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Constraint Programming CP - A short introduction

Constraint Programming in a nutshell

Constraint Programming (CP)

1 has emerged from artificial intelligence
2 basic idea: combine

existing search-methods (backtracking, branch-and-bound, dfs, . . . )
constraint propagation techniques

3 CP is applied in widespread areas:

natural language processing
artificial intelligence
operations research
genome sequencing
combinatorial optimization
computer algebra
electrical engineering
. . .

⇒ CP is a method for modeling and solving many types of problems
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Constraint Programming CP - A short introduction

CP in a nutshell ctd.

Definition (Constraint Satisfaction Problem)

CSP P = (X , D , C ) with:
X = {x1, . . . , xn} set of variables
D = {D1, . . . ,Dn} respective domains of the variables
C = {c1, . . . , cm} constraints on subsequences of variables

ci ⊆ D1 × · · · × Dk

Constraint Programming

1 alternative approach to programming

2 programming = generation of requirements (constraints)

3 about formulating (modeling) and solving of CSPs

4 important aspect for solving of CSPs: constraint propagation
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Constraint Programming Constraint Propagation

What is Constraint Propagation?

Constraint Propagation

process of reducing a given CSP to an equivalent but simpler CSP

reducing search space of CSP while maintaining equivalence

pruning the domains of the variables in a given CSP

propagators implement constraints on CSP

essential component of a computation space

Computation Space

propagator

constraint store
x1 ∈ [1..4] ∧ x2 ∈ [1..4]

propagator. . .
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Constraint Programming Constraint Propagation

What is Constraint Propagation? - ctd.

Constraint Propagation

inference component Prop

implement the constraints cj ∈ C of a given CSP

narrow a variable domain Di ∈ D until
1 failure

Prop(Di ) = ⊥
⇒ CSP inconsistent (no solution possible)

2 entailment

∀Dj : Dj ⊆ Di : Prop(Dj) = Dj

⇒ constraint already fulfilled by variable domains
3 success

Prop(Di ) = Prop(Prop(Di ))
⇒ CSP consistent (propagation reaches a fixpoint)

variables xi only common communication channel between
propagators
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Algorithms FoPra

FoPra task

Goals

1 implementation of advanced propagation algorithms for global
constraints:

Sortedness
PermSort
Global Cardinality

2 use and evaluation of staged propagation as novel scheduling
technique for propagators

3 comparsion to other implementations of the same constraints
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Algorithms FoPra

FoPra task

Framework

generic

constraint

development

environment

[Gecode, a C++ library for constraint programming.]
More information soon available on: http://www.gecode.org

Developers

Dr. Christian Schulte (KTH, Stockholm, Sweden)

Guido Tack (PS Lab, Saabrücken, Germany)
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Algorithms Sortedness

Sortedness-constraint

Definition (Sortedness)

Sortedness(x1, . . . , xn ; y1, . . . , yn )

1 input: 2 sequences of n variables xi and yi

2 output: Is 2nd sequence obtained by sorting 1st in non-decreasing
order?

Example (Sortedness)

Sortedness

Sortedness(1, 3, 1; 1, 1, 3) holds X
Sortedness(5, 2, 3; 3, 2, 5) violated  

details
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Algorithms PermSort

PermSort-constraint

Definition (PermSort)

PermSort(x1, . . . , xn ; y1, . . . , yn ; p1, . . . , pn )

1 input: 3 sequences of n variables xi , yi and pi

2 output: Is 2nd sequence obtained by sorting 1st in non-decreasing
order AND is 3rd sequence a permutation of (1, . . . , n), s.t.:

∀i ∈ {1, . . . , n} : xi = ypi

3 equals Sortedness with additional permutation variables

Example (PermSort)

PermSort

PermSort(1, 3, 1; 1, 1, 3; 1, 3, 2) holds X
PermSort(5, 2, 3; 2, 3, 5; 1, 2, 3) violated  

details
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Algorithms Global Cardinality

Global Cardinality -constraint

Definition (Global Cardinality )

GCC (x1, . . . , xn ; l1, . . . , ld ; u1, . . . , ud)

1 input: a sequence of n variables xi , defined on a set of values
D = {v1, . . . , vd} and for each value vi a pair [li , ui ]

2 output: Is it possible to narrow the domains of the variables xi , s.t.:
∀i ∈ {1, . . . , d = |D|} ∀vi ∈ D : li ≤ #vi ≤ ui ?

