
FoPra: Implementation and Evaluation of
Advanced Propagation Algorithms for

Global Constraints

Patrick Pekczynski

Supervisor: Dipl.-Inf. Guido Tack

Programming Systems Lab
Department of Computer Science
Saarland University, Saarbrücken

17.02.2005

[03.03.2005 10:37] Propagation Algorithms 1 / 32

Constraint Programming CP - A short introduction

Constraint Programming in a nutshell

Constraint Programming (CP)

1 has emerged from artificial intelligence
2 basic idea: combine

existing search-methods (backtracking, branch-and-bound, dfs, . . .)
constraint propagation techniques

3 CP is applied in widespread areas:

natural language processing
artificial intelligence
operations research
genome sequencing
combinatorial optimization
computer algebra
electrical engineering
. . .

⇒ CP is a method for modeling and solving many types of problems

[03.03.2005 10:37] Propagation Algorithms 2 / 32

Constraint Programming CP - A short introduction

CP in a nutshell ctd.

Definition (Constraint Satisfaction Problem)

CSP P = (X , D , C) with:
X = {x1, . . . , xn} set of variables
D = {D1, . . . ,Dn} respective domains of the variables
C = {c1, . . . , cm} constraints on subsequences of variables

ci ⊆ D1 × · · · × Dk

Constraint Programming

1 alternative approach to programming

2 programming = generation of requirements (constraints)

3 about formulating (modeling) and solving of CSPs

4 important aspect for solving of CSPs: constraint propagation

[03.03.2005 10:37] Propagation Algorithms 3 / 32

Constraint Programming Constraint Propagation

What is Constraint Propagation?

Constraint Propagation

process of reducing a given CSP to an equivalent but simpler CSP

reducing search space of CSP while maintaining equivalence

pruning the domains of the variables in a given CSP

propagators implement constraints on CSP

essential component of a computation space

Computation Space

propagator

constraint store
x1 ∈ [1..4] ∧ x2 ∈ [1..4]

propagator. . .

[03.03.2005 10:37] Propagation Algorithms 4 / 32

Constraint Programming Constraint Propagation

What is Constraint Propagation? - ctd.

Constraint Propagation

inference component Prop

implement the constraints cj ∈ C of a given CSP

narrow a variable domain Di ∈ D until
1 failure

Prop(Di) = ⊥
⇒ CSP inconsistent (no solution possible)

2 entailment

∀Dj : Dj ⊆ Di : Prop(Dj) = Dj

⇒ constraint already fulfilled by variable domains
3 success

Prop(Di) = Prop(Prop(Di))
⇒ CSP consistent (propagation reaches a fixpoint)

variables xi only common communication channel between
propagators

[03.03.2005 10:37] Propagation Algorithms 5 / 32

Algorithms FoPra

FoPra task

Goals

1 implementation of advanced propagation algorithms for global
constraints:

Sortedness
PermSort
Global Cardinality

2 use and evaluation of staged propagation as novel scheduling
technique for propagators

3 comparsion to other implementations of the same constraints

[03.03.2005 10:37] Propagation Algorithms 6 / 32

Algorithms FoPra

FoPra task

Framework

generic

constraint

development

environment

[Gecode, a C++ library for constraint programming.]
More information soon available on: http://www.gecode.org

Developers

Dr. Christian Schulte (KTH, Stockholm, Sweden)

Guido Tack (PS Lab, Saabrücken, Germany)

[03.03.2005 10:37] Propagation Algorithms 6 / 32

http://www.gecode.org

Algorithms Sortedness

Sortedness-constraint

Definition (Sortedness)

Sortedness(x1, . . . , xn ; y1, . . . , yn)

1 input: 2 sequences of n variables xi and yi

2 output: Is 2nd sequence obtained by sorting 1st in non-decreasing
order?

