
Implementation and Evaluation of Advanced Propagation
Algorithms for Global Constraints

(Fortgeschrittenenpraktikum)
FoPra thesis

Patrick Pekczynski
Supervisor: Guido Tack

Responsible Professor: Prof. Gert Smolka

Programming Systems Lab
Department 6.2 - Computer Science

Faculty 6 - Natural Sciences and Technology I
Saarland University, 66041 Saarbrücken, Germany,

pekczynski@ps.uni-sb.de,

A   ,     
  ,     
      .

— H [40]

Abstract. In this paper we present the implementation and evaluation of advanced
propagation algorithms for global constraints. We discuss an O (t + n) bounds con-
sistent algorithm for the sortedness constraint [39] as well as an O (n · log (n))
bounds consistent [24], an O

(
n · d ·min

(√
n + d, n

2

))
domain consistent algorithm

[25] for the global cardinality constraint as well as extensions of these con-
straints, where n is the number of variables, t is the sorting time for the variables
and d is the cardinality of the largest variable domain. Furthermore, we show that
the advantage of these propagation algorithms is not only theoretically but also prac-
tically by using Gecode [38], a generic constraint development environment, a C++
library for constraint programming as implementation and evaluation platform.

1 Introduction

Constraint programming is a powerful state-of-the-art approach to solve hard combina-
torial problems. Imposing a more high-level view on these problems, global constraints
yield a stronger pruning and increase the efficiency of constraint programming in or-
der to solve them. This paper presents the implementation and evaluation of advanced
propagation algorithms for global constraints in Gecode [38] , a generic constraint devel-
opment environment, a C++ library for constraint programming. The paper is organized
as follows: section 2 introduces the basic notation and the definitions for constraint pro-
gramming as well as the essential components of constraint propagation and constraint
distribution, whereas the emphasis lies on introducing propagators as the computational
analog of constraints and constraint propagation as global mechanism behind the execu-
tion of propagators. Subsequently, section 3 studies advanced propagation algorithms for
global constraints. It focuses on a bounds consistent algorithm for the sortedness con-
straint [39] and its bounds consistent extension to permutation variables. Furthermore,
section 3 discusses a bounds consistent [24] and a domain consistent [25] propagation
algorithm for the global cardinality constraint as well as its extension to cardinality
variables. Section 4 provides an outline of how the Gecode architecture improves con-
straint propagation with elaborate mechanisms and takes care of the communication be-
tween propagators and problem variables. The last section 5 presents an empirical evalua-
tion of the implementation of the discussed propagation algorithms by providing practical

2

models of constraint satisfaction problems demonstrating not only the theoretical but also
the practical gain of the sortedness and global cardinality propagators. The re-
maining sections contain a summarization, the contributions of this thesis and prospects
on future work.

2 The Framework of Constraint Programming

In this section we introduce constraint programming (CP) as the underlying framework
for this paper and explain the basic terminology we use. Apart from this basic introduction
to CP , we further recapitulate elementary definitions of graph theory used in the propa-
gation algorithms that we focus on in this paper. The following definitions concerning CP
-terminology are taken from lecture notes on Constraint Programming 05 [18] and from
[34].

2.1 The Basics

First of all we restrict the term of constraint programming to finite domain constraint
programming because the propagation algorithms we discuss in the remaining sections
reason about variables ranging over finite domains.

Definition 1 (Finite-domain variable (FDVar)). Taken from a set X of typed variables a
finite-domain variable x with type τ (x : τ) is associated with a finite domain D (a finite set
of values) of type τ,e.g. τ = N, τ = Z. Hence, x ranges over the values in D, written x : D,
which is a shorthand notation for dom(x) = D or x ∈ D. In this context, x : {0, 1, 2, 3}
denotes that x is an FDVar of type τ = N and it can take any value v ∈ {0, 1, 2, 3}.

In order to describe which values an FDVar can take, there is the notion of a valuation and
a variable assignment.

Definition 2 (Valuation and Assignment). Let X be a finite set of FDVars. A valuation
for Xis a mapping v : X 7→ τ, s.t. ∀x ∈ X : τ = dom(x) ∧ v(x) ∈ τ. An assignment for Xis
a valuation α : X 7→ τ, s.t. ∀x ∈ X : α(x) ∈ dom(x) = τ, where α(x) denotes the value
assigned to x. The set of all valuations is called val(X) and the set of all assignments is
referred to as ass(X).

