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Introduction Recapitulation constraint variable

Mainstream

Constraint Programming

largely restricted to finite domain variables (FDVar)

Example

variables:

x ∈ [1..6]
y ∈ {1, 3, 6, 8, 12}
z ∈ {10}

constraints as relations between variables

x + y = z
x , y
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Introduction Recapitulation constraint variable

Beyond finite domains

When do we use sets?
constraints are domain specific

interested in collection of elements
symmetries among elements have to be avoided

students in tutorial groups
players in a team
workers at a shift

use finite set variables (FSVar)
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Introduction Recapitulation constraint variable

Beyond finite domains

Example
variables:

g ∈ {{1, 3}, {2, 7, 12}, {11, . . . , 14}}
h ∈ {{1, 3, 5, 6}, {7, 9, 13}, {1, . . . , 20}}
u ∈ {∅, . . . , {1, . . . , 20}}

constraints:
g ⊂ h
|h| = 4
u = g ∪ h
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Introduction Recapitulation constraint variable

Set variables as computation domain

Finite domain constraint variable x : D

Definition
Variable x ∈ Var

associated with finite domain D ∈ Dom

Components for integer variable

Finite set of variables Var.

Finite universe U ⊂ �.

Finite set of values Val = U.

Finite set of possible domains Dom = P (Val).
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Introduction Recapitulation constraint variable

Representation problem

Size Issue
Assume set variable x : D = P ({1, . . . , 400})

|D | = 2400

Naive enumeration of all values⇒ exponential size O
(
2N
)

impracticable representation
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Introduction Domain Approximations

Domain Approximation - a viable solution

Domain Approximation A
theoretical framework by Benhamou [Ben96]

representative subset
A ⊆ Dom

closed under intersection
∀A ,B ∈ A : (A ∩ B) ∈ A
Elements of A are called approximate domains

Required approximate domains

∅ set with no values
Val set with all values
D ∈ Dom, |D | = 1 sets containing a single value
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Introduction Domain Approximations

What approximations are there?

Overview of approximationsSSet bounds approximationCCardinality set bounds approximationF Full domain approximation
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Introduction Set Bounds

Set bounds approximation
S

Theoretical foundations of
S

Puget in [Pug92]
First to introduce set bounds representation in constraint programming

Gervet in [Ger95, chp. 4]
Describes representation in full detail
Reference implementation for set constraint solver Conjunto [Ger94]
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Introduction Set Bounds

Set bounds approximation
S

Convex Set Bounds
S

approximate a domain D ∈ Dom

E ∈
S is the smallest convex interval with respect to ⊆ containing D

E = [bEc..dEe]⊆
= {T ∈ Dom | inf(D) ⊆ T ⊆ sup(D)}
= [inf(D).. sup(D)]⊆

=

⋂
d∈D

d..
⋃
d∈D

d


⊆S def

= {E ∈ Dom| E is convex wrt. ⊆}
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Introduction Set Bounds

Set Bounds Approximation
S- Pros and Cons

Pros
S
guaranteed linear size

space efficiency by definition of
S

represent only two sets bEc, dEe instead of exponentially many

extension property identified by Gervet in [Ger95, sect.4.2.3 p.45]:
set variable x : E, E ∈

S
variable assignment α ∈ Var→ Val:
∀v ∈ bEc ⇒ v ∈ α(x)
∀v < dEe ⇒ v < α(x)

Cons
S
bEc represented twice, since bEc ⊆ dEe.
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Introduction Cardinality Set Bounds

Cardinality set bounds approximation
C

More fine grained version of
S

Used in most constraint solvers:
Mozart [The06b]
Gecode [The06a]
ILOG [ILO00]

based on set bounds approximation
S

imposes additional cardinality restrictions
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Introduction Cardinality Set Bounds

Cardinality set bounds approximation
C

Extending
S to

C
set variable x : E and E ∈

S
adding basic cardinality constraints l ≤ |x | ≤ r

translate into cardinality restrictions for bEc and dEe:
card(E, l, r) = l ≤ |bEc| ∧ |dEe| ≤ rCr

l
def
=
S ∩ {T ∈ S | card(T , l, r)

}
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Introduction Cardinality Set Bounds

Representing a set variable x : D in
C

Set variable x : D
D = {{1, 3}, {1, 5}, {1, 6}, {1, 3, 5}, {1, 3, 6}}

Corresponding Hesse-Diagram

{1}

{1,3}{1,5} {1,6}

{1,3,5} {1,3,6}

{1,3,5,6}

2 ≤ |x |

|x | ≤ 3
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Introduction Cardinality Set Bounds