Example (Sortedness)

Sortedness

Sortedness(1, 3, 1; 1, 1, 3) holds X
Sortedness(5, 2, 3; 3, 2, 5) violated

details

[03.03.2005 10:37] Propagation Algorithms 7 / 32

Algorithms PermSort

PermSort-constraint

Definition (PermSort)

PermSort(x1, . . . , xn ; y1, . . . , yn ; p1, . . . , pn)

1 input: 3 sequences of n variables xi , yi and pi

2 output: Is 2nd sequence obtained by sorting 1st in non-decreasing
order AND is 3rd sequence a permutation of (1, . . . , n), s.t.:

∀i ∈ {1, . . . , n} : xi = ypi

3 equals Sortedness with additional permutation variables

Example (PermSort)

PermSort

PermSort(1, 3, 1; 1, 1, 3; 1, 3, 2) holds X
PermSort(5, 2, 3; 2, 3, 5; 1, 2, 3) violated

details

[03.03.2005 10:37] Propagation Algorithms 8 / 32

Algorithms Global Cardinality

Global Cardinality -constraint

Definition (Global Cardinality)

GCC (x1, . . . , xn ; l1, . . . , ld ; u1, . . . , ud)

1 input: a sequence of n variables xi , defined on a set of values
D = {v1, . . . , vd} and for each value vi a pair [li , ui]

2 output: Is it possible to narrow the domains of the variables xi , s.t.:
∀i ∈ {1, . . . , d = |D|} ∀vi ∈ D : li ≤ #vi ≤ ui ?

3 generalization of the Alldifferent constraint:

Alldifferent(x1, . . . , xn)= GCC (x1, . . . , xn, ; l1, . . . , ld ; u1, . . . , ud)
where ∀i ∈ {1, . . . , d} : li = 0 ∧ ui = 1

Example (Global Cardinality)

Global Cardinality

GCC (2, [1..2], [2..3], [2..3], [1..4], [3..4] ; 1, 1, 1, 2 ; 3, 3, 3, 3) holds [X]
GCC (2, [1..2], [2..3], [2..3], [1..4], [3..4] ; 1, 1, 1, 1 ; 1, 1, 1, 1) violated []

[03.03.2005 10:37] Propagation Algorithms 9 / 32

Algorithms Bounds-consistent GCC

Bounds Consistent Algorithm for Global Cardinality

Paper

An Efficient Bounds Consistency Algorithm for the Global Cardinality
Constraint, van Beek et. al. [qui03]

Algorithm

3 Steps: (n = |X |, t = sorting time)

1 sort X variables according to lower and upper bounds [O(t)]

2 UBC: value vi occurs at most ui times [O(n · log(n))]

3 LBC: value vi occurs at least li times [O(n · log(n))]

⇒ complexity O(t + n · log(n))

consistency levels

[03.03.2005 10:37] Propagation Algorithms 10 / 32

Algorithms Theoretical background

The theory behind [Philip Hall b1904 - d1982]

Theorem (Hall’s Theorem on bipartite perfect matching)

For any node set S and its set of neighbors N(S):

|S | ≤ |N(S)|

⇒ any set S has at least as many neighbors as elements
(if not ⇒ there is no perfect matching)

[03.03.2005 10:37] Propagation Algorithms 11 / 32

Algorithms Theoretical background

The theory behind [Philip Hall b1904 - d1982]

Definition (Hall interval / Hall set)

S ⊆ D : C (S) = # variables vi : Di ⊆ S

S ⊆ D : I (S) = # variables vi : Di ∩ S 6= ∅
dSe =

∑
v∈S uv , bSc =

∑
v∈S lv

Hall interval = H ⊆ D : |H| = C (H)

Hall set = H ⊆ D : dHe = C (H)

Extension to GCC

extend Hall interval to Hall sets

Hall proved: Alldifferent satisfiable ⇔ ∀S : C (S) ≤ |S |
UBC({1, 2, 3, 4},(3, 3, 3, 3)) ⇔
AllDifferent(1a, 1b, 1c , 2a, 2b, 2c , 3a, 3b, 3c , 4a, 4b, 4c)