The central notion in CP is the notion of a constraint. For the remainder of this paper a
constraint is defined as follows:

Definition 3 (Constraint). Given a finite set of FDVars X, a constraint for X is a set
C ⊆ val(X) of valuations for X.

As a constraint C does not necessarily constrain all the variables in X , there is also the
notion of the scope of a constraint:

Definition 4 (Scope of a constraint). Let X be a finite set of FDVars and S ⊆ X . If a
constraint C has the scope S ,

C := {v ∈ val(X)| if (x : τ) ∈ S then v(x) ∈ (τ′ ⊆ τ) else v(x) ∈ τ}

Hence, a variable x ∈ S can only be mapped to a value v(x) ∈ val(X) ⊇ C, where v(x)
is restricted by τ′ ⊆ τ defined in C, whereas all x < S can be mapped to any value v(x)
respecting the type τ of the variable.

3

2.2 Phases of constraint programming

Solving a problem with CP consists of two essential phases, the modeling phase and the
solution phase. During the first phase the focused problem is encoded into a special con-
straint formulation, a constraint satisfaction problem.

Definition 5 (Constraint Satisfaction Problem (CSP)). A constraint satisfaction prob-
lem (CSP) is a tuple 〈X ;C〉, where X denotes a finite set of FDVars xi, the problem vari-
ables of the CSP, with associated domains Di, written xi : Di, and C denotes a set of
constraints on X.

Provided a CSP encoding of a problem, the second phase of CP tries to find a solution to
the CSP.

Definition 6 (Solution to a CSP). Given a CSP P := 〈X ;C〉 and a constraint C ∈ C,
a valuation α satisfies C if α ∈ C and α is a solution to P if α ∈

⋂
C∈C. The set of all

assignments for X satisfying C is called sat(C) and the set of all solutions to a given
problem P is denoted as sol(P).

As solving a CSP is N P -hard in general [4], the second phase of CP is characterized
by the hybrid design of the two basic components constraint propagation and constraint
distribution [33], where constraint distribution is again divided into the components of
branching and search. In order to decide, whether a CSP P = 〈X ;C〉 has a solution, a
naive generate-&-test-method [4] consists in generating all valuations v ∈ val(X) and
testing for every possible valuation v, whether v ∈ sol(P) holds or not. Obviously, this
algorithm succeeds in deciding whether there is a solution in P or not, but generating
val(X) easily leads to a combinatorial explosion, for example if P is the CSP-encoding
of an NP -complete scheduling problem. Even if P has no solution (sol(P) = ∅), this
approach has to test all possible variable assignments in the search space of P. In order to
avoid unnecessary testing for valuations v < val(X) this naive generate-&-test-method is
extended by the inference technique of constraint propagation.

2.3 Constraint Propagation

The major contribution of constraint propagation to the generate-&-test-method is the
pruning of a CSP’s search space. Hence constraint propagation reduces the set of all pos-
sible valuations in size. This is realized by domain reduction which is defined as follows:

Definition 7 (Domain reduction (p.3 [18])). Given two CSPs P := 〈X ;C〉 and P′ :=
〈X ;C〉 only differing in the associated variable domains (dom(x) of P differs from the
mapping dom′(x) of P′) P is called a reduction of P′ (P ≺ P′) if these criteria hold:

∀x ∈ X : dom(x) ⊆ dom′(x)

∃x ∈ X : dom(x) ⊂ dom′(x)

Using the concept of domain reduction, constraint propagation tries to narrow the cardi-
nality of the variable domain as much as possible.

Definition 8 (Variable determination). Given an FDVar x : D ∈ X , we say that x is
determined or x is assigned, if its associated domain D = dom(x) contains only one
value, that is D = {d}.

Due to these definitions of domain reduction and variable determination a CSP 〈{x1 :
{d1}, . . . , xn : {dn}};C〉 corresponds to a variable assignment α = {x1 7→ d1, . . . , xn 7→ dn}.
Using the above definitions, the following inference rule gives a trace how constraint

4

propagation can reduce the number of valuations the generate-&-test method has to take
care of:

C
P

P := 〈X ∪ {x : D};C ∪ {C}〉
d ∈ D sat(C) ∩ {α ∈ ass(X ∪ {x : D})|α(x) = d} = ∅

P′ := 〈X ∪ {x : D′ := (D − {d})};C ∪ {C}〉

The propagation mechanism checks whether a domain D of an FDVar x contains values
d that cannot take part in a solution of the CSP and removes them from the domain.
Thus it reduces D = dom(x) and hence P to P′ by pruning inconsistent valuations from
val(X)∪{x : D}). Furthermore, the size of the search space decreases and so does the time
needed to test whether the remaining valuations are solutions to the problem. During this
inference constraint propagation makes use of the information specified in the constraint
C ∈ C to decide, whether a value has to be removed or not.