Representing a set variable x : D in
C

Approximate domain E ∈
S

E = [{1}..{1, 3, 5, 6}]⊆

Corresponding Hesse-Diagram

{1}

{1,3}{1,5} {1,6}

{1,3,5} {1,3,6}

{1,3,5,6}

2 ≤ |x |

|x | ≤ 3

[30.04.2007 18:11] Set Representation 13 / 43



Introduction Cardinality Set Bounds

Representing a set variable x : D in
C

Approximate domain F ∈
C3

2

F = E ∩
{
T ∈
S | card(T , 2, 3)

}
Corresponding Hesse-Diagram

{1}

{1,3}{1,5} {1,6}

{1,3,5} {1,3,6}

{1,3,5,6}

2 ≤ |x |

|x | ≤ 3
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Introduction Full domain

Full domain approximation
F 

From Dom to
F 

choose Dom itself as approximation of Dom

approximate a domain D ∈ Dom by DF  def
= Dom
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Introduction Full domain

Full domain approximation
F - Pros and Cons

Pros
F 
Exact representation of the complete domain

Encodes characteristic function

χD : � 7→ � : χD(i) =
{

1 if i ∈ D
0 otherwise

to represent a set D

Cons
F 

Space efficiency must be obtained by choice of data structure

With full approximation still exponential size possible
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Introduction ROBDDs as data structure for full domain

Efficient data structure for
F 

Theoretical foundations
Hawkins Lagoon and Stuckey in [HLS04]

First to introduce a full domain approximation

Use reduced ordered binary decision diagrams (ROBDDs)
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Introduction ROBDDs as data structure for full domain

Efficient data structure for
F 

Representing a set variable x : D in
F 

D = {{1, 3}, {1, 5}, {1, 6}, {1, 3, 5}, {1, 3, 6}}

vector of Boolean variables b = 〈b1, b2, b3, b4, b5, b6〉

ROBDD representing all valuations of formula φ
φ = ¬ (b1 ∧ ¬b2 ∧ ¬b3 ∧ ¬b4 ∧ ¬b5 ∧ ¬b6) ¬{1}
∨ b1 ∧ ¬b2 ∧ b3 ∧ ¬b4 ∧ ¬b5 ∧ ¬b6 {1, 3}
∨ b1 ∧ ¬b2 ∧ ¬b3 ∧ ¬b4 ∧ b5 ∧ ¬b6 {1, 5}
∨ b1 ∧ ¬b2 ∧ ¬b3 ∧ ¬b4 ∧ ¬b5 ∧ b6 {1, 6}
∨ b1 ∧ ¬b2 ∧ b3 ∧ ¬b4 ∧ b5 ∧ ¬b6 {1, 3, 5}
∨ b1 ∧ ¬b2 ∧ b3 ∧ ¬b4 ∧ ¬b5 ∧ b6 {1, 3, 6}
∨ ¬ (b1 ∧ ¬b2 ∧ b3 ∧ ¬b4 ∧ b5 ∧ b6) ¬{1, 3, 5, 6}
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Introduction ROBDDs as data structure for full domain
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Introduction ROBDDs as data structure for full domain

Set constraints in
F 

Modeling advantage: constraints as ROBDDs

constraint x ⊆ y, x, y : P ({1, 2, 3})

naive modeling yields:

01

x1

x2

x2

x3

x3

y3 y2

y2

x3

x3

y1

y1 y1

y1
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Introduction ROBDDs as data structure for full domain

Set constraints in
F 

Modeling advantage: constraints as ROBDDs

constraint x ⊆ y, x, y : P ({1, 2, 3})
Choosing the variable order as

1 V = {v1, . . . , vm}
2 associated vectors of Boolean variables 〈vi,1, . . . , vi,N〉, where

i ∈ {1, . . . ,m} and N def
= |U|

3 Fix variable order (≺) as

v1,1 ≺ v1,m ≺ v1,2 ≺ · · · ≺ v1,N ≺ · · · ≺ vm,N

4 guarantees linear size of ROBDD except cardinality constraints [LS04]
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Introduction ROBDDs as data structure for full domain

Set constraints in
F 

Modeling advantage: constraints as ROBDDs

constraint x ⊆ y, x, y : P ({1, 2, 3})

According to specified order:

01

x1

x2

y1

x3

y2

y3
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Introduction ROBDDs as data structure for full domain

Set constraints in
F 

Modeling advantage: constraints as ROBDDs

constraint x ⊆ y, x, y : P ({1, 2, 3})

Comparison

01

x1

x2

x2

x3

x3

y3 y2

y2

x3

x3

y1

y1 y1

y1

01

x1

x2

y1

x3

y2

y3
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Connecting approximations with variable views

Different domain approximations available

x : D
D ∈ Dom

ImpC ImpF 
Howto connect them ?