UBC satisfiable ⇔ ∀S : C (S) ≤ dSe

[03.03.2005 10:37] Propagation Algorithms 11 / 32

Algorithms Theoretical background

The theory behind [Philip Hall b1904 - d1982]

Definition (Hall interval / Hall set)

S ⊆ D : C (S) = # variables vi : Di ⊆ S

S ⊆ D : I (S) = # variables vi : Di ∩ S 6= ∅
dSe =

∑
v∈S uv , bSc =

∑
v∈S lv

Hall interval = H ⊆ D : |H| = C (H)

Hall set = H ⊆ D : dHe = C (H)

Extension to GCC

Failure set F ⊆ D : I (F) < bF c
Unstable set U ⊆ D : I (U) = bUc
Stable set S ⊆ D : C (S) > bSc ∧ ∀U ∀F : ∩U = ∅ ∧ S ∩ F = ∅
LBC satisfiable ⇔ ¬∃S ∈ D : S failure set

[03.03.2005 10:37] Propagation Algorithms 11 / 32

Algorithms Theoretical background

The theory behind [Philip Hall b1904 - d1982]

Definition (Hall interval / Hall set)

S ⊆ D : C (S) = # variables vi : Di ⊆ S

S ⊆ D : I (S) = # variables vi : Di ∩ S 6= ∅
dSe =

∑
v∈S uv , bSc =

∑
v∈S lv

Hall interval = H ⊆ D : |H| = C (H)

Hall set = H ⊆ D : dHe = C (H)

Extension to GCC

Failure set determines whether an LBC is satisfiable

Unstable set indicates where domains have to be pruned

Stable set indicates which domains must not be pruned

[03.03.2005 10:37] Propagation Algorithms 11 / 32

Algorithms Domain-consistent GCC

Domain Consistent Algorithm for Global Cardinality

Paper

Improved Algorithms for the Global Cardinality Constraint,
van Beek et. al. [imp04]

Algorithm

5 Steps: (n = |X |, D =
⋃

i∈{1,...,n} Di , d = |D|, m = # of edges);

build a bipartite variable-value graph G=(<X,D>,E) [O(n · d)]

compute a matching in G [O(log(n) + n · log(n) + n · d)]

UBC: matching (cardinality |Mu| = |X |)
LBC: matching (cardinality |Ml | =

∑
li)

compute the SCCs in [O(n + m)]

find even alternating paths starting from free nodes [O(n + m)]

updating the domains according to remaining edges [O(n · d)]

⇒ complexity O(n · log(n) + n · d) < O(n
3
2 · d)

[03.03.2005 10:37] Propagation Algorithms 12 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0

2

3

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1

1 2

3 3

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2

1 2 3

3 3 3

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3

1 2 3

3 3 3

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4

1 2 3 4

3 3 3 3

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

3 3 3 3

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

3 2 3 3

compute a matching Mu for X on G

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

2 2 3 3

compute a matching Mu for X on G

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

2 1 3 3

compute a matching Mu for X on G

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

2 0 3 3

compute a matching Mu for X on G

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

1 0 3 3

compute a matching Mu for X on G

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

1 0 2 3

|Mu| = |X | ⇒ satisfies UBC X

no strongly connected components

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 43 4

1 0 2 3

compute free alternating paths starting from 3 and 4

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 43 4

1 0 2 3

compute free alternating paths starting from 3 and 4

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 43 4

1 0 2 3

compute free alternating paths starting from 3 and 4

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 43 4

1 0 2 3

compute free alternating paths starting from 3 and 4

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 43 4

1 0 2 3

compute free alternating paths starting from 3 and 4

LBC Skip

[03.03.2005 10:37] Propagation Algorithms 13 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0

