
Domain approximations for finite set
constraint variables
An integrated approach

Patrick Pekczynski

Supervisor: Guido Tack
Responsible Professor: Prof. Gert Smolka
Timeframe: February 2006 - January 2007

Programming Systems Lab
Department of Computer Science
Saarland University, Saarbrücken

12.02.2007

[30.04.2007 18:11] Set Representation 1 / 43

Outline

1 Introduction
Recapitulation constraint variable
Domain Approximations
Set Bounds
Cardinality Set Bounds
Full domain
ROBDDs as data structure for full domain

2 Connecting approximations with variable views
Views as adaptors
Views as propagation interface - domain lookup
Simulation of non-existing data structures
Simulation of non-existing propagators

3 Summary
4 References
4 Additional Slides

[30.04.2007 18:11] Set Representation 2 / 43

Introduction Recapitulation constraint variable

Mainstream

Constraint Programming

largely restricted to finite domain variables (FDVar)

Example

variables:

x ∈ [1..6]
y ∈ {1, 3, 6, 8, 12}
z ∈ {10}

constraints as relations between variables

x + y = z
x , y

[30.04.2007 18:11] Set Representation 3 / 43

Introduction Recapitulation constraint variable

Beyond finite domains

When do we use sets?
constraints are domain specific

interested in collection of elements
symmetries among elements have to be avoided

students in tutorial groups
players in a team
workers at a shift

use finite set variables (FSVar)

[30.04.2007 18:11] Set Representation 4 / 43

Introduction Recapitulation constraint variable

Beyond finite domains

Example
variables:

g ∈ {{1, 3}, {2, 7, 12}, {11, . . . , 14}}
h ∈ {{1, 3, 5, 6}, {7, 9, 13}, {1, . . . , 20}}
u ∈ {∅, . . . , {1, . . . , 20}}

constraints:
g ⊂ h
|h| = 4
u = g ∪ h

[30.04.2007 18:11] Set Representation 4 / 43

Introduction Recapitulation constraint variable

Set variables as computation domain

Finite domain constraint variable x : D

Definition
Variable x ∈ Var

associated with finite domain D ∈ Dom

Components for integer variable

Finite set of variables Var.

Finite universe U ⊂ �.

Finite set of values Val = U.

Finite set of possible domains Dom = P (Val).

[30.04.2007 18:11] Set Representation 5 / 43

Introduction Recapitulation constraint variable

Set variables as computation domain

Finite domain constraint variable x : D

Definition
Variable x ∈ Var

associated with finite domain D ∈ Dom

Components for set variable

Finite set of variables Var.

Finite universe U ⊂ �.

Finite set of values Val = P (U).

Finite set of possible domains Dom = P (Val).

[30.04.2007 18:11] Set Representation 5 / 43

Introduction Recapitulation constraint variable

Representation problem

Size Issue
Assume set variable x : D = P ({1, . . . , 400})

|D | = 2400

Naive enumeration of all values⇒ exponential size O
(
2N
)

impracticable representation

[30.04.2007 18:11] Set Representation 6 / 43

Introduction Domain Approximations

Domain Approximation - a viable solution

Domain Approximation A
theoretical framework by Benhamou [Ben96]

representative subset
A ⊆ Dom

closed under intersection
∀A ,B ∈ A : (A ∩ B) ∈ A
Elements of A are called approximate domains

Required approximate domains

∅ set with no values
Val set with all values
D ∈ Dom, |D | = 1 sets containing a single value

[30.04.2007 18:11] Set Representation 7 / 43

Introduction Domain Approximations

What approximations are there?

Overview of approximationsSSet bounds approximationCCardinality set bounds approximationF Full domain approximation

[30.04.2007 18:11] Set Representation 8 / 43

Introduction Set Bounds

Set bounds approximation
S

Theoretical foundations of
S

Puget in [Pug92]
First to introduce set bounds representation in constraint programming

Gervet in [Ger95, chp. 4]
Describes representation in full detail
Reference implementation for set constraint solver Conjunto [Ger94]