Using variable views
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Connecting approximations with variable views Views as adaptors

Variable Views

Variable Views [ST06]
1 Mapping V : A → B between domain approximations A and B
2 Adaptor for given domain approximation A

map D ∈ Dom to A ∈ A
prescribe internal representation (data structures)

3 Propagation interface providing propagation services
domain lookup
domain update

4 Simulating non-existing variable representations using existing
variable representations
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Connecting approximations with variable views Views as adaptors

Using views to connect approximations

Adaptor functionality

Set bounds view ΓS : A →
S

ΓS(A ) =

⋂
a∈A

a..
⋃
a∈A

a


⊆

Cardinality set bounds view ΓC : A →
C

ΓC(A ) = ΓS(A ) ∩
{
T ∈
S | card(T , l, r)

}
Full domain view ΓF  : A →

F 
ΓF (A ) = A
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Connecting approximations with variable views Views as propagation interface - domain lookup

Using views as propagation interface

Modeling set constraints in
C

x : D = [bDc ..dDe]⊆
y : E = [bEc ..dEe]⊆
z : F = [bFc ..dFe]⊆

constraint propagator pC
x ⊆ y x ⊆ dEe ∧ bDc ⊆ y
x ∩ y = z bDc ∩ bEc ⊆ z ∧ z ⊆ dDe ∩ dEe

bFc ⊆ x ∧ x * bEc \ dFe
bFc ⊆ y ∧ y * bDc \ dFe
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Connecting approximations with variable views Views as propagation interface - domain lookup

Using views as propagation interface

Access to data structures
propagators pC on set variable x : E = [bEc .. dEe]⊆

lookup interval bounds bEc and dEe
modify interval bounds bEc and dEe

forwarded by propagation interface through variable view
IdC :

C→ C, IdC(E) = E
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Connecting approximations with variable views Views as propagation interface - domain lookup

Using views as propagation interface

Domain information through iteration

introduced by Schulte and Tack [ST06]

iterator iter provides functions:
operator()() test whether we can iterate further
operator++() increment to next value in set

depending on structure:
val() value access
min() minimum of subinterval
max() maximum of subinterval
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Connecting approximations with variable views Simulation of non-existing data structures

Combining orthogonal concepts

ImpF 

pC

x : D
D ∈ Dom

ImpC

ΓC ΓF 

Gecode ROBDD

IdC IdF 

pF 

Orthogonal concepts

Do they just coexist ?

No, we can connect them using
variable views
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Connecting approximations with variable views Simulation of non-existing data structures

Crossing domain approximations

From
F  to

C
Simulate Cardinality set bounds interface for ROBDD representing
D = {{1, 3}, {1, 5}, {1, 6}, {1, 3, 5}, {1, 3, 6}}
Apply view ΓC on domain D ∈

F .
1 extract set bounds
2 extract cardinality bounds
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Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack

Inspected node

Flag

[bEc .. dEe]⊆

Result Start
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Stack
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Flag
INIT

[bEc .. dEe]⊆
[∅..{1, 2, 3, 4, 5, 6}]⊆

Result Start
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Connecting approximations with variable views Simulation of non-existing data structures
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Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack
(b2,⊥,b3)

Inspected node

(b1,b2,⊥) Card (0,0)

Flag

FIX GLB

[bEc .. dEe]⊆
[{1}..{1, 2, 3, 4, 5, 6}]⊆

Result Start
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Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with
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0 1

b1
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b4b4
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b5

b6

Stack

Inspected node
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Flag
UNDET

[bEc .. dEe]⊆
[{1}..{1, 2, 3, 4, 5, 6}]⊆
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Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with
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0 1
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b6

Stack

Inspected node
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Flag
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Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with
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Flag

FIX NOT LUB
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Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC

0 1

b1

b2

b3

b4b4

b5

b6

b5

b6

Stack

Inspected node

(b3,b4,b4) Card (1,1)
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Connecting approximations with variable views Simulation of non-existing data structures

Simulate
Crepresentation with

F using ΓC
Resulting

resulting ROBDD represents
1 E = ΓC(D) = [{1}..{1, 3, 5, 6}]⊆
2 cardinality restricitions card(E,2,3)

0 1

b1

b2

b4

Cardinality
c ∈ [2..3]

[bEc .. dEe]⊆
[{1}..{1, 3, 5, 6}]⊆
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Connecting approximations with variable views Simulation of non-existing data structures