2

1

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1

1 2

1 1

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2

1 2 3

1 1 1

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3

1 2 3

1 1 1

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4

1 2 3 4

1 1 1 2

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

1 1 1 2

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

1 0 1 2

compute a matching Ml for D on G

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

0 0 1 2

compute a matching Ml for D on G

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

0 0 0 2

compute a matching Ml for D on G

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

0 0 0 1

compute a matching Ml for D on G

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

0 0 0 0

compute a matching Ml for D on G

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

0 0 0 0

|Ml | =
∑

li ⇒ satisfies LBC X

no strongly connected components

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

x3

0 0 0 0

compute free alternating paths starting from x3

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

x3

0 0 0 0

compute free alternating paths starting from x3

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

x3

0 0 0 0

compute free alternating paths starting from x3

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

x3

0 0 0 0

omit all edges not in Ml , Ml + paug or in SCCs

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = 1 x2 = [2, 3] x3 = [2, 3] x4 = 4 x5 = 4

x0 x1 x2 x3 x4 x5

1 2 3 4

x3

0 0 0 0

omit all edges not in Ml , Ml + paug or in SCCs

UBC

[03.03.2005 10:37] Propagation Algorithms 14 / 32

Algorithms Advantages of Gecode

Staged Propagation

Paper

Speeding Up Constraint Propagation,
Christian Schulte and Peter J. Stuckey, CP 2004 [SS04b]

Gecode

assigns priorities to propagators, e.g. their respective running times
(linear < quadratic < cubic < . . .)

schedule propagators in priority queue

event = domain Di of xi is changed to D ′
i

fix(xi) xi is fixed |D ′
i | = 1

lbc(xi) lower domain bound is changed infD′
i
> infDi

ubc(xi) upper domain bound is changed supD′
i
< supDi

dmc(xi) domain of xi is narrowed D ′
i ⊂ Di

[03.03.2005 10:37] Propagation Algorithms 15 / 32

Algorithms Advantages of Gecode

Staged Propagation

Staged Propagation

novel propagator scheduling technique

multiple propagators for single constraint, e.g.
1 Gb :=bounds consistent GCC: O(n · log(n))
2 Gd :=domain consistent GCC: O(n · log(n) + n · d)

combine them into single propagator with internal state (stage)

stage determines propagation:
1 smallest running time first
2 event-dependent propagation

B︷ ︸︸ ︷
lbc ∨ ubc ∨ fix ⇒ Gb

dmc ∧ ¬(B) ⇒ Gd

[03.03.2005 10:37] Propagation Algorithms 15 / 32

Evaluation Example

Sports League Scheduling

Feasible Schedule for N = 8

Col1 Col2 Col3 Col4 Col5 Col6 Col7
Period1 0 1 0 2 1 2 5 7 3 6 3 7 4 5

Period2 4 6 1 5 0 3 0 4 1 7 2 5 2 6

Period3 2 7 3 4 4 7 1 6 0 5 0 6 1 3

Period4 3 5 6 7 5 6 2 3 2 4 1 4 0 7

search space = O((N
2 · (N − 1))!) for (i , j) with 0 < i < j < N

∀i ∈ {1, . . . ,N − 1} : Alldifferent (Coli)

∀i ∈ {1, . . . , N
2 } : GCC(Periodi ; 0 . . . 0; 2 . . . 2)

∀(i , j) ∈ Schedule :
Alldifferent (i , j) ⇔ N · i + j = Unique matchup number

[03.03.2005 10:37] Propagation Algorithms 16 / 32

Evaluation Comparison

Evaluation and running times

N = 8 (running times in ms)

SOL=1 SP VAL BND DOM VB ILOG

+ 290 90∗ no SP

- 40 60 110 100 90

Table: Sports League Scheduling

Branching: smallest minimum(var) smallest value(val)