2.3.1 Propagators

As we have seen the inference mechanism of constraint propagation is able to exclude
valuations from being tested for feasibility and hence avoids an unnecessary search for
solutions in inconsistent valuations for the set of problem variables. The importance of
constraint propagation in CP is further underlined by the fact that state-of-the-art con-
straint solvers implement constraint propagation as a essential technique to solve CSPs ef-
ficiently. As the above inference rule is instantiated differently for every constraint C ∈ C,
there has to be a corresponding propagation rule for every constraint of the CSP. The im-
plementation of this inference rules is realized by the concept of propagators. In order
to explain this concept, which is essential for the algorithms presented in the following
sections, we have to provide some more definitions concerning the architecture that was
used for their implementation.

Definition 9 (Constraint Store ([31, 33])). A constraint store s ∈ S is a conjunction of
logical formulas representing information about values of FDVars. These logical formu-
las have the form xi ∈ Di and are called basic constraints. A store s incorporating these
basic constraints can be seen as a mapping s from FDVars to their current domains cor-
responding to the current variable domain dom [19]. A constraint store s implements the
set of FDVars X = {x1 : D1, . . . , xn : Dn}, and we write

s
de f .
:= {xi ∈ Di, . . . , xn ∈ Dn}

≡ {xi : Di, . . . , xn : Dn}

≡ {xi ∈ Di ∧ . . . ∧ xn ∈ Dn}

Given two stores s1, s2 ∈ S we say that s1 is stronger than s2 if s1 ≤ s2 ⇔ ∀x ∈ X :
s1(x) ⊆ s2(x). Further, we call s1 strictly stronger than s2 if s1 < s2 ⇔ ∀x ∈ X : s1(x) ⊂
s2(x).

From this definition of a constraint store, a propagator can be defined as follows:

Definition 10 (Propagator). A propagator p : S 7→ S is a monotonically decreasing
mapping [34] from stores to stores, that is:

∀s ∈ S : p(s) ≤ s

∀s1, s2 ∈ S : s1 ≤ s2 ⇒ p(s1) ≤ p(s2)

Furthermore, a propagator p has additional properties. Let P = 〈X ; {C}〉 be a CSP and
let s ∈ S be the store representing X.

5

1. A propagator p implementing C is called correct for C if

val(s) ∩C = val(p(s)) ∩C

that is, propagation of p maintains solutions.
2. Given α ∈ val(P), p is checking with respect to α, that is, p can decide whether

α ∈ sol(P) = sat(C) or not and hence whether α satisfies a constraint C or not.

The combination of a constraint store s ∈ S and the set of all propagators pi ∈ S 7→ S
defined on s form the computation space, an essential component of the Gecode architec-
ture. Hence the computation space represents the implementation of a CSP P := 〈X ;C〉
where the store s implements the set of FDVars and the propagators pi implement the
constraints C ∈ C defined on X .

2.3.2 Propagation Status

In the context of these definitions, a propagator p is the implementation of the inference
rule seen above, instantiated with a specific constraint C ∈ C. Hence p is the counterpart
of C on the implementation level of a constraint solver. As a such, p only modifies a
constraint store s with respect to the FDVars in PS := {x : D ∈ s|x ∈ S }, where PS can
be considered as the scope of a propagator. Thus, for every constraint C ∈ C specified
in a CSP P we have at least one or more propagators implementing C, where the set of
all these propagators performs the constraint propagation on the valuation set of X given
in the CSP P. Therefore a constraint solver has to keep track of this set of propagators
P specified by the constraint set C of the CSP-encoding and needs to apply every p ∈ P
at least once to the first constraint store given by the set of FDVars X in the CSP. After
propagation of p on the first store s := {x1 : D1 ∧ . . .∧ xn : Dn}, propagation yields one of
the following status:

[P1] Failure:
p(s) = ⊥ ⇔ ∃xi : Di ∈ p(s) : Di = ∅

There is no value v ∈ D, such that α = (x1 : d1, . . . , xi : v, . . . , xn : dn) ∈ sat(C)
holds.