Weaken propagation

ΓC ΓF 

IdF IdC

ImpF ImpC

pF pC

x : D
D ∈ Dom

Gecode ROBDD

1 F ∈
F  is x-component of

domain tuple
−→
F ,
−→
F .x = F

2 Map F to the respective
cardinality set bounds
G = ΓC(F)

3 Since G ∈
C ⊂ F  apply

pF  :
F n

→
F n

4 Propagation result
R = pF (−→G).x

5 Map result R again to
R ′ = ΓC(R).
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Connecting approximations with variable views Simulation of non-existing propagators

Using variable views to weaken propagation

Changing consistency of propagation result

Use a domain-consistent propagator

pF  :
F n

→
F n

obtain bounds(
C)-consistent propagation βC :

F n
→
Cn

,

βC(−→F ) = ΓC(pF (ΓC(−→F )))
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Summary

Contributions

1 Implemented presented concepts in Gecode
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Summary

Contributions

Gecode Constraint Library

generic

constraint

development

environment

Gecode [The06a], a C++ library for constraint programming.
Version 1.3.1 available from http://www.gecode.org

Developers

Dr. Christian Schulte (head, KTH, Sweden)

Guido Tack (PS Lab, Saabrücken, Germany)
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Summary

Contributions

1 Implemented presented concepts in Gecode
1 ROBDD set component
2 Simulation

C with
F  using view ΓC

3 Propagation across approximations using βC
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Summary

Contributions

ImpF 

βC

ImpC

pF pC

x : D
D ∈ Dom

ΓC ΓF 

Gecode ROBDD

IdC
IdF 
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Summary

Contributions

1 Implemented presented concepts in Gecode
1 ROBDD set component
2 Simulation

C with
F  using view ΓC

3 Propagation across approximations using βC
4 Also implemented:

1 βS for proper set bounds
2 βL for lexicographic bounds

2 First framework to connect different implementations for set variables
via variable views.

3 Prototype for generating set propagators from ∃MSO as uniform
specification language [TSS06]
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Summary

Contributions

∃MSO

ImpF 

βC

ImpC

pF pC

x : D
D ∈ Dom

ΓC ΓF 

Gecode ROBDD

IdC
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Summary

Contributions

1 Implemented presented concepts in Gecode
1 ROBDD set component
2 Simulation

C with
F  using view ΓC

3 Propagation across approximations using βC
4 Also implemented:

1 βS for proper set bounds
2 βL for lexicographic bounds

2 First framework to connect different implementations for set variables
via variable views.

3 Prototype for generating set propagators from uniform specification
language

4 Introduce different implementation for
C

compared different implementations for
C
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Contributions - Completing the picture

ΓC

∃MSO

ImpF 

βC

ImpC

pF pC

x : D
D ∈ Dom

ΓC ΓF 

Gecode

IdC
IdF 
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Outlook and future work

Generalize results to multisets by introducing
1 approximations
2 views
3 constraints

Comparison of used data structures with different data structures for
example:

1 Bit vectors
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Additional Slides

Sets in Gecode

Representation of finite integer sets

bounds representation of domain D by [bDc ..dDe]

each bound represented by a range list

D = [{3, 4, 10, 11, 12}..{−3,−2,−1, 0, 1, 3, 4, 7, 8, 10, 11, 12, 13, 14}]

⌈D⌉

-3..1 3..4 7..8 10..14

⌊D⌋

3..4 10..12
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Sets in Gecode

Representation of finite integer sets

remove bDc from dDe

obtain ∆(D) = dDe \ bDc
∆ ⌈D⌉ \ ⌊D⌋

-3..1

3..4

7..8

10..12

13..14

⌊D⌋
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Sets in Gecode

Minimal bounds representation [AB00]
minimal bounds rep

store disjoint union of ∆(D) and bDc such that ∆(D) ] bDc = dDe
∆ ⊎ ⌊D⌋

-3..1 3..4 7..8 10..12 13..14
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Fragment of ∃MSO

Fragment

S ::= ∃x.〈S〉 | 〈F〉

F ::= ∀v .〈B〉 | ∃v .〈B〉 | 〈F〉 ∧ 〈F〉

B ::= 〈B〉 ∧ 〈B〉 | 〈B〉 ∨ 〈B〉 | ¬〈B〉 | v ∈ x ∈ Var | ⊥

Example
Express constraint in ∃MSO

constraint c ≡ x ∩ y = z

∃MSO-formula φc = ∀v .v ∈ x ∧ y ∈ y ⇔ v ∈ z
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