[30.04.2007 18:11] Set Representation 9 / 43

Introduction Set Bounds

Set bounds approximation
S

Convex Set Bounds
S

approximate a domain D ∈ Dom

E ∈
S is the smallest convex interval with respect to ⊆ containing D

E = [bEc..dEe]⊆
= {T ∈ Dom | inf(D) ⊆ T ⊆ sup(D)}
= [inf(D).. sup(D)]⊆

=

⋂
d∈D

d..
⋃
d∈D

d


⊆S def

= {E ∈ Dom| E is convex wrt. ⊆}

[30.04.2007 18:11] Set Representation 9 / 43

Introduction Set Bounds

Set Bounds Approximation
S- Pros and Cons

Pros
S
guaranteed linear size

space efficiency by definition of
S

represent only two sets bEc, dEe instead of exponentially many

extension property identified by Gervet in [Ger95, sect.4.2.3 p.45]:
set variable x : E, E ∈

S
variable assignment α ∈ Var→ Val:
∀v ∈ bEc ⇒ v ∈ α(x)
∀v < dEe ⇒ v < α(x)

Cons
S
bEc represented twice, since bEc ⊆ dEe.

[30.04.2007 18:11] Set Representation 10 / 43

Introduction Set Bounds

Set Bounds Approximation
S- Pros and Cons

Pros
S
guaranteed linear size

space efficiency by definition of
S

represent only two sets bEc, dEe instead of exponentially many

extension property identified by Gervet in [Ger95, sect.4.2.3 p.45]:
set variable x : E, E ∈

S
variable assignment α ∈ Var→ Val:
∀v ∈ bEc ⇒ v ∈ α(x)
∀v < dEe ⇒ v < α(x)

Cons
S
bEc represented twice, since bEc ⊆ dEe.

[30.04.2007 18:11] Set Representation 10 / 43

Introduction Cardinality Set Bounds

Cardinality set bounds approximation
C

More fine grained version of
S

Used in most constraint solvers:
Mozart [The06b]
Gecode [The06a]
ILOG [ILO00]

based on set bounds approximation
S

imposes additional cardinality restrictions

[30.04.2007 18:11] Set Representation 11 / 43

Introduction Cardinality Set Bounds

Cardinality set bounds approximation
C

Extending
S to

C
set variable x : E and E ∈

S
adding basic cardinality constraints l ≤ |x | ≤ r

translate into cardinality restrictions for bEc and dEe:
card(E, l, r) = l ≤ |bEc| ∧ |dEe| ≤ rCr

l
def
=
S ∩ {T ∈ S | card(T , l, r)

}

[30.04.2007 18:11] Set Representation 12 / 43

Introduction Cardinality Set Bounds

Representing a set variable x : D in
C

Set variable x : D
D = {{1, 3}, {1, 5}, {1, 6}, {1, 3, 5}, {1, 3, 6}}

Corresponding Hesse-Diagram

{1}

{1,3}{1,5} {1,6}

{1,3,5} {1,3,6}

{1,3,5,6}

2 ≤ |x |

|x | ≤ 3

[30.04.2007 18:11] Set Representation 13 / 43

Introduction Cardinality Set Bounds

Representing a set variable x : D in
C

Approximate domain E ∈
S

E = [{1}..{1, 3, 5, 6}]⊆

Corresponding Hesse-Diagram

{1}

{1,3}{1,5} {1,6}

{1,3,5} {1,3,6}

{1,3,5,6}

2 ≤ |x |

|x | ≤ 3

[30.04.2007 18:11] Set Representation 13 / 43

Introduction Cardinality Set Bounds

Representing a set variable x : D in
C

Approximate domain F ∈
C3

2

F = E ∩
{
T ∈
S | card(T , 2, 3)