SP = staged propagation

VB = van Beek’s BND-GCC implementation in ILOG

ILOG = ILOG Solver 5.0 IlcCard-constraint

VB∗ = VB uses “value removal” ≈ SP

[03.03.2005 10:37] Propagation Algorithms 17 / 32

Evaluation Comparison

Evaluation and running times

N = 8 (running times in ms)

SOL=100 SP VAL BND DOM VB ILOG

+ 5280 2730∗ no SP

- 1000 1210 12780 3230 2610

Table: Sports League Scheduling

Branching: smallest minimum(var) smallest value(val)

SP = staged propagation

VB = van Beek’s BND-GCC implementation in ILOG

ILOG = ILOG Solver 5.0 IlcCard-constraint

VB∗ = VB uses “value removal” ≈ SP

[03.03.2005 10:37] Propagation Algorithms 17 / 32

Evaluation Comparison

Evaluation and running times

N = 10 (running times in ms)

SOL=1 SP VAL BND DOM VB ILOG

+ 2620 25130∗ no SP

- 9290 11060 47280 31860 63640

Table: Sports League Scheduling

Branching: smallest minimum(var) smallest value(val)

SP = staged propagation

VB = van Beek’s BND-GCC implementation in ILOG

ILOG = ILOG Solver 5.0 IlcCard-constraint

VB∗ = VB uses “value removal” ≈ SP

[03.03.2005 10:37] Propagation Algorithms 17 / 32

Summary

Results

1 Efficient implementation of global propagation algorithms for:

Sortedness⇒ BND[O(t + n)]
no guaranteed bounds consistency for Sortedness-implementation with
permutation variables. ⇒ implementation of PermSort.
PermSort⇒ BND[O(n2)]
Global Cardinality

⇒ BND[O(t + n · log(n))]
⇒ DOM[O(n · log(n) + n · d)]

2 evaluation of Global Cardinality against ILOG

use and evaluation of novel propagator scheduling techniques
⇒ Staged Propagation

[03.03.2005 10:37] Propagation Algorithms 18 / 32

Summary

Results

1 Efficient implementation of global propagation algorithms for:

Sortedness⇒ BND[O(t + n)]
no guaranteed bounds consistency for Sortedness-implementation with
permutation variables. ⇒ implementation of PermSort.
PermSort⇒ BND[O(n2)]
Global Cardinality

⇒ BND[O(t + n · log(n))]
⇒ DOM[O(n · log(n) + n · d)]

2 evaluation of Global Cardinality against ILOG

use and evaluation of novel propagator scheduling techniques
⇒ Staged Propagation
current benchmarks: Gecode factor 2 faster than ILOG

[03.03.2005 10:37] Propagation Algorithms 18 / 32

Summary

Hot Spots

Time spent on:
1 getting in touch with the Gecode-system

variables
events
propagators

2 reading the references

3 understand and adapt algorithms to the Gecode-system

4 implement datastructures fitting for the algorithms

5 getting in touch with the ILOG-system

6 CSP-models for evaluation against ILOG

[03.03.2005 10:37] Propagation Algorithms 19 / 32

Summary

Outlook

What can be done?

add permutation variables with guaranteed bounds consistency to the
implementation of the Sortedness constraint

use cardinality variables instead of fixed integers for the upper and
lower bounds in the Global Cardinality constraint

[03.03.2005 10:37] Propagation Algorithms 20 / 32

Summary

References I

[apt98] The Essence of Constraint Propagation, volume
cs.AI/9811024, 1998.

[Apt99] The Rough Guide to Constraint Propagation.
Springer-Verlag, 1999.

[Apt03] K. Apt.
Principles of Constraint Programming.
2003.

[BGC00] Noëlle Bleuzen-Guernalec and Alain Colmerauer.
Optimal Narrowing of a Block of Sortings in Optimal Time.
Constraints: An International Journal, 5(1/2):85–118m,
January 2000.

[03.03.2005 10:37] Propagation Algorithms 21 / 32

Summary

References II

[HK73] John E. Hopcroft and Richard M. Karp.
An n5/2 algorithm for maximum matchings in bipartite
graphs.
SIAM: Journal of Computing, 2(4):225–231, December
1973.