3 generalization of the Alldifferent constraint:

Alldifferent(x1, . . . , xn)= GCC (x1, . . . , xn, ; l1, . . . , ld ; u1, . . . , ud)
where ∀i ∈ {1, . . . , d} : li = 0 ∧ ui = 1

Example (Global Cardinality )

Global Cardinality

GCC (2, [1..2], [2..3], [2..3], [1..4], [3..4] ; 1, 1, 1, 2 ; 3, 3, 3, 3) holds [X]
GCC (2, [1..2], [2..3], [2..3], [1..4], [3..4] ; 1, 1, 1, 1 ; 1, 1, 1, 1) violated [ ]
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Algorithms Bounds-consistent GCC

Bounds Consistent Algorithm for Global Cardinality

Paper

An Efficient Bounds Consistency Algorithm for the Global Cardinality
Constraint, van Beek et. al. [qui03]

Algorithm

3 Steps: (n = |X |, t = sorting time)

1 sort X variables according to lower and upper bounds [O(t)]

2 UBC: value vi occurs at most ui times [O(n · log(n))]

3 LBC: value vi occurs at least li times [O(n · log(n))]

⇒ complexity O(t + n · log(n))

consistency levels
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Algorithms Theoretical background

The theory behind [Philip Hall b1904 - d1982]

Theorem (Hall’s Theorem on bipartite perfect matching)

For any node set S and its set of neighbors N(S):

|S | ≤ |N(S)|

⇒ any set S has at least as many neighbors as elements
(if not ⇒ there is no perfect matching)
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Algorithms Theoretical background

The theory behind [Philip Hall b1904 - d1982]

Definition (Hall interval / Hall set)

S ⊆ D : C (S) = # variables vi : Di ⊆ S

S ⊆ D : I (S) = # variables vi : Di ∩ S 6= ∅
dSe =

∑
v∈S uv , bSc =

∑
v∈S lv

Hall interval = H ⊆ D : |H| = C (H)

Hall set = H ⊆ D : dHe = C (H)

Extension to GCC

extend Hall interval to Hall sets

Hall proved: Alldifferent satisfiable ⇔ ∀S : C (S) ≤ |S |
UBC({1, 2, 3, 4},(3, 3, 3, 3)) ⇔
AllDifferent(1a, 1b, 1c , 2a, 2b, 2c , 3a, 3b, 3c , 4a, 4b, 4c)

UBC satisfiable ⇔ ∀S : C (S) ≤ dSe

[03.03.2005 10:37] Propagation Algorithms 11 / 32



Algorithms Theoretical background

The theory behind [Philip Hall b1904 - d1982]

Definition (Hall interval / Hall set)

S ⊆ D : C (S) = # variables vi : Di ⊆ S

S ⊆ D : I (S) = # variables vi : Di ∩ S 6= ∅
dSe =

∑
v∈S uv , bSc =

∑
v∈S lv

Hall interval = H ⊆ D : |H| = C (H)

Hall set = H ⊆ D : dHe = C (H)

Extension to GCC

Failure set F ⊆ D : I (F ) < bF c
Unstable set U ⊆ D : I (U) = bUc
Stable set S ⊆ D : C (S) > bSc ∧ ∀U ∀F : ∩U = ∅ ∧ S ∩ F = ∅
LBC satisfiable ⇔ ¬∃S ∈ D : S failure set
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Algorithms Theoretical background

The theory behind [Philip Hall b1904 - d1982]

Definition (Hall interval / Hall set)

S ⊆ D : C (S) = # variables vi : Di ⊆ S

S ⊆ D : I (S) = # variables vi : Di ∩ S 6= ∅
dSe =

∑
v∈S uv , bSc =

∑
v∈S lv

Hall interval = H ⊆ D : |H| = C (H)

Hall set = H ⊆ D : dHe = C (H)

Extension to GCC

Failure set determines whether an LBC is satisfiable

Unstable set indicates where domains have to be pruned

Stable set indicates which domains must not be pruned
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Algorithms Domain-consistent GCC

Domain Consistent Algorithm for Global Cardinality

Paper

Improved Algorithms for the Global Cardinality Constraint,
van Beek et. al. [imp04]

Algorithm

5 Steps: (n = |X |, D =
⋃

i∈{1,...,n} Di , d = |D|, m = # of edges);

build a bipartite variable-value graph G=(<X,D>,E) [O(n · d)]

compute a matching in G [O(log(n) + n · log(n) + n · d)]

UBC: matching (cardinality |Mu| = |X |)
LBC: matching (cardinality |Ml | =

∑
li )

compute the SCCs in [O(n + m)]

find even alternating paths starting from free nodes [O(n + m)]

updating the domains according to remaining edges [O(n · d)]

⇒ complexity O(n · log(n) + n · d) < O(n
3
2 · d)
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Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0

2

3

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

LBC Skip
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Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1

1 2

3 3

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

LBC Skip
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Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2

1 2 3

3 3 3

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

LBC Skip
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Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3

1 2 3

3 3 3

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

LBC Skip
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Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4

1 2 3 4

3 3 3 3

build the variable-value graph

each value node has a capacity denoting who often the value node
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Running example: UBC
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Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