}
Corresponding Hesse-Diagram

{1}

{1,3}{1,5} {1,6}

{1,3,5} {1,3,6}

{1,3,5,6}

2 ≤ |x |

|x | ≤ 3

[30.04.2007 18:11] Set Representation 13 / 43

Introduction Full domain

Full domain approximation
F 

From Dom to
F 

choose Dom itself as approximation of Dom

approximate a domain D ∈ Dom by DF  def
= Dom

[30.04.2007 18:11] Set Representation 14 / 43

Introduction Full domain

Full domain approximation
F - Pros and Cons

Pros
F 
Exact representation of the complete domain

Encodes characteristic function

χD : � 7→ � : χD(i) =
{

1 if i ∈ D
0 otherwise

to represent a set D

Cons
F 

Space efficiency must be obtained by choice of data structure

With full approximation still exponential size possible

[30.04.2007 18:11] Set Representation 15 / 43

Introduction Full domain

Full domain approximation
F - Pros and Cons

Pros
F 
Exact representation of the complete domain

Encodes characteristic function

χD : � 7→ � : χD(i) =
{

1 if i ∈ D
0 otherwise

to represent a set D

Cons
F 

Space efficiency must be obtained by choice of data structure

With full approximation still exponential size possible

[30.04.2007 18:11] Set Representation 15 / 43

Introduction ROBDDs as data structure for full domain

Efficient data structure for
F 

Theoretical foundations
Hawkins Lagoon and Stuckey in [HLS04]

First to introduce a full domain approximation

Use reduced ordered binary decision diagrams (ROBDDs)

[30.04.2007 18:11] Set Representation 16 / 43

Introduction ROBDDs as data structure for full domain

Efficient data structure for
F 

Representing a set variable x : D in
F 

D = {{1, 3}, {1, 5}, {1, 6}, {1, 3, 5}, {1, 3, 6}}

vector of Boolean variables b = 〈b1, b2, b3, b4, b5, b6〉

ROBDD representing all valuations of formula φ
φ = ¬ (b1 ∧ ¬b2 ∧ ¬b3 ∧ ¬b4 ∧ ¬b5 ∧ ¬b6) ¬{1}
∨ b1 ∧ ¬b2 ∧ b3 ∧ ¬b4 ∧ ¬b5 ∧ ¬b6 {1, 3}
∨ b1 ∧ ¬b2 ∧ ¬b3 ∧ ¬b4 ∧ b5 ∧ ¬b6 {1, 5}
∨ b1 ∧ ¬b2 ∧ ¬b3 ∧ ¬b4 ∧ ¬b5 ∧ b6 {1, 6}
∨ b1 ∧ ¬b2 ∧ b3 ∧ ¬b4 ∧ b5 ∧ ¬b6 {1, 3, 5}
∨ b1 ∧ ¬b2 ∧ b3 ∧ ¬b4 ∧ ¬b5 ∧ b6 {1, 3, 6}
∨ ¬ (b1 ∧ ¬b2 ∧ b3 ∧ ¬b4 ∧ b5 ∧ b6) ¬{1, 3, 5, 6}

[30.04.2007 18:11] Set Representation 16 / 43

Introduction ROBDDs as data structure for full domain

Efficient data structure for
F 

Representing a set variable x : D in
F 

D = [{1}..{1, 3, 5, 6}]⊆ \ {{1}, {1, 3, 5, 6}}

vector of Boolean variables b = 〈b1, b2, b3, b4, b5, b6〉

ROBDD representing all valuations of formula φ
φ = b1 ∧ ¬b2 ∧ ¬b4

∧ ¬ (b1 ∧ ¬b2 ∧ ¬b3 ∧ ¬b4 ∧ ¬b5 ∧ ¬b6)
∧ ¬ (b1 ∧ ¬b2 ∧ b3 ∧ ¬b4 ∧ b5 ∧ b6)

[30.04.2007 18:11] Set Representation 16 / 43

Introduction ROBDDs as data structure for full domain

Efficient data structure for
F 

Representing a set variable x : D in
F 

D = [{1}..{1, 3, 5, 6}]⊆ \ {{1}, {1, 3, 5, 6}}

vector of Boolean variables b = 〈b1, b2, b3, b4, b5, b6〉

ROBDD representing all valuations of formula φ

0 1

b1

b2

b3

b4b4

b5

b6b6

[30.04.2007 18:11] Set Representation 16 / 43

Introduction ROBDDs as data structure for full domain

Set constraints in
F 

Modeling advantage: constraints as ROBDDs

constraint x ⊆ y, x, y : P ({1, 2, 3})

naive modeling yields:

01

x1

x2

x2

x3

x3

y3 y2

y2

x3

x3

y1

y1 y1

y1

[30.04.2007 18:11] Set Representation 17 / 43

Introduction ROBDDs as data structure for full domain

Set constraints in
F 

Modeling advantage: constraints as ROBDDs

constraint x ⊆ y, x, y : P ({1, 2, 3})
Choosing the variable order as

1 V = {v1, . . . , vm}
2 associated vectors of Boolean variables 〈vi,1, . . . , vi,N〉, where

i ∈ {1, . . . ,m} and N def
= |U|

3 Fix variable order (≺) as

v1,1 ≺ v1,m ≺ v1,2 ≺ · · · ≺ v1,N ≺ · · · ≺ vm,N

4 guarantees linear size of ROBDD except cardinality constraints [LS04]

[30.04.2007 18:11] Set Representation 17 / 43

Introduction ROBDDs as data structure for full domain

Set constraints in
F 

Modeling advantage: constraints as ROBDDs

constraint x ⊆ y, x, y : P ({1, 2, 3})

According to specified order:

01

x1

x2

y1

x3

y2

y3

[30.04.2007 18:11] Set Representation 17 / 43

Introduction ROBDDs as data structure for full domain

Set constraints in
F 

Modeling advantage: constraints as ROBDDs

constraint x ⊆ y, x, y : P ({1, 2, 3})

Comparison

01

x1

x2

x2

x3

x3

y3 y2

y2

x3

x3

y1

y1 y1

y1

01

x1

x2

y1

x3

y2

y3

[30.04.2007 18:11] Set Representation 17 / 43

Connecting approximations with variable views

Different domain approximations available

x : D
D ∈ Dom

ImpC ImpF 
Howto connect them ?

Using variable views

[30.04.2007 18:11] Set Representation 18 / 43

Connecting approximations with variable views

Different domain approximations available

x : D
D ∈ Dom

ImpC ImpF 

ΓC ΓF 
Howto connect them ?

Using variable views

[30.04.2007 18:11] Set Representation 18 / 43

Connecting approximations with variable views Views as adaptors

Variable Views

Variable Views [ST06]
1 Mapping V : A → B between domain approximations A and B
2 Adaptor for given domain approximation A

map D ∈ Dom to A ∈ A
prescribe internal representation (data structures)

3 Propagation interface providing propagation services
domain lookup
domain update

4 Simulating non-existing variable representations using existing
variable representations

[30.04.2007 18:11] Set Representation 19 / 43

Connecting approximations with variable views Views as adaptors

Using views to connect approximations

Adaptor functionality

Set bounds view ΓS : A →
S

ΓS(A) =

⋂
a∈A

a..
⋃
a∈A

a


⊆

Cardinality set bounds view ΓC : A →
C

ΓC(A) = ΓS(A) ∩
{
T ∈
S | card(T , l, r)

}
Full domain view ΓF  : A →

F 
ΓF (A) = A

[30.04.2007 18:11] Set Representation 20 / 43

Connecting approximations with variable views Views as propagation interface - domain lookup

Using views as propagation interface

Modeling set constraints in
C

x : D = [bDc ..dDe]⊆
y : E = [bEc ..dEe]⊆
z : F = [bFc ..dFe]⊆

constraint propagator pC
x ⊆ y x ⊆ dEe ∧ bDc ⊆ y
x ∩ y = z bDc ∩ bEc ⊆ z ∧ z ⊆ dDe ∩ dEe

bFc ⊆ x ∧ x * bEc \ dFe
bFc ⊆ y ∧ y * bDc \ dFe

[30.04.2007 18:11] Set Representation 21 / 43

Connecting approximations with variable views Views as propagation interface - domain lookup

Using views as propagation interface

Access to data structures
propagators pC on set variable x : E = [bEc .. dEe]⊆

lookup interval bounds bEc and dEe
modify interval bounds bEc and dEe

forwarded by propagation interface through variable view
IdC :

C→ C, IdC(E) = E

[30.04.2007 18:11] Set Representation 21 / 43

Connecting approximations with variable views Views as propagation interface - domain lookup

Using views as propagation interface

Domain information through iteration

introduced by Schulte and Tack [ST06]

iterator iter provides functions:
operator()() test whether we can iterate further
operator++() increment to next value in set

depending on structure:
val() value access
min() minimum of subinterval
max() maximum of subinterval

[30.04.2007 18:11] Set Representation 22 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Combining orthogonal concepts

ImpF 

pC

x : D
D ∈ Dom

ImpC

ΓC ΓF 

Gecode ROBDD

IdC IdF 

pF 

Orthogonal concepts

Do they just coexist ?