[HMPR99] Pascal Van Hentenryck, Laurent Michel, Laurent Perron,
and Jean-Charles Régin.
Constraint programming in opl.
In Gopalan Nadathur, editor, Proceedings of the
International Conference on Principles and Practice of
Declarative Programming (PPDP’99), volume 1702 of
Lecture Notes in Computer Science, pages 98–116,
September 29 - October 1 1999.

[03.03.2005 10:37] Propagation Algorithms 22 / 32

Summary

References III

[imp04] Improved Algorithms for the Global Cardinality Constraint,
volume 3528, Toronto, Canada, September 2004.

[I.S04] I.S.Laboratory.
SICStus Prolog user’s manual, 3.11.1 Technical Report.
Swedish Institute of Computer Science, 2004.
Download PDF-File.

[lop03] A Fast and Simple Algorithm for Bounds Consistency of the
Alldifferent Constraint, Acapulco, Mexico, August 2003.

[03.03.2005 10:37] Propagation Algorithms 23 / 32

http://www.sics.se/sicstus/docs/3.11.1/pdf/sicstus.pdf

Summary

References IV

[LOQTvB03] Alejandro López-Ortiz, Claude-Guy Quimper, John Tromp,
and Peter van Beek.
A Fast and Simple Algorithm for Bounds Consistency of the
Alldifferent Constraint, Technical Report.
Acapulco, Mexico, 2003.
Download PS-File.

[Meh84] Kurt Mehlhorn.
Data Structures and Algorithms, volume 2 Graph Algorithms
and NP-Completeness of EATCS Monographs.
Springer Verlag, 1984.

[MTW97] K. McAloon, C. Tretkoff, and G. Wetzel.
Sport league scheduling, 1997.

[03.03.2005 10:37] Propagation Algorithms 24 / 32

http://ai.uwaterloo.ca/~vanbeek/publications/ijcai03_TR.ps.gz

Summary

References V

[OSvE95] W. J. Older, G. M. Swinkels, and M. H. van Emden.
Getting to the real problem: Experience with bnr prolog in
or.
In Proc.of the Third International Conference on the
Practical Application of Prolog, pages 465–478, Paris, 1995.

[qui03] An Efficient Bounds Consistency Algorithm for the Global
Cardinality Constraint, volume 2833, Kinsale, Ireland,
September 2003.

[QvBLO+03] Claude-Guy Quimper, Peter van Beek, Alejandro
López-Ortiz, Alexander Golynski, and Sayyed Bashir Sadjad.
An Efficient Bounds Consistency Algorithm for the Global
Cardinality Constraint, Technical Report.
2003.
Download PS-File.

[03.03.2005 10:37] Propagation Algorithms 25 / 32

http://ai.uwaterloo.ca/~vanbeek/publications/gcc_TR.ps.gz

Summary

References VI

[Ŕ] Jean-Charles Régin.
Minimization of the number of breaks in sports scheduling
problems using constraint programming.

[R9́6] J-C. Régin.
Generalized arc consistency for global cardinality constraint.
In Proceedings of the 13th National Conference on AI
(AAAI/IAAI’96), volume 1, pages 209–215, Portland,
August 1996.

[Reg94] A filtering algorithm for constraints of difference in CSPs,
volume 1, Seattle, July 31 - August 4 1994.

[S.A00] ILOG S.A.
ILOG Solver 5.0:Reference Manual.
2000.

[03.03.2005 10:37] Propagation Algorithms 26 / 32

Summary

References VII

[SS04a] Christian Schulte and Gert Smolka.
Finite Domain Constraint Programming in Oz. A Tutorial,
1.3.0 edition.
2004.
Download PDF-File.