3 2 3 3

compute a matching Mu for X on G

LBC Skip
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Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

2 2 3 3

compute a matching Mu for X on G
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Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

2 1 3 3

compute a matching Mu for X on G

LBC Skip
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Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

2 0 3 3

compute a matching Mu for X on G

LBC Skip
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Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

1 0 3 3

compute a matching Mu for X on G

LBC Skip
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Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

1 0 2 3

|Mu| = |X | ⇒ satisfies UBC X

no strongly connected components

LBC Skip
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Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 43 4

1 0 2 3

compute free alternating paths starting from 3 and 4

LBC Skip
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Algorithms Domain-consistent GCC

Running example: UBC
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Algorithms Domain-consistent GCC

Running example: UBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 43 4

1 0 2 3

compute free alternating paths starting from 3 and 4

LBC Skip
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0

2

1

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1

1 2

1 1

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2

1 2 3

1 1 1

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3

1 2 3

1 1 1

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4

1 2 3 4

1 1 1 2

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

1 1 1 2

build the variable-value graph

each value node has a capacity denoting who often the value node
can be matched

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

1 0 1 2

compute a matching Ml for D on G

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

0 0 1 2

compute a matching Ml for D on G

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

0 0 0 2

compute a matching Ml for D on G

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

0 0 0 1

compute a matching Ml for D on G

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

0 0 0 0

compute a matching Ml for D on G

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

0 0 0 0

|Ml | =
∑

li ⇒ satisfies LBC X

no strongly connected components

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

x3

0 0 0 0

compute free alternating paths starting from x3

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

x3

0 0 0 0

compute free alternating paths starting from x3
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = [1, 2] x2 = [2, 3] x3 = [2, 3] x4 = [1, 4] x5 = [3, 4]

x0 x1 x2 x3 x4 x5

1 2 3 4

x3

0 0 0 0

omit all edges not in Ml , Ml + paug or in SCCs

UBC
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Algorithms Domain-consistent GCC

Running example: LBC

x0 = 2 x1 = 1 x2 = [2, 3] x3 = [2, 3] x4 = 4 x5 = 4

x0 x1 x2 x3 x4 x5

1 2 3 4

x3

0 0 0 0

omit all edges not in Ml , Ml + paug or in SCCs

UBC
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Algorithms Advantages of Gecode

Staged Propagation

Paper

Speeding Up Constraint Propagation,
Christian Schulte and Peter J. Stuckey, CP 2004 [SS04b]

Gecode

assigns priorities to propagators, e.g. their respective running times
(linear < quadratic < cubic < . . . )

schedule propagators in priority queue

event = domain Di of xi is changed to D ′
i

fix(xi ) xi is fixed |D ′
i | = 1

lbc(xi ) lower domain bound is changed infD′
i
> infDi

ubc(xi ) upper domain bound is changed supD′
i
< supDi

dmc(xi ) domain of xi is narrowed D ′
i ⊂ Di
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Algorithms Advantages of Gecode

Staged Propagation

Staged Propagation

novel propagator scheduling technique

multiple propagators for single constraint, e.g.
1 Gb :=bounds consistent GCC: O(n · log(n))
2 Gd :=domain consistent GCC: O(n · log(n) + n · d)

combine them into single propagator with internal state (stage)

stage determines propagation:
1 smallest running time first
2 event-dependent propagation

B︷ ︸︸ ︷
lbc ∨ ubc ∨ fix ⇒ Gb

dmc ∧ ¬(B) ⇒ Gd
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Evaluation Example

Sports League Scheduling

Feasible Schedule for N = 8

Col1 Col2 Col3 Col4 Col5 Col6 Col7
Period1 0 1 0 2 1 2 5 7 3 6 3 7 4 5

Period2 4 6 1 5 0 3 0 4 1 7 2 5 2 6

Period3 2 7 3 4 4 7 1 6 0 5 0 6 1 3

Period4 3 5 6 7 5 6 2 3 2 4 1 4 0 7

search space = O((N
2 · (N − 1))!) for (i , j) with 0 < i < j < N

∀i ∈ {1, . . . ,N − 1} : Alldifferent (Coli )

∀i ∈ {1, . . . , N
2 } : GCC(Periodi ; 0 . . . 0; 2 . . . 2)

∀(i , j) ∈ Schedule :
Alldifferent (i , j) ⇔ N · i + j = Unique matchup number
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Evaluation Comparison

Evaluation and running times

N = 8 (running times in ms)

SOL=1 SP VAL BND DOM VB ILOG

+ 290 90∗ no SP

- 40 60 110 100 90

Table: Sports League Scheduling

Branching: smallest minimum(var) smallest value(val)

