FoPra: Implementation and Evaluation of Advanced Propagation Algorithms for Global Constraints

Patrick Pekczynski

Supervisor: Dipl.-Inf. Guido Tack

Programming Systems Lab Department of Computer Science Saarland University, Saarbrücken

17.02.2005

Constraint Programming in a nutshell

Constraint Programming (CP)

- has emerged from artificial intelligence
- 2 basic idea: combine
 - existing search-methods (backtracking, branch-and-bound, dfs, \dots)
 - constraint propagation techniques
- CP is applied in widespread areas:
 - natural language processing
 - artificial intelligence
 - operations research
 - genome sequencing
 - combinatorial optimization
 - computer algebra
 - electrical engineering
 - ...

 \Rightarrow CP is a method for modeling and solving many types of problems

Image: A image: A

CP in a nutshell ctd.

Definition (Constraint Satisfaction Problem)

$$\mathsf{CSP} \ \mathscr{P} = (\mathcal{X}, \mathcal{D}, \mathcal{C}) \text{ with:}$$

$$\begin{aligned} \mathcal{X} &= \{x_1, \dots, x_n\} \\ \mathcal{D} &= \{D_1, \dots, D_n\} \\ \mathcal{C} &= \{c_1, \dots, c_m\} \\ c_i \subset D_1 \times \dots \times D_k \end{aligned}$$

set of variables respective domains of the variables constraints on subsequences of variables

Constraint Programming

- alternative approach to programming
- **2** programming = generation of requirements (constraints)
- **3** about formulating (modeling) and solving of CSPs
- important aspect for solving of CSPs: constraint propagation

What is Constraint Propagation?

Constraint Propagation

- process of reducing a given CSP to an equivalent but simpler CSP
- reducing search space of CSP while maintaining equivalence
- pruning the domains of the variables in a given CSP
- propagators implement constraints on CSP
- essential component of a computation space

What is Constraint Propagation? - ctd.

Constraint Propagation

- inference component Prop
- implement the constraints $c_j \in C$ of a given CSP
- narrow a variable domain $D_i \in \mathcal{D}$ until

failure

 $Prop(D_i) = \bot$

 \Rightarrow CSP inconsistent (no solution possible)

entailment

 $\forall D_j: D_j \subseteq D_i: Prop(D_j) = D_j$

 \Rightarrow constraint already fulfilled by variable domains

Success

 $Prop(D_i) = Prop(Prop(D_i))$

 \Rightarrow CSP consistent (propagation reaches a fixpoint)

• variables x_i only common communication channel between propagators

FoPra task

Goals

implementation of advanced propagation algorithms for global constraints:

- Sortedness
- PermSort
- Global Cardinality
- use and evaluation of staged propagation as novel scheduling technique for propagators
- **o** comparsion to other implementations of the same constraints

Algorithms FoPra

FoPra task

Framework

- generic
- constraint
- development
- environment

[Gecode, a C++ library for constraint programming.] More information soon available on: http://www.gecode.org

Developers

- Dr. Christian Schulte (KTH, Stockholm, Sweden)
- Guido Tack (PS Lab, Saabrücken, Germany)

Sortedness-constraint

Definition (Sortedness)

 $Sortedness(x_1, ..., x_n; y_1, ..., y_n)$

- **1** input: 2 sequences of n variables x_i and y_i
- Output: Is 2nd sequence obtained by sorting 1st in non-decreasing order?

Example (Sortedness)

Sortedness

Sortedness(1, 3, 1; 1, 1, 3)	holds	\checkmark
<i>Sortedness</i> (5, 2, 3; 3, 2, 5)	violated	乏

・ロト ・得ト ・ヨト ・ヨト

PermSort-constraint

Definition (*PermSort*)

$$PermSort(x_1, ..., x_n; y_1, ..., y_n; p_1, ..., p_n)$$

- **1** input: 3 sequences of n variables x_i , y_i and p_i
- Output: Is 2nd sequence obtained by sorting 1st in non-decreasing order AND is 3rd sequence a permutation of (1,..., n), s.t.:

•
$$\forall i \in \{1, \ldots, n\} : x_i = y_{p_i}$$

③ equals *Sortedness* with additional permutation variables

Example (PermSort)