[P2] Success and Fixpoint reached :
p(p(s)) = p(s)⇔ p(s′) = s′ ⇔ ∀xi : Di ∈ s′ :

(
¬∃D′i ⊂ Di : xi : D′i ∈ p(s′)

)
s′ has been reached by propagation of p on s, but applying p once more does not
narrow the domains any further. If a propagator p has reached its fixpoint after prop-
agation, we say that p is idempotent and p(s) = s′ is a fixpoint of p.

[P3] Success, but no Fixpoint reached:
Propagation of p has not reached its fixpoint and p has to be executed again to find
out whether after repeated iteration it achieves its fixpoint or detects an inconsistency.

[P4] Subsumption (entailment):
Let s ∈ S . If ∀t ∈ S : t ≤ s ∧ p(t) = t holds, p is subsumed in s.
After propagation p cannot contribute new information on any store that is achieved
by further narrowing of the variable domains. Hence p does not need to be respected
for stronger spaces and can be removed from P of scheduled propagators.

As we have seen, the inference mechanism of constraint propagation is a major reason for
the efficiency in the second phase for constraint programming. This increase in efficiency
is not only due to detection of inconsistencies [P1] but also due to a monotonic reduc-
tion of the search space [P2] − [P4] because the deduction mechanism removes possible
valuations by discarding domain values that cannot be part of a solution to the CSP. Nev-
ertheless it is possible that constraint propagation does not suffice to find a solution to the
problem, especially if the propagators have already achieved status [P2] although at least

6

one problem variable has not been determined so far. Since the general CSP is known to
be NP -complete [10] and constraint propagation is incomplete [2] with respect to re-
ducing the variable domains further and finding all solutions to the problem we also need
a search architecture performing further domain reduction on the domains of the problem
variables. This is achieved by applying the following inference rule:

B
〈X ∪ {x : D};C〉 |D| > 1 D = D1] . . .] Dk

〈X ∪ {x : D1};C〉| . . . |〈X ∪ {x : Dk};C〉

The process of partitioning the variable domains as given in this rule and the search of
an index 1 ≤ i ≤ k to be processed further is called branching. This process reduces
the variable domains until constraint propagation is able to perform new inferences on a
reduced CSP P := 〈X ∪ {x : Di};C〉. Thus the combination of constraint propagation and
the branch and search process of constraint distribution infers whether a CSP is solvable
or not and ends the solution phase of CP .

2.3.3 Consistency Level
Apart from the propagation status a further characteristic of a propagator is its consistency
level. The consistency level of a propagator p implementing a constraint C denotes the
strength of the pruning performed on the variables in the scope S of C. In the subsequent
sections concerning the presented algorithms, their implementation and evaluation we
will focus on the following basic consistency notions of bounds consistency and domain
consistency. Analogously to the notion of ass(X) in definition 2 we define assX (bnd) :=
{α ∈ val(X)|∀x : D ∈ X : α(x) ∈ [min(dom(x))..max(dom(x))]}

Definition 11 (Bounds consistency). A propagator p is called bounds consistent if it
narrows the domains of the variables in its scope such that the following holds:

∀x ∈ X : ∀d ∈ {min(dom(x)),max(dom(x))} : ∃α ∈ assbnd(X) : α ∈ C ∧ α(x) = d

If a propagator p is bounds consistent according to the above definition p only performs
propagation such that the lower and upper bounds of the variable domains are consistent
with the constraint C. Thus bounds consistent propagators do not have to propagate on
the entire domain of the problem variables and hence their theoretical complexity is often
linear or quasilinear in the problem size O

(X)
.

Definition 12 (Domain consistency). In contrast to bounds consistency, a propagator p
is called domain consistent if it narrows the domains of the variables in its scope such
that:

∀x ∈ X : ∀d ∈ dom(x) : ∃α ∈ ass(X) : α ∈ C ∧ α(x) = d

In comparison to a bounds consistent propagator, a domain consistent propagator p has to
guarantee, that not only the bounds but all values in the domain of the variables are consis-
tent with C. Thus bounds consistent propagators often yield a faster pruning than domain
consistent propagators, but domain consistent propagators perform a stronger pruning
as they reason about the entire variable domain and not only about the domain bounds.
Apart from these two consistency levels the Gecode library also allows value consistent
propagators, where the notion of value consistency which is defined as follows:

Definition 13 (Value consistency). A propagator p is called value consistent if it nar-
rows the domains of the variables in its scope such that:

(∃x : D ∈ X : |D| = 1)⇒ ∀x ∈ X : ∀d ∈ dom(x) : ∃α ∈ ass(X) : α ∈ C ∧ α(x) = d

It is important that a value consistent propagator p can only perform propagation if there is
at least one variable in its scope is assigned. Otherwise it cannot perform any propagation
on the variable domains. Thus, value consistency is a naive form of checking, whether
α ∈ C still holds if α(x) = d for a variable x ∈ X in the scope of p.