SP = staged propagation

VB = van Beek’s BND-GCC implementation in ILOG

ILOG = ILOG Solver 5.0 IlcCard-constraint

VB∗ = VB uses “value removal” ≈ SP
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Evaluation Comparison

Evaluation and running times

N = 8 (running times in ms)

SOL=100 SP VAL BND DOM VB ILOG

+ 5280 2730∗ no SP

- 1000 1210 12780 3230 2610

Table: Sports League Scheduling

Branching: smallest minimum(var) smallest value(val)

SP = staged propagation

VB = van Beek’s BND-GCC implementation in ILOG

ILOG = ILOG Solver 5.0 IlcCard-constraint

VB∗ = VB uses “value removal” ≈ SP
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Evaluation Comparison

Evaluation and running times

N = 10 (running times in ms)

SOL=1 SP VAL BND DOM VB ILOG

+ 2620 25130∗ no SP

- 9290 11060 47280 31860 63640

Table: Sports League Scheduling

Branching: smallest minimum(var) smallest value(val)

SP = staged propagation

VB = van Beek’s BND-GCC implementation in ILOG

ILOG = ILOG Solver 5.0 IlcCard-constraint

VB∗ = VB uses “value removal” ≈ SP
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Summary

Results

1 Efficient implementation of global propagation algorithms for:

Sortedness⇒ BND[O(t + n)]
no guaranteed bounds consistency for Sortedness-implementation with
permutation variables. ⇒ implementation of PermSort.
PermSort⇒ BND[O(n2)]
Global Cardinality

⇒ BND[O(t + n · log(n))]
⇒ DOM[O(n · log(n) + n · d)]

2 evaluation of Global Cardinality against ILOG

use and evaluation of novel propagator scheduling techniques
⇒ Staged Propagation

[03.03.2005 10:37] Propagation Algorithms 18 / 32



Summary

Results

1 Efficient implementation of global propagation algorithms for:

Sortedness⇒ BND[O(t + n)]
no guaranteed bounds consistency for Sortedness-implementation with
permutation variables. ⇒ implementation of PermSort.
PermSort⇒ BND[O(n2)]
Global Cardinality

⇒ BND[O(t + n · log(n))]
⇒ DOM[O(n · log(n) + n · d)]

2 evaluation of Global Cardinality against ILOG

use and evaluation of novel propagator scheduling techniques
⇒ Staged Propagation
current benchmarks: Gecode factor 2 faster than ILOG
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Summary

Hot Spots

Time spent on:
1 getting in touch with the Gecode-system

variables
events
propagators

2 reading the references

3 understand and adapt algorithms to the Gecode-system

4 implement datastructures fitting for the algorithms

5 getting in touch with the ILOG-system

6 CSP-models for evaluation against ILOG
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Summary

Outlook

What can be done?

add permutation variables with guaranteed bounds consistency to the
implementation of the Sortedness constraint

use cardinality variables instead of fixed integers for the upper and
lower bounds in the Global Cardinality constraint
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Bounds Consistent Algorithm for PermSort

Paper

A Permutation-Based Approach for Solving the Job-Shop Problem,
Jianyang Zhou, Constraints an International Journal 1997 [Zho73]

Algorithm

4 steps: (n = |X | = |Y | = |P|, t = sorting time)

Check whether the Y variables are sorted [O(n)]

The permutation variables are distinct and range from 1 to n
[O(n + O(distinct(P)))]

Guarantee that ∀i ∈ {1, . . . , n}∃pi ∈ P : yi = xpi [O(n2)]

Metaconstraint stating, that yi ranks i-th in the ascending sorting of
xi [O(t + n2) = O(n2)]

⇒ complexity O(n2) PermSort
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Bounds Consistent Algorithm for Sortedness

Paper

Efficient Algorithms for Constraint Propagation and for Processing Tree
Descriptions, PhD Sven Thiel, 2004 [Thi04]

Algorithm

5 steps: ( n = |X | = |Y |, t =sorting time )

Sort the domains of the X variables according to lower and upper
interval endpoints [O(t)]

Normalize the domains of the Y variables [O(n)]

Compute matchings φ, φ′ in the bipartite convex intersection graph
with partitions X and Y [O(n)]

Compute the SCC’s in the oriented intersection graph [O(n)]

Narrow the domains of the variables [O(n)]

⇒ complexity O(n + t) Sortedness
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Domain vs. Bounds Consistency

Consistency Levels

Consider propagation for:

2 · x = y

x ∈ [1 . . . 10] y ∈ [1 . . . 7]

1 Domain consistency:

domain propagation narrows the domains as much as possible:

x ∈ [1 . . . 3] y ∈ {2, 4, 6}
2 Bounds consistency:

interval propagation only narrows the bounds (min,max)
⇒ faster pruning

x ∈ [1 . . . 3] y ∈ [2 . . . 6]

running example
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