No, we can connect them using
variable views

[30.04.2007 18:11] Set Representation 23 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Combining orthogonal concepts

ImpF 

pC

ΓC

x : D
D ∈ Dom

ImpC

ΓC ΓF 

Gecode ROBDD

IdC IdF 

pF 

Orthogonal concepts

Do they just coexist ?

No, we can connect them using
variable views

[30.04.2007 18:11] Set Representation 23 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Crossing domain approximations

From
F  to

C
Simulate Cardinality set bounds interface for ROBDD representing
D = {{1, 3}, {1, 5}, {1, 6}, {1, 3, 5}, {1, 3, 6}}
Apply view ΓC on domain D ∈

F .
1 extract set bounds
2 extract cardinality bounds

[30.04.2007 18:11] Set Representation 24 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack

Inspected node

Flag

[bEc .. dEe]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack

Inspected node

(b1,b2,⊥) Card (0,0)

Flag
INIT

[bEc .. dEe]⊆
[∅..{1, 2, 3, 4, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b2,⊥,b3)

Inspected node

(b1,b2,⊥) Card (0,0)

Flag
INIT

[bEc .. dEe]⊆
[∅..{1, 2, 3, 4, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b2,⊥,b3)

Inspected node

(b1,b2,⊥) Card (0,0)

Flag

FIX GLB

[bEc .. dEe]⊆
[{1}..{1, 2, 3, 4, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack

Inspected node

(b2,⊥,b3) Card (1,1)

Flag
UNDET

[bEc .. dEe]⊆
[{1}..{1, 2, 3, 4, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack

Inspected node

(b2,⊥,b3) Card (1,1)

Flag

FIX NOT LUB

[bEc .. dEe]⊆
[{1}..{1, 3, 4, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b3,b4,b4)

Inspected node

(b2,⊥,b3) Card (1,1)

Flag

FIX NOT LUB

[bEc .. dEe]⊆
[{1}..{1, 3, 4, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack

Inspected node

(b3,b4,b4) Card (1,1)

Flag

FIX UNKNOWN

[bEc .. dEe]⊆
[{1}..{1, 3, 4, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b4,⊥,b5)

Inspected node

(b3,b4,b4) Card (1,1)

Flag

FIX UNKNOWN

[bEc .. dEe]⊆
[{1}..{1, 3, 4, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b4,⊥,b5) (b4,⊥, b5)

Inspected node

(b3,b4,b4) Card (1,1)

Flag

FIX UNKNOWN

[bEc .. dEe]⊆
[{1}..{1, 3, 4, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b4,⊥,b5)

Inspected node

(b4,⊥, b5) Card (1,1)

Flag
UNDET

[bEc .. dEe]⊆
[{1}..{1, 3, 4, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b4,⊥,b5)

Inspected node

(b4,⊥, b5) Card (1,1)

Flag

FIX NOT LUB

[bEc .. dEe]⊆
[{1}..{1, 3, 4, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b5,>,b6) (b4,⊥, b5)

Inspected node

(b4,⊥, b5) Card (1,1)

Flag

FIX NOT LUB

[bEc .. dEe]⊆
[{1}..{1, 3, 4, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b5,>,b6)

Inspected node

(b4,⊥, b5) Card (2,2)

Flag

FIX NOT LUB

[bEc .. dEe]⊆
[{1}..{1, 3, 4, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b5,>,b6)

Inspected node

(b4,⊥, b5) Card (2,2)

Flag

FIX NOT LUB

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b5,>,b6) (b5,b6,>)

Inspected node

(b4,⊥, b5) Card (2,2)

Flag

FIX NOT LUB

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b5,>,b6)

Inspected node

(b5,b6,>) Card (2,2)

Flag
UNDET

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b5,>,b6) (b6,⊥,>)

Inspected node

(b5,b6,>) Card (2,2)

Flag
UNDET

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b5,>,b6) (b6,⊥,>)

Inspected node

(b5,b6,>) Card (2,2)

Flag

FIX NOT LUB

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b6,⊥,>)