7

2.3.4 Local versus Global Constraints

An essential approach to increase the efficiency of constraint solvers is the use of global
constraints. An important property of global constraints is their larger scope resulting in a
more general view on variables than other constraints have. The most prominent example
for a global constraint is the alldiff constraint with scope X := {x0 : D0, . . . , xn−1 :
Dn−1}, where

alldiff = {α ∈ val(X)|∀xi, x j, i , j ∈ (X) : α(xi) , α(x j)}

The naive way of imposing this constraint on the variables in X is the combination of
n·(n−1)

2 ∈ O
(
n2

)
binary noteq x,y constraints of the form

noteqx,y = {α ∈ val(X)|x, y ∈ X ∧ α(x) , α(y)}

Let X := {x, y, z}, s := {x : [1..2], y : [1..2], z : [1..2]} and consider the CSPs

C1 = 〈X , {noteqx,y, noteqy,z, noteqz,x}〉

C2 = (X , {alldiff })

with

val(X) = {{x 7→ 1, y 7→ 1, z 7→ 1}, {x 7→ 1, y 7→ 1, z 7→ 2},
{x 7→ 1, y 7→ 2, z 7→ 1}, {x 7→ 1, y 7→ 2, z 7→ 2},
{x 7→ 2, y 7→ 1, z 7→ 1}, {x 7→ 2, y 7→ 1, z 7→ 2},
{x 7→ 2, y 7→ 2, z 7→ 1}, {x 7→ 2, y 7→ 2, z 7→ 2}}

Given domain consistent propagators for alldiff and noteq x,y:

alldiff (s) = {. . . ,
xi : {v ∈ s(xi)|∀x j : s(x j) ∈ X , i , j : v < s(x j)},
, . . . ,
x j : {v ∈ s(x j)|∀xi : s(xi) ∈ X , j , i : v < s(xi)},

. . .}

noteqx,y(s) = {. . . ,
x : {v ∈ s(x)|v < s(y)},
y : {v ∈ s(y)|v < s(x)},

. . .}

constraint propagation of noteq x,y on s in C1is not able to narrow the domains of the
variables any further and the inconsistency of the CSP (there is no solution to the CSP) is
only detected through exploration of the whole search space val(X). In C2 however, prop-
agation of alldiff can exploit the global knowledge of the alldiff propagator, since
alldiff (s) = ⊥ and hence sol(C2) = ∅, which would immediately stop a constraint-
solver and not perform any search. Thus the example of alldiff emphasizes that a global
constraint is not only able to reduce the number of posted constraints (one alldiff con-
straint for n variables replaces O

(
n2

)
binary constraints) but also to impose a more high-

level view on the problem variables due to a larger scope. Hence, global constraints can
increase the efficiency of a constraint solver by decreasing the number of constraints and
increasing the strength of the propagation that is performed on the domains of the problem
variables.

8

3 Propagation Algorithms

The previous section 2.3.4 gave a trace, why global constraints are able to increase the
efficiency of CP -systems. In the course of this section we take a glance at advanced
propagation algorithms for such global constraints using the Gecode library. The global
constraints we look at in this context are the sortedness constraint and the global
cardinality constraint. Furthermore this section provides more detailed insight into the
propagation algorithms for these global constraints and explains the theory behind them.

3.1 Definitions and Conventions

The explanations in the subsequent section use the following graph theoretical definitions
and further notational conventions.

3.1.1 Graph definitions

For a better understanding of the theoretical framework underneath each of the following
constraints, this section recapitulates some basic definitions from graph theory. The most
important notions the propagation algorithms in this section make use of are a matching,
an alternating path and a strongly connected component.

