 |

B [∃α:κ.][∃α:κ.] |

B [× τ1][× τ2] | B [ν ×][ν ×] | . . .

◮ sample decomposition of
tcase v :(∃α:Ω.α × ζ) of x :(∃α:Ω.α × int) then e1 else e2

◮ B0 = tcase v : of x : then e1 else e2

◮ B1 = B0[∃α:Ω.][∃α:Ω.]
◮ B2 = B1[α ×][α ×]
◮ B2[ζ][int]

2nd strategy

◮ weak head normalization:

C ::= B [][τ] | B [ω][]

T ::= | T τ | T .1 | T .2

LECT [(λα:κ.τ1) τ2] −→ LECT [τ1[α := τ2]]
LECT [〈τ1, τ2〉.1] −→ LECT [τ1]
LECT [〈τ1, τ2〉.2] −→ LECT [τ2]

L1[lazy 〈ζ, x〉 = e1 in L2ECT [ζ]] −→ L1[let 〈α, x〉 = e1 in
(L2ECT [ζ])[ζ := α]]

preservation property

◮ theorem: if Γ ⊢ e : τ and e −→ e′, then Γ ⊢ e′ : τ

◮ proof idea: cases LE [e1] −→ LE [e′
1
]

1. by Context Elimination: Γ, Γ′ ⊢ e1 : τ ′ with Γ ⊢ L : Γ′

2. by . . . : Γ, Γ′ ⊢ e ′
1

: τ ′

3. By Exchange: Γ ⊢ LE [e ′
1
] : τ ′

preservation property

◮ theorem: if Γ ⊢ e : τ and e −→ e′, then Γ ⊢ e′ : τ

◮ proof idea: cases LE [e1] −→ LE [e′
1
]

1. by Context Elimination: Γ, Γ′ ⊢ e1 : τ ′ with Γ ⊢ L : Γ′

2. by . . . : Γ, Γ′ ⊢ e ′
1

: τ ′

3. By Exchange: Γ ⊢ LE [e ′
1
] : τ ′

◮ type-level application (1st strategy):
e1 = CT [(λα:κ.ν) ν ′)], e′

1
= CT [ν[α := ν ′]] uses Type

Context Elimination, Type Substitution, Type Exchange

progress property

◮ standard formulation: if · ⊢ e : τ and e 6= L[v], then e −→ e′

◮ what if e is lazy 〈ζ, x〉 = e1 in e2?

◮ our formulation: if · ⊢ L[e] : τ where e is neither a value nor a
lazy expression, then L[e] −→ e′ (not L[e′])

progress property

◮ sample case: L[e] = L[tcase v :τ0 of x :τ ′

0
then e1 else e2]

◮ lemma for 1st strategy:
if · ⊢ LCT [τ] : τ ′ and τ not normal, then LCT [τ] −→ e

◮ lemma for 2nd strategy:
if · ⊢ LB[τ1][τ2] : τ , then LB[τ1][τ2] −→ e

claim follows for B = tcase v : of x : then e1 else e2

progress property

if · ⊢ LB [τ1][τ2] : τ , then LB [τ1][τ2] −→ e

◮ proof by induction on weight(B , τ1, τ2)

◮ case τ1 = α = τ2 requires another lemma to use induction
hypothesis

conclusion

◮ model for the integration of dynamic type checking and lazy
linking into a language that provides higher-order
polymorphism

◮ two strategies for dealing with free type variables that
represent yet unknown types

conclusion

◮ model for the integration of dynamic type checking and lazy
linking into a language that provides higher-order
polymorphism

◮ two strategies for dealing with free type variables that
represent yet unknown types

◮ future work: subtyping?

references

◮ Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon
Plotkin. Dynamic typing in a statically typed language.
ACM Transactions on Programming Languages and Systems,
13(2):237-268, April 1991.

◮ Zena Ariola, Matthias Felleisen, John Maraist, Martin
Odersky, and Philip Wadler. A call-by-need lambda

calculus. 22’nd Symposium on Principles of Programming
Languages, ACM Press, San Francisco, California, January
1995.

◮ Peter Sestoft. Demonstrating lambda calculus reduction.
In The Essence of Computation: Complexity, Analysis,
Transformation. Springer-Verlag, 2002.

◮ Karl Crary. Logical Relations and a Case Study in

Equivalence Checking. Benjamin C. Pierce, editor,
Advanced Topics in Types and Programming Languages, 2005.

references

◮ Matthias Berg. Polymorphic lambda calculus with

dynamic types, FoPra Thesis, October 2004.
http://www.ps.uni-sb.de/∼berg/fopra.html

◮ Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten
Brunklaus, and Gert Smolka. Alice through the looking

glass. Trends in Functional Programming, volume 5, Intellect,
2005

◮ Andreas Rossberg. The Missing Link - Dynamic

Components for ML. 11th International Conference on
Functional Programming, Portland, Oregon, USA, ACM Press.

◮ Andreas Rossberg. Typed open programming. PhD thesis,
Programming Systems Lab, Universität des Saarlandes, 2006.
To appear.