Inspected node

(b5,>,b6) Card (1,1)

Flag

FIX NOT LUB

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b6,⊥,>)

Inspected node

(b5,>,b6) Card (1,1)

Flag
UNDET

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b6,>,⊥) (b6,⊥,>)

Inspected node

(b5,>,b6) Card (1,1)

Flag
UNDET

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b6,⊥,>)

Inspected node

(b6,>,⊥) Card (1,1)

Flag
UNDET

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b6,⊥,>)

Inspected node

(b6,>,⊥) Card (2,2)

Flag

FIX GLB

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b6,⊥,>)

Inspected node

(b6,>,⊥) Card (2,2)

Flag

FIX GLB

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack

Inspected node

(b6,⊥,>) Card (3,3)

Flag

FIX GLB

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack

Inspected node

(b6,⊥,>) Card (3,3)

Flag
UNDET

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack

Inspected node

(b6,⊥,>) Card (3,3)

Flag
UNDET

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack

Inspected node

Flag

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

Result Start

[30.04.2007 18:11] Set Representation 25 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC
Resulting

resulting ROBDD represents
1 E = ΓC(D) = [{1}..{1, 3, 5, 6}]⊆
2 cardinality restricitions card(E,2,3)

0 1

b1

b2

b4

Cardinality
c ∈ [2..3]

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆

[30.04.2007 18:11] Set Representation 26 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Weaken propagation

ΓC ΓF 

IdF IdC

ImpF ImpC

pF pC

x : D
D ∈ Dom

Gecode ROBDD

1 F ∈
F  is x-component of

domain tuple
−→
F ,
−→
F .x = F

2 Map F to the respective
cardinality set bounds
G = ΓC(F)

3 Since G ∈
C ⊂ F  apply

pF  :
F n

→
F n

4 Propagation result
R = pF (−→G).x

5 Map result R again to
R ′ = ΓC(R).

[30.04.2007 18:11] Set Representation 27 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Weaken propagation

ΓC ΓF 

IdF IdC

F ∈
F ImpC

pF pC

x : D
D ∈ Dom

Gecode ROBDD 1 F ∈
F  is x-component of

domain tuple
−→
F ,
−→
F .x = F

2 Map F to the respective
cardinality set bounds
G = ΓC(F)

3 Since G ∈
C ⊂ F  apply

pF  :
F n

→
F n

4 Propagation result
R = pF (−→G).x

5 Map result R again to
R ′ = ΓC(R).

[30.04.2007 18:11] Set Representation 27 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Weaken propagation

ΓC ΓF 

IdF 

ΓC

IdC

F ∈
F G

pF pC

x : D
D ∈ Dom

Gecode ROBDD 1 F ∈
F  is x-component of

domain tuple
−→
F ,
−→
F .x = F

2 Map F to the respective
cardinality set bounds
G = ΓC(F)

3 Since G ∈
C ⊂ F  apply

pF  :
F n

→
F n

4 Propagation result
R = pF (−→G).x

5 Map result R again to
R ′ = ΓC(R).

[30.04.2007 18:11] Set Representation 27 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Weaken propagation

ΓC ΓF 

IdF 

ΓC

IdC IdC

F ∈
F G

RpC

x : D
D ∈ Dom

Gecode ROBDD 1 F ∈
F  is x-component of

domain tuple
−→
F ,
−→
F .x = F

2 Map F to the respective
cardinality set bounds
G = ΓC(F)

3 Since G ∈
C ⊂ F  apply

pF  :
F n

→
F n

4 Propagation result
R = pF (−→G).x

5 Map result R again to
R ′ = ΓC(R).

[30.04.2007 18:11] Set Representation 27 / 43

Connecting approximations with variable views Simulation of non-existing data structures

Weaken propagation

ΓC ΓF 

IdF 

ΓC

IdC IdC
ΓC

F ∈
F R ′

RpC

x : D
D ∈ Dom

Gecode ROBDD 1 F ∈
F  is x-component of

domain tuple
−→
F ,
−→
F .x = F

2 Map F to the respective
cardinality set bounds
G = ΓC(F)

3 Since G ∈
C ⊂ F  apply

pF  :
F n

→
F n

4 Propagation result
R = pF (−→G).x

5 Map result R again to
R ′ = ΓC(R).

[30.04.2007 18:11] Set Representation 27 / 43

Connecting approximations with variable views Simulation of non-existing propagators