PermSort

PermSort(1, 3, 1; 1, 1, 3; 1, 3, 2)holds \checkmark PermSort(5, 2, 3; 2, 3, 5; 1, 2, 3)violated \checkmark

▶ details

・ロト ・同ト ・ヨト ・ヨト

Global Cardinality -constraint

Definition (Global Cardinality)

$$GCC(x_1, ..., x_n; l_1, ..., l_d; u_1, ..., u_d)$$

- input: a sequence of n variables x_i , defined on a set of values $D = \{v_1, \ldots, v_d\}$ and for each value v_i a pair $[I_i, u_i]$
- Output: Is it possible to narrow the domains of the variables x_i, s.t.:
 ∀i ∈ {1,..., d = |D|} ∀v_i ∈ D : I_i ≤ #v_i ≤ u_i ?
- **(**) generalization of the *Alldifferent* constraint:
 - Alldifferent $(x_1, ..., x_n) = GCC(x_1, ..., x_n, ; l_1, ..., l_d; u_1, ..., u_d)$ where $\forall i \in \{1, ..., d\} : l_i = 0 \land u_i = 1$

Example (Global Cardinality)

Bounds Consistent Algorithm for Global Cardinality

Paper

An Efficient Bounds Consistency Algorithm for the *Global Cardinality* Constraint, van Beek et. al. [qui03]

Algorithm

3 Steps:
$$(n = |X|, t = \text{sorting time})$$

- sort X variables according to lower and upper bounds
- **2** UBC: value v_i occurs at most u_i times
- **3** LBC: value v_i occurs at least l_i times

```
\Rightarrow complexity O(t + n \cdot log(n))
```

```
consistency levels
```

[O(t)]

 $[O(n \cdot log(n))]$

 $[O(n \cdot log(n))]$

(*) *) *) *)

Theorem (Hall's Theorem on bipartite perfect matching)

For any node set S and its set of neighbors N(S):

 $|S| \leq |N(S)|$

 \Rightarrow any set S has at least as many neighbors as elements (if not \Rightarrow there is no perfect matching)

Definition (Hall interval / Hall set)

- $S \subseteq \mathcal{D}$: C(S) = # variables $v_i : D_i \subseteq S$
- $S \subseteq \mathcal{D}$: I(S) = # variables $v_i : D_i \cap S \neq \emptyset$

•
$$[S] = \sum_{v \in S} u_v, \ [S] = \sum_{v \in S} I_v$$

- Hall interval = $H \subseteq \mathcal{D}$: |H| = C(H)
- Hall set $= H \subseteq \mathcal{D} : \lceil H \rceil = C(H)$

Extension to GCC

- extend Hall interval to Hall sets
- Hall proved: Alldifferent satisfiable $\Leftrightarrow \forall S : C(S) \le |S|$
- UBC({1, 2, 3, 4}, (3, 3, 3, 3)) ⇔
 AllDifferent(1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c, 4a, 4b, 4c)
- UBC satisfiable $\Leftrightarrow \forall S : C(S) \leq \lceil S \rceil$

Definition (Hall interval / Hall set)

- $S \subseteq \mathcal{D}$: C(S) = # variables $v_i : D_i \subseteq S$
- $S \subseteq \mathcal{D} : I(S) = \#$ variables $v_i : D_i \cap S \neq \emptyset$

•
$$[S] = \sum_{v \in S} u_v, \ [S] = \sum_{v \in S} I_v$$

• Hall interval =
$$H \subseteq \mathcal{D}$$
: $|H| = C(H)$

• Hall set
$$= H \subseteq \mathcal{D} : \lceil H \rceil = C(H)$$

Extension to GCC

- Failure set $F \subseteq \mathcal{D} : I(F) < \lfloor F \rfloor$
- Unstable set $U \subseteq \mathcal{D} : I(U) = \lfloor U \rfloor$
- Stable set $S \subseteq \mathcal{D} : C(S) > \lfloor S \rfloor \land \forall U \ \forall F : \cap U = \emptyset \land S \cap F = \emptyset$
- LBC satisfiable $\Leftrightarrow \neg \exists S \in \mathcal{D} : S$ failure set

-

Definition (Hall interval / Hall set)