[SS04b] Christian Schulte and Peter J. Stuckey.
Speeding up constraint propagation.
In Mark Wallace, editor, Tenth International Conference on
Principles and Practice of Constraint Programming, volume
3258 of Lecture Notes in Computer Science, pages 619–633,
Toronto, Canada, September 2004. Springer-Verlag.

[03.03.2005 10:37] Propagation Algorithms 27 / 32

http://www.mozart-oz.org/download/mozart-ftp/store/1.3.0-2004-04-15-print/ tutorial/FiniteDomainProgramming.pdf.gz

Summary

References VIII

[Thi04] Sven Thiel.
Efficient Algorithms for Constraint Propagation and for
Processing Tree Descriptions, PhD Thesis.
Universität des Saarlandes, Saarbrücken, Germany, 2004.
Download: PDF-File.

[WNS97] Mark Wallace, Stefano Novello, and Joachim Schimpf.
Eclipse: A platform for constraint logic programming.
Technical report.
IC-Parc, Imperial College, London, UK, 1997.
Online-Version.

[03.03.2005 10:37] Propagation Algorithms 28 / 32

http://www.mpi-sb.mpg.de/~sthiel/thesis.pdf
http://www.icparc.ic.ac.uk/eclipse/reports/eclipse/eclipse.html

Summary

References IX

[Zho73] Jianyang Zhou.
A permutation-based-approach for solving the job-shop
problem.
Constraints: An International Journal, 2(2):185–213,
October 1973.

[03.03.2005 10:37] Propagation Algorithms 29 / 32

Summary

Bounds Consistent Algorithm for PermSort

Paper

A Permutation-Based Approach for Solving the Job-Shop Problem,
Jianyang Zhou, Constraints an International Journal 1997 [Zho73]

Algorithm

4 steps: (n = |X | = |Y | = |P|, t = sorting time)

Check whether the Y variables are sorted [O(n)]

The permutation variables are distinct and range from 1 to n
[O(n + O(distinct(P)))]

Guarantee that ∀i ∈ {1, . . . , n}∃pi ∈ P : yi = xpi [O(n2)]

Metaconstraint stating, that yi ranks i-th in the ascending sorting of
xi [O(t + n2) = O(n2)]

⇒ complexity O(n2) PermSort

[03.03.2005 10:37] Propagation Algorithms 30 / 32

Summary

Bounds Consistent Algorithm for Sortedness

Paper

Efficient Algorithms for Constraint Propagation and for Processing Tree
Descriptions, PhD Sven Thiel, 2004 [Thi04]

Algorithm

5 steps: (n = |X | = |Y |, t =sorting time)

Sort the domains of the X variables according to lower and upper
interval endpoints [O(t)]

Normalize the domains of the Y variables [O(n)]

Compute matchings φ, φ′ in the bipartite convex intersection graph
with partitions X and Y [O(n)]

Compute the SCC’s in the oriented intersection graph [O(n)]

Narrow the domains of the variables [O(n)]

⇒ complexity O(n + t) Sortedness

[03.03.2005 10:37] Propagation Algorithms 31 / 32

Summary

Domain vs. Bounds Consistency

Consistency Levels

Consider propagation for:

2 · x = y

x ∈ [1 . . . 10] y ∈ [1 . . . 7]

1 Domain consistency:

domain propagation narrows the domains as much as possible:

x ∈ [1 . . . 3] y ∈ {2, 4, 6}
2 Bounds consistency:

interval propagation only narrows the bounds (min,max)
⇒ faster pruning

x ∈ [1 . . . 3] y ∈ [2 . . . 6]

running example

[03.03.2005 10:37] Propagation Algorithms 32 / 32

	Constraint Programming
	CP - A short introduction
	Constraint Propagation

	Algorithms
	FoPra
	Sortedness
	PermSort
	Global Cardinality
	Bounds-consistent GCC
	Theoretical background
	Domain-consistent GCC
	Advantages of Gecode

	Evaluation
	Example
	Comparison

	Summary
	References