Definition 14 (Matching). Given an undirected graph G := 〈V, E ⊆ V2〉 a vertex v ∈ V
is incident with an edge e ∈ E, denoted as inc(v, e), if there is a node x ∈ V such that
e = (x, v). x and v are the end-vertices of e. M ⊆ E is called a matching of G if

∀e, e′ ∈ M : ¬∃v ∈ V : inc(v, e) ∧ inc(v, e′)

A vertex v ∈ V is matched (in M) if ∃e ∈ M : inc(v, e) and we call an edge e ∈ E matched
(in M) or matching if e ∈ M. Edges e < M and vertices v ∈ V : ¬∃e ∈ M : inc(v, e) are
called free. Furthermore a matching M is called:

maximal⇔ ¬∃M′ ⊆ E : M ⊂ M′

maximum⇔ ∀M′ ⊆ E : |M| ≥
∣∣∣M′∣∣∣

per f ect ⇔ |M| =
|V |
2

and we write max⊂(M,G) if M is a maximal matching on G with respect to set inclusion,
max| |(M,G) if M is a maximum cardinality matching on G and pm(M,G) if M is a perfect
matching on G. Thus, given a matching M on G the following implications hold:

pm(M,G)⇒ max| |(M,G)
max| |(M,G)⇒ max⊂(M,G)

Definition 15 (Path [7, App. B]). Given an undirected graph G := 〈V, E ⊆ V2〉 a path
p in G from vertex u to vertex w, denoted as u � w, is a sequence of vertices p =
〈v0, . . . , vk〉 of length |p| = k, such that v0 = u and vk = w. By abuse of notation we also
use the notion of a path as the set of its edges p = {(vi, v j) ∈ E | 0 ≤ i < j ≤ k}. If we are
given a directed graph −→G we denote a path p from u to w as u{ w.

Definition 16 (Alternating path). Given an undirected graph G := 〈V, E ⊆ V2〉 and a
matching M on G an alternating path p̂ = v0 � vk in G is a path p whose edges ei =

(vi, vi+1) ∈ E, 0 ≤ i < k are alternately matched and free. If |p| is even, p is an even
alternating path and we write p̃. If vk = vo, p is an alternating cycle and we write p	. If
also |p| is even then we call p an even alternating cycle.

9

Definition 17 (Augmenting path). Given an undirected graph G := 〈V, E ⊆ V2〉 and a
matching M on G, an augmenting path is a path p = v0 � vk in G of length |p| = k
whose edges are alternately matched and free such that e0 = (v0, v1) and ek−1 = (vk−1, vk)
are free.

Definition 18 (Strongly connected component). Given a directed graph −→G := 〈V, E〉
two vertices u, v ∈ V are strongly connected, denoted as u Z v, if there are two paths
p = u { v and p′ = v { u in −→G. Further, a strongly connected component S of
−→G, denoted as SCC(S ,−→G), is a maximal subset S ⊆ V with S = {u, v ∈ V | u Z v}.
Additionally, we also refer to an SCC S as the set of its edges {e ∈ E | u, v ∈ S ∧ (e ∈ p =
u{ v ∨ e ∈ p′ = v{ u)} used by two paths p and p′ in −→G to join u, v ∈ S .

3.1.2 Further Definitions

Apart from the graph theoretical definitions above we also introduce the following defini-
tions making the explanation of the propagation algorithms for sortedness and global
cardinalitymore convenient.

Definition 19 (Set Definitions). Given some set S and two sets A ⊂ S and B ⊂ S we
define the symmetric difference A⊕B

de f .
= (A\B)∪ (B\A) = (A∪B)\ (A∩B). If S = A∪B

and A ∩ B = ∅ we write S = A] B stating that A and B are disjoint partitions of S .

Definition 20 (Notational Conventions).

1. If we are given a finite set of FDVars X we denote the cardinality of X as n
de f .
=

∣∣∣X ∣∣∣.
2. Given a finite set X of FDVars we define the union of the domains of all variables in

X as D(X) =
⋃
i∈�n

Di

3. �n
de f .
= {0, . . . , n − 1}

4. Πn
de f .
= {�n 7→ �n}

5. Given a range H
de f .
= [a..b]

de f .
= {a, . . . , b} ⊂ � we define:

– H
de f .
= min(H) = a as the lower bound of H

– H
de f .
= max(H) = b as the upper bound of H

Note that a range is also referred to as an interval.

6. Given a constraint C defined on X de f .
= {x0 : D0, . . . , xn−1 : Dn−1} we use xi : Di to

refer to a single variable in X and X to refer to the whole set of variables.
7. Given a finite set X of FDVars, a variable assignment α ∈ ass(X) and an integer value

v ∈ � we define the number of times α assigns the value v to a variable xi : Di ∈ X as

#(α, v)
de f .
=

∣∣∣{xi ∈ X |α(xi) = v}
∣∣∣

3.2 Sortedness

The implementation of the sortedness constraint in Gecode presented in this section
stems from section 3.1, p. 40-59 in the doctoral dissertation of Sven Thiel: Efficient Al-
gorithms for Constraint Propagation and for Processing Tree Descriptions [39]. Before
we discuss the details of the propagation algorithm, we first take a look at the constraint’s
denotational semantics:

10

Definition 21 (Sortedness). Given two finite sets of FDVars X = {x0 : D0, . . . , xn−1 :
Dn−1}, and Y = {y0 : E0, . . . , yn−1 : En−1} we define:

sortedness (X ,Y)
de f .
= {α ∈ assbnd(S)| α(y0) ≤ . . . ≤ α(yn−1)
∧ ∃π ∈ Πn : α(xi) = α(yπ(i))}

Hence, sortedness is a bounds consistent constraint with a scope of 2 · n variables
x0 : D0, . . . , xn−1 : Dn−1 and y0 : E0, . . . , yn−1 : En−1 checking whether it is possible to
sort the xi : Di in non-decreasing order, such that

sort(x0, . . . , xn−1) = (y0, . . . , yn−1)

Thus, sortedness checks whether there exists a sorting permutation π ∈ Πn such that
∀i ∈ �n : xi = yπ(i) holds. Provided the following finite sets of FDVars the table below
gives some examples for the sortedness constraint:

X1 = {x0 : {1}, x1 : {2}, x2 : {5}, x3 : {9}, x4 : {2}}
X2 = {x0 : {9}, x1 : {5}, x2 : {2}, x3 : {1}, x4 : {2}}
Y3 = {y0 : {9}, y1 : {5}, y2 : {2}, y3 : {2}, y4 : {1}}
Y1 = {y0 : {1}, y1 : {2}, y2 : {2}, y3 : {5}, y4 : {9}}
Y2 = {y0 : {1}, y1 : {2}, y2 : {2}, y3 : {7}, y4 : {9}}
sortedness (X1,Y1) X correct
sortedness (X1,Y2) values 5 and 7 do not match
sortedness (X2,Y3) y-variables (9,5,2,2,1) are not

sorted in non-decreasing order

Table 1. Examples for sortedness

3.2.1 Theoretical Background

After the formal definition of the sortedness constraint, we now focus on the theoret-
ical background for the bounds consistent global propagation algorithm implementing
sortedness . As Sven Thiel stresses in his doctoral dissertation (cf. 3.1.3, p. 55 [39]),
the propagation algorithm splits up in 5 steps (footnotes denote the file in the Gecode
architecture where they are implemented):

[S1] - Normalization
Normalization1 adjusts the domain bounds Ei and Ei of the yi : Ei variables, such that

∀i ∈ �n : Ei ≤ Ei+1 ∧ Ei ≤ Ei+1

holds. If so, the domains Ei are called normalized. Additionally, we can also infer that

∀i ∈ �n : Di ≥ E0 ∧ Di ≤ En−1

holds. The complexity of normalization is

T (S 1) = Θ (n)

1 sortedness/order.icc

11

[S2] - Sorting
The second step1 of the propagation algorithm creates sorting permutations σ, τ ∈ Πn,
such that

Dσ(0) ≤ . . . ≤ Dσ(n−1) ∧ Dτ(0) ≤ . . . ≤ Dτ(n−1)

holds. Thus, we sort the variables xi : Di ∈ X according to their lower and upper domain
bounds. In order to create π and τ we apply an optimized quicksort algorithm2 using an
non-recursive stack version and insertion sort for subsequences with length l ≤ 20. Hence,
the worst case complexity is

T (S 2) = O (n · log(n))

[S3] - Matching
As this step3 uses a specific graph structure, we extend the graph definitions given above
as follows:

Definition 22 (Bipartite Graph [7, p.1083]). An undirected graph G := 〈V, E〉 is called
bipartite if its node set V can be partitioned into two sets V1 and V2 such that V = V1]

V2 ⇔ V = V1 ∪ V2 ∧ V1 ∩ V2 = ∅ and E ⊂ V1 × V2 holds.