- $S \subseteq \mathcal{D}$: C(S) = # variables $v_i : D_i \subseteq S$
- $S \subseteq \mathcal{D} : I(S) = \#$ variables $v_i : D_i \cap S \neq \emptyset$

•
$$\lceil S \rceil = \sum_{v \in S} u_v, \ \lfloor S \rfloor = \sum_{v \in S} l_v$$

- Hall interval = $H \subseteq \mathcal{D}$: |H| = C(H)
- Hall set $= H \subseteq \mathcal{D} : \lceil H \rceil = C(H)$

Extension to GCC

- Failure set determines whether an LBC is satisfiable
- Unstable set indicates where domains have to be pruned
- Stable set indicates which domains must not be pruned

Domain Consistent Algorithm for Global Cardinality

Paper

Improved Algorithms for the *Global Cardinality* Constraint, van Beek et. al. [imp04]

Algorithm

5 Steps:
$$(n = |X|, D = \bigcup_{i \in \{1,...,n\}} D_i, d = |D|, m = \# of edges);$$

- build a bipartite variable-value graph $G=(\langle X,D\rangle,E)$ $[O(n \cdot d)]$
- compute a matching in G $[O(log(n) + n \cdot log(n) + n \cdot d)]$
 - UBC: matching (cardinality $|M_u| = |X|$)
 - LBC: matching (cardinality $|M_l| = \sum l_i$)
- compute the SCCs in [O(n+m)]
- find even alternating paths starting from free nodes
- updating the domains according to remaining edges

 \Rightarrow complexity $O(n \cdot log(n) + n \cdot d) < O(n^{\frac{3}{2}} \cdot d)$

[O(n+m)]

 $[O(n \cdot d)]$

- build the variable-value graph
- each value node has a capacity denoting who often the value node can be matched

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

- build the variable-value graph
- each value node has a capacity denoting who often the value node can be matched

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

- build the variable-value graph
- each value node has a capacity denoting who often the value node can be matched

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

- build the variable-value graph
- each value node has a capacity denoting who often the value node can be matched

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• build the variable-value graph

• each value node has a capacity denoting who often the value node can be matched

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

- build the variable-value graph
- each value node has a capacity denoting who often the value node can be matched

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute a matching M_u for X on G

→ LBC → Skip

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute a matching M_u for X on G

→ LBC → Skip

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute a matching M_u for X on G

→ LBC → Skip

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute a matching M_u for X on G

→ LBC → Skip

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute a matching M_u for X on G

→ LBC → Skip

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

- $|M_u| = |X| \Rightarrow$ satisfies UBC \checkmark
- no strongly connected components

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute free alternating paths starting from 3 and 4

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute free alternating paths starting from 3 and 4

► LBC ► Skip

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute free alternating paths starting from 3 and 4

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute free alternating paths starting from 3 and 4

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute free alternating paths starting from 3 and 4

- build the variable-value graph
- each value node has a capacity denoting who often the value node can be matched

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

- build the variable-value graph
- each value node has a capacity denoting who often the value node can be matched

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

- build the variable-value graph
- each value node has a capacity denoting who often the value node can be matched

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

- build the variable-value graph
- each value node has a capacity denoting who often the value node can be matched

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

- build the variable-value graph
- each value node has a capacity denoting who often the value node can be matched

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

- build the variable-value graph
- each value node has a capacity denoting who often the value node can be matched

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute a matching M_I for D on G

→ UBC

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute a matching M_I for D on G

→ UBC

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute a matching M_I for D on G

→ UBC

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute a matching M_I for D on G

→ UBC

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute a matching M_I for D on G

→ UBC

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

•
$$|M_l| = \sum l_i \Rightarrow$$
 satisfies LBC \checkmark

• no strongly connected components

► UBC

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute free alternating paths starting from x₃

→ UBC

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute free alternating paths starting from x₃

→ UBC

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• compute free alternating paths starting from x₃

→ UBC

$$x_0 = 2$$
 $x_1 = [1, 2]$ $x_2 = [2, 3]$ $x_3 = [2, 3]$ $x_4 = [1, 4]$ $x_5 = [3, 4]$