Using variable views to weaken propagation

Changing consistency of propagation result

Use a domain-consistent propagator

pF  :
F n

→
F n

obtain bounds(
C)-consistent propagation βC :

F n
→
Cn

,

βC(−→F) = ΓC(pF (ΓC(−→F)))

[30.04.2007 18:11] Set Representation 28 / 43

Summary

Contributions

1 Implemented presented concepts in Gecode

[30.04.2007 18:11] Set Representation 29 / 43

Summary

Contributions

Gecode Constraint Library

generic

constraint

development

environment

Gecode [The06a], a C++ library for constraint programming.
Version 1.3.1 available from http://www.gecode.org

Developers

Dr. Christian Schulte (head, KTH, Sweden)

Guido Tack (PS Lab, Saabrücken, Germany)

[30.04.2007 18:11] Set Representation 30 / 43

http://www.gecode.org

Summary

Contributions

1 Implemented presented concepts in Gecode
1 ROBDD set component
2 Simulation

C with
F  using view ΓC

3 Propagation across approximations using βC

[30.04.2007 18:11] Set Representation 31 / 43

Summary

Contributions

ImpF 

βC

ImpC

pF pC

x : D
D ∈ Dom

ΓC ΓF 

Gecode ROBDD

IdC
IdF 

[30.04.2007 18:11] Set Representation 32 / 43

Summary

Contributions

1 Implemented presented concepts in Gecode
1 ROBDD set component
2 Simulation

C with
F  using view ΓC

3 Propagation across approximations using βC
4 Also implemented:

1 βS for proper set bounds
2 βL for lexicographic bounds

2 First framework to connect different implementations for set variables
via variable views.

3 Prototype for generating set propagators from ∃MSO as uniform
specification language [TSS06]

[30.04.2007 18:11] Set Representation 33 / 43

Summary

Contributions

∃MSO

ImpF 

βC

ImpC

pF pC

x : D
D ∈ Dom

ΓC ΓF 

Gecode ROBDD

IdC
IdF 

[30.04.2007 18:11] Set Representation 34 / 43

Summary

Contributions

1 Implemented presented concepts in Gecode
1 ROBDD set component
2 Simulation

C with
F  using view ΓC

3 Propagation across approximations using βC
4 Also implemented:

1 βS for proper set bounds
2 βL for lexicographic bounds

2 First framework to connect different implementations for set variables
via variable views.

3 Prototype for generating set propagators from uniform specification
language

4 Introduce different implementation for
C

compared different implementations for
C

[30.04.2007 18:11] Set Representation 35 / 43

Summary

Contributions - Completing the picture

ΓC

∃MSO

ImpF 

βC

ImpC

pF pC

x : D
D ∈ Dom

ΓC ΓF 

Gecode

IdC
IdF 

[30.04.2007 18:11] Set Representation 36 / 43

Summary

Outlook and future work

Generalize results to multisets by introducing
1 approximations
2 views
3 constraints

Comparison of used data structures with different data structures for
example:

1 Bit vectors

[30.04.2007 18:11] Set Representation 37 / 43

Summary

References I

[AB00] Francisco Azevedo and Pedro Barahona.
Applications of an extended set constraint solver, 2000.

[Ben96] Frédéric Benhamou.
Heterogeneous constraint solving.
In Michael Hanus and Mario Rodrı́guez-Artalejo, editors, ALP,
volume 1139 of Lecture Notes in Computer Science, pages
62–76. Springer, 1996.

[Ger94] Carmen Gervet.
Conjunto: constraint logic programming with finite set domains.
In Maurice Bruynooghe, editor, Logic Programming -
Proceedings of the 1994 International Symposium, pages
339–358, Massachusetts Institute of Technology, 1994. The MIT
Press.

[30.04.2007 18:11] Set Representation 38 / 43

Summary

References II

[Ger95] Carmen Gervet.
Set Intervals in Constraint Logic Programming.
PhD thesis, L’Université de Franche-Comté, 1995.

[HLS04] Peter Hawkins, Vitaly Lagoon, and Peter J. Stuckey.
Set bounds and (split) set domain propagation using ROBDDs.
In Geoffrey I. Webb and Xinghuo Yu, editors, Australian
Conference on Artificial Intelligence, volume 3339 of Lecture
Notes in Computer Science, pages 706–717. Springer, 2004.

[ILO00] ILOG Inc., Mountain View, CA, USA.
ILOG Solver 5.0 reference Manual, 2000.

[30.04.2007 18:11] Set Representation 39 / 43

Summary

References III

[LS04] Vitaly Lagoon and Peter J. Stuckey.
Set domain propagation using ROBDDs.
In Mark Wallace, editor, CP, volume 3258 of Lecture Notes in
Computer Science, pages 347–361. Springer, 2004.

[Pug92] Jean-Francois Puget.
Pecos a high level constraint programming language.
In Singapore International Conference on Intelligent Systems
(SPICIS), September 1992.

[ST06] Christian Schulte and Guido Tack.
Views and iterators for generic constraint implementations.
In Mats Carlsson, Francois Fages, Brahim Hnich, and Francesca
Rossi, editors, Recent Advances in Constraints, 2005, volume
3978 of Lecture Notes in Computer Science, pages 118–132.
Springer, 2006.

[30.04.2007 18:11] Set Representation 40 / 43

Summary

References IV

[The06a] The Gecode team.
Generic constraint development environment.
Available from http://www.gecode.org, 2006.

[The06b] The Mozart Consortium.
The Mozart programming system.
http://www.mozart-oz.org, 2006.

[TSS06] Guido Tack, Christian Schulte, and Gert Smolka.
Generating propagators for finite set constraints.
In Fréderic Benhamou, editor, 12th International Conference on
Principles and Practice of Constraint Programming, volume
4204 of Lecture Notes in Computer Science, pages 575–589.
Springer, 2006.

[30.04.2007 18:11] Set Representation 41 / 43

http://www.gecode.org
http://www.mozart-oz.org

Additional Slides

Sets in Gecode

Representation of finite integer sets

bounds representation of domain D by [bDc ..dDe]

each bound represented by a range list

D = [{3, 4, 10, 11, 12}..{−3,−2,−1, 0, 1, 3, 4, 7, 8, 10, 11, 12, 13, 14}]

⌈D⌉

-3..1 3..4 7..8 10..14

⌊D⌋

3..4 10..12

[30.04.2007 18:11] Set Representation 42 / 43

Additional Slides

Sets in Gecode

Representation of finite integer sets

remove bDc from dDe

obtain ∆(D) = dDe \ bDc
∆ ⌈D⌉ \ ⌊D⌋

-3..1

3..4

7..8

10..12

13..14

⌊D⌋

[30.04.2007 18:11] Set Representation 42 / 43

Additional Slides

Sets in Gecode

Minimal bounds representation [AB00]
minimal bounds rep

store disjoint union of ∆(D) and bDc such that ∆(D)] bDc = dDe
∆ ⊎ ⌊D⌋

-3..1 3..4 7..8 10..12 13..14

[30.04.2007 18:11] Set Representation 42 / 43

Additional Slides

Fragment of ∃MSO

Fragment

S ::= ∃x.〈S〉 | 〈F〉

F ::= ∀v .〈B〉 | ∃v .〈B〉 | 〈F〉 ∧ 〈F〉

B ::= 〈B〉 ∧ 〈B〉 | 〈B〉 ∨ 〈B〉 | ¬〈B〉 | v ∈ x ∈ Var | ⊥

Example
Express constraint in ∃MSO

constraint c ≡ x ∩ y = z

∃MSO-formula φc = ∀v .v ∈ x ∧ y ∈ y ⇔ v ∈ z

[30.04.2007 18:11] Set Representation 43 / 43

	Introduction
	Recapitulation constraint variable
	Domain Approximations
	Set Bounds
	Cardinality Set Bounds
	Full domain
	ROBDDs as data structure for full domain

	Connecting approximations with variable views
	Views as adaptors
	Views as propagation interface - domain lookup
	Simulation of non-existing data structures
	Simulation of non-existing propagators

	Summary
	References
	Additional Slides