• omit all edges not in M_I , $M_I + p_{aug}$ or in SCCs

► UBC

$$x_0 = 2$$
 $x_1 = 1$ $x_2 = [2,3]$ $x_3 = [2,3]$ $x_4 = 4$ $x_5 = 4$

• omit all edges not in M_I , $M_I + p_{aug}$ or in SCCs

► UBC

Staged Propagation

Paper

Speeding Up Constraint Propagation, Christian Schulte and Peter J. Stuckey, CP 2004 [SS04b]

Gecode

- assigns priorities to propagators, e.g. their respective running times (linear < quadratic < cubic $<\dots)$
- schedule propagators in priority queue

• event = domain
$$D_i$$
 of x_i is changed to D'_i

$$fix(x_i)$$
 x_i is fixed

 $lbc(x_i)$ lower domain bound is changed

 $ubc(x_i)$ upper domain bound is changed $dmc(x_i)$ domain of x_i is narrowed

$$\begin{split} |D_i'| &= 1\\ inf_{D_i'} > inf_{D_i}\\ sup_{D_i'} < sup_{D_i}\\ D_i' \subset D_i \end{split}$$

《口》《聞》《臣》《臣》

Staged Propagation

Staged Propagation

- novel propagator scheduling technique
- multiple propagators for single constraint, e.g.
 - G_b :=bounds consistent GCC: $O(n \cdot log(n))$
 - 2 G_d :=domain consistent GCC: $O(n \cdot log(n) + n \cdot d)$
- combine them into single propagator with internal state (stage)
- stage determines propagation:
 - smallest running time first
 - event-dependent propagation

•
$$\overrightarrow{lbc \lor ubc \lor fix} \Rightarrow G_b$$

•
$$dmc \land \neg(B) \Rightarrow G_d$$

Sports League Scheduling

Feasible Schedule for N = 8

	С	ol_1	Ca	ol_2	C	ol3	С	ol4	С	5 <i>1</i> 5	С	5/ ₆	С	ol7
$Period_1$	0	1	0	2	1	2	5	7	3	6	3	7	4	5
Period ₂	4	6	1	5	0	3	0	4	1	7	2	5	2	6
Period ₃	2	7	3	4	4	7	1	6	0	5	0	6	1	3
Period ₄	3	5	6	7	5	6	2	3	2	4	1	4	0	7

• search space = $O((\frac{N}{2} \cdot (N-1))!)$ for (i,j) with 0 < i < j < N

- $\forall i \in \{1, \ldots, N-1\}$: Alldifferent (Col_i)
- $\forall i \in \{1, ..., \frac{N}{2}\}$: *GCC*(*Period*_i; 0...0; 2...2)
- $\forall (i, j) \in Schedule :$ Alldifferent $(i, j) \Leftrightarrow N \cdot i + j = Unique matchup number$

Evaluation and running times

N = 8 (running times in ms)								
SOL=1	SP VAL BND DOM VB ILOG							
	+		290	90*	no SP			
	-	40	60	110	100	90		

Table: Sports League Scheduling

Branching: smallest minimum(var) smallest value(val)

- SP = staged propagation
- VB = van Beek's BND-GCC implementation in ILOG
- ILOG = ILOG Solver 5.0 IlcCard-constraint
- $VB^* = VB$ uses "value removal" \approx SP

Evaluation and running times

N = 8 (running times in ms)									
SOL=100	SP	SP VAL BND DOM VB ILOG							
	+		5280	2730*	no SP				
	-	1000	1210	12780	3230	2610			

Table: Sports League Scheduling

Branching: smallest minimum(var) smallest value(val)

- SP = staged propagation
- VB = van Beek's BND-GCC implementation in ILOG
- ILOG = ILOG Solver 5.0 IlcCard-constraint
- $VB^* = VB$ uses "value removal" \approx SP

Evaluation and running times

N = 10 (running times in ms)									
SOL=1	SP	SP VAL BND DOM VB ILOG							
	+		2620	25130*	no SP				
	-	9290	11060	47280	31860	63640			

Table: Sports League Scheduling

Branching: smallest minimum(var) smallest value(val)

- SP = staged propagation
- VB = van Beek's BND-GCC implementation in ILOG
- ILOG = ILOG Solver 5.0 IlcCard-constraint
- $VB^* = VB$ uses "value removal" \approx SP

• Efficient implementation of global propagation algorithms for:

- Sortedness \Rightarrow BND[O(t + n)]
- no guaranteed bounds consistency for *Sortedness*-implementation with permutation variables. ⇒ implementation of *PermSort*.
- $PermSort \Rightarrow BND[O(n^2)]$
- Global Cardinality
 - \Rightarrow BND[O(t + n · log(n))]
 - $\Rightarrow DOM[O(n \cdot log(n) + n \cdot d)]$
- 2 evaluation of Global Cardinality against ILOG
 - use and evaluation of novel propagator scheduling techniques
 - \Rightarrow Staged Propagation

Results

• Efficient implementation of global propagation algorithms for:

- Sortedness $\Rightarrow BND[O(t + n)]$
- no guaranteed bounds consistency for *Sortedness*-implementation with permutation variables. ⇒ implementation of *PermSort*.
- $PermSort \Rightarrow BND[O(n^2)]$
- Global Cardinality
 - $\Rightarrow BND[O(t + n \cdot log(n))]$
 - $\Rightarrow DOM[O(n \cdot log(n) + n \cdot d)]$
- 2 evaluation of Global Cardinality against ILOG
 - use and evaluation of novel propagator scheduling techniques
 - \Rightarrow Staged Propagation
 - current benchmarks: Gecode factor 2 faster than ILOG

Hot Spots

Time spent on:

- getting in touch with the Gecode-system
 - variables
 - events
 - propagators
- 2 reading the references
- understand and adapt algorithms to the Gecode-system
- implement datastructures fitting for the algorithms
- getting in touch with the ILOG-system
- O CSP-models for evaluation against ILOG

What can be done?

- add permutation variables with guaranteed bounds consistency to the implementation of the *Sortedness* constraint
- use cardinality variables instead of fixed integers for the upper and lower bounds in the *Global Cardinality* constraint

References I

[apt98] The Essence of Constraint Propagation, volume cs.Al/9811024, 1998. [Apt99] The Rough Guide to Constraint Propagation. Springer-Verlag, 1999. [Apt03] K. Apt. Principles of Constraint Programming. 2003. Noëlle Bleuzen-Guernalec and Alain Colmerauer. BGC00] Optimal Narrowing of a Block of Sortings in Optimal Time. Constraints: An International Journal, 5(1/2):85–118m, January 2000.

References II

[HK73]

John E. Hopcroft and Richard M. Karp. An n^{5/2} algorithm for maximum matchings in bipartite graphs. SIAM: Journal of Computing, 2(4):225–231, December 1973.

[HMPR99]

Pascal Van Hentenryck, Laurent Michel, Laurent Perron, and Jean-Charles Régin.

Constraint programming in opl.

In Gopalan Nadathur, editor, *Proceedings of the International Conference on Principles and Practice of Declarative Programming (PPDP'99)*, volume 1702 of *Lecture Notes in Computer Science*, pages 98–116, September 29 - October 1 1999.

References III

[imp04]	<i>Improved Algorithms for the Global Cardinality Constraint,</i> volume 3528, Toronto, Canada, September 2004.
[I.S04]	I.S.Laboratory. SICStus Prolog user's manual, 3.11.1 Technical Report. Swedish Institute of Computer Science, 2004. Download PDF-File.
[lop03]	A Fast and Simple Algorithm for Bounds Consistency of the Alldifferent Constraint, Acapulco, Mexico, August 2003.

2

References IV

[LOQTvB03] Alejandro López-Ortiz, Claude-Guy Quimper, John Tromp, and Peter van Beek. A Fast and Simple Algorithm for Bounds Consistency of the Alldifferent Constraint, Technical Report. Acapulco, Mexico, 2003. Download PS-File Kurt Mehlhorn. [Meh84] Data Structures and Algorithms, volume 2 Graph Algorithms and NP-Completeness of EATCS Monographs. Springer Verlag, 1984.

[MTW97] K. McAloon, C. Tretkoff, and G. Wetzel. Sport league scheduling, 1997.

Summary

References V

[OSvE95] W. J. Older, G. M. Swinkels, and M. H. van Emden. Getting to the real problem: Experience with bnr prolog in or.

In Proc.of the Third International Conference on the Practical Application of Prolog, pages 465–478, Paris, 1995.

[qui03] An Efficient Bounds Consistency Algorithm for the Global Cardinality Constraint, volume 2833, Kinsale, Ireland, September 2003.

 [QvBLO⁺03] Claude-Guy Quimper, Peter van Beek, Alejandro López-Ortiz, Alexander Golynski, and Sayyed Bashir Sadjad. An Efficient Bounds Consistency Algorithm for the Global Cardinality Constraint, Technical Report. 2003.
 Download PS-File. [R]

References VI

Jean-Charles Régin.

Minimization of the number of breaks in sports scheduling problems using constraint programming.

 [R96] J-C. Régin.
 Generalized arc consistency for global cardinality constraint.
 In Proceedings of the 13th National Conference on AI (AAAI/IAAI'96), volume 1, pages 209–215, Portland, August 1996.

[Reg94] A filtering algorithm for constraints of difference in CSPs, volume 1, Seattle, July 31 - August 4 1994.

[S.A00] ILOG S.A. ILOG Solver 5.0:Reference Manual. 2000.

References VII

[SS04a]

Christian Schulte and Gert Smolka.

Finite Domain Constraint Programming in Oz. A Tutorial, 1.3.0 edition. 2004. Download PDE-Eile

[SS04b]

Christian Schulte and Peter J. Stuckey. Speeding up constraint propagation. In Mark Wallace, editor, *Tenth International Conference on*

Principles and Practice of Constraint Programming, volume 3258 of Lecture Notes in Computer Science, pages 619–633, Toronto, Canada, September 2004. Springer-Verlag.

References VIII

[Thi04]

Sven Thiel.

Efficient Algorithms for Constraint Propagation and for Processing Tree Descriptions, PhD Thesis. Universität des Saarlandes, Saarbrücken, Germany, 2004. Download: PDF-File.

[WNS97]

Mark Wallace, Stefano Novello, and Joachim Schimpf. Eclipse: A platform for constraint logic programming. Technical report. IC-Parc, Imperial College, London, UK, 1997. Online-Version.

References IX

[Zho73]

Jianyang Zhou.

A permutation-based-approach for solving the job-shop problem. Constraints: An International Journal, 2(2):185–213,

October 1973.

Bounds Consistent Algorithm for PermSort

Paper

A Permutation-Based Approach for Solving the Job-Shop Problem, Jianyang Zhou, Constraints an International Journal 1997 [Zho73]

Algorithm

[03.03.2005 10:37]

4 steps:
$$(n = |X| = |Y| = |P|, t = \text{sorting time})$$

- Check whether the Y variables are sorted
- The permutation variables are distinct and range from 1 to n
 [O(n + O(distinct(P)))]
- Guarantee that $\forall i \in \{1, \dots, n\} \exists p_i \in P : y_i = x_{p_i}$ $[O(n^2)]$
- Metaconstraint stating, that y_i ranks i-th in the ascending sorting of x_i $[O(t + n^2) = O(n^2)]$

-

・ 同 ト ・ ヨ ト ・ ヨ ト

[O(n)]

Bounds Consistent Algorithm for Sortedness

Paper

Efficient Algorithms for Constraint Propagation and for Processing Tree Descriptions, PhD Sven Thiel, 2004 [Thi04]

Algorithm

5 steps: (
$$n = |X| = |Y|$$
, t =sorting time)

- Sort the domains of the X variables according to lower and upper interval endpoints [O(t)]
- Normalize the domains of the Y variables
- Compute matchings φ, φ' in the bipartite convex intersection graph with partitions X and Y
 [O(n)]
- Compute the SCC's in the oriented intersection graph
- Narrow the domains of the variables

 \Rightarrow complexity O(n + t)

[O(n)]

 $\begin{bmatrix} O(n) \end{bmatrix}$ $\begin{bmatrix} O(n) \end{bmatrix}$

Domain vs. Bounds Consistency

Consistency Levels

Consider propagation for:

 $2 \cdot x = y$ $x \in [1 \dots 10] \quad y \in [1 \dots 7]$

O Domain consistency:

domain propagation narrows the domains as much as possible:

 $x \in [1 \dots 3] \mid y \in \{2, 4, 6\}$

2 Bounds consistency:

interval propagation only narrows the bounds (min,max)

 \Rightarrow faster pruning

$$x \in [1 \dots 3] \quad y \in [2 \dots 6]$$

```
running example
```