Definition 23 (Intersection graph [39, p. 43]). The undirected bipartite graph G :=
〈X] Y ,E〉, where E = {(xi, y j)|Di ∩ E j , ∅} is called the intersection-graph.
Given an intersection-graph G := 〈X] Y ,E〉 as defined above, G′ := 〈X] Y ,E ′〉 is a
reduced intersection-graph if E ′ = E \ {e ∈ E|∀M : pm(M,G)⇒ e < M}

Apart from being bipartite, the intersection graph has another essential property following
directly from normality of Y achieved in [S 1]:

Definition 24 (Convexity [13]). Let G := 〈X ∪ Y ,E〉 be an intersection graph as de-
fined in definition 17. G is called convex if

(xi, yl) ∈ E ∧ (xi, yr) ∈ E ⇒ ∀s ∈ [l, r] : (xi, ys) ∈ E

Since by [S 1] the intersection graph is also convex, we use Glover’s Algorithm [39, 13] to
compute a perfect matching on the intersection graph. Let G := 〈V ,E〉 be an intersection
graph for X and Y as defined above. Glover’s algorithm then computes for every y j-node
the set N := {xi|(xi, y j) ∈ E } of free xi-nodes reachable from y j and matches y j with the
xi for which Di is minimal. The algorithm selects the candidate with minimal Di because
any other candidate xc with Di < Dc can match yi-nodes xi is not able to. Hence xc is kept
for further processing as shown in figure 1. As Thiel proposes, this matching problem

y1

. . .

y j−1 y j

xi

y j+1

. . .

xc

yl

. . .

yh

. . .

yn

matched y-nodes free y-nodes

Fig. 1. candidate choice

2 support/sort.hh
3 sortedness/matching.icc

12

is handled as a union-find problem that itself represents an instance of the Offline-min
problem (cf. p.139-141 in [1]). Mimicking the behavior of a priority queue we solve this
problem using a tree structure as described in [1, p.129ff]. Processing O (n) union and
find operations as it is the case with our problem of computing the perfect matching on
G is in O

(
n2

)
. Using a weighted union operation the tree structure is kept balanced and

we achieve a complexity of O (n · log(n)). Using a further optimization as presented in
[1], so-called path compression yields an amortized running time of O (n ·G(n)), relying
on the subsequent definitions for the functions F, and G:

F(i) =


1 if i = 0

2F(i−1) if i > 0

G(n) := min{k ∈ �|F(k) ≥ n}

Thus, this step’s complexity results in

T (M2) = O (n ·G(n))

[S4] - Strongly Connected Components
The major insight of this propagation algorithm for sortedness is the following corre-
spondence:

α⇒ M : From valuations to matchings

∀α ∈ val(S) : α = {xi 7→ di, . . . , y j 7→ e j} ∈ sat(sortedness)
⇒ ∃π ∈ Πn ∀i ∈ �n : di = eπ(i)

⇒ ∃M ⊆ E : pm(M,G) ∧ M := {(xi, yπ(i))|i ∈ �n}

M ⇒ α : From matchings to valuations

∀M ⊆ E : pm(M,G)
∃π ∈ Πn : M := {(xi : Di, yπ(i) : Eπ(i))|i ∈ �n}

∧∀i ∈ �n : di ∈
(
Di ∩ Eπ(i)

)
E′j snormalized
⇒ ∃α ∈ sat(sortedness) : α = {xi 7→ di, . . . , y j 7→ e j}

Hence we have α ⇔ M stating that every solution α ∈ sat(sortedness) corresponds
to a perfect matching M on the intersection graph. Thus the algorithm has to consider
every edge taking part in a possible perfect matching on the graph. Instead of computing
all possible matchings the following corollary shows, why the computation of a single
matching suffices in order to obtain every edge belonging to some matching in G.

Corollary 1 (Maximum Matching [see 5, 26, chp. 7 chp. 4]) An edge belongs to some
of but not all maximum matchings, iff, for an arbitrary maximum matching M, it belongs
to either an even alternating path which begins at a free vertex, or an even alternating
cycle.

As [S 3] already computes a perfect matching M on G and since for both partitions X and
Y of the intersection graph

∣∣∣X ∣∣∣ = ∣∣∣Y ∣∣∣ = n holds, there are no free nodes in the graph after
[S 3]. Thus, as every perfect matching is also a maximum matching, corollary 1 tells us
that deciding whether an edge e ∈ E belongs to some perfect matching M on G or not is
equivalent to the decision whether e belongs to a strongly connected component of G. In
order to compute strongly connected components G is transformed into a DAG we refer
to as oriented intersection graph −→G that is defined as follows:

13

Definition 25 (Oriented intersection graph (cf. Lemma 3.3 p.48 [39]). Given a perfect
matching M in the intersection graph G (cf. definition 23), the oriented intersection graph
is obtained by directing every edge e < M from the X to the Y partition and adding the
reverse edge for every edge e ∈ M.

In the case of this bipartite oriented intersection graph −→G the computation of strongly
connected components coincides with the computation of the even alternating cycles
as emphasized in corollary 1. The fourth step, the computation of the SCCs 4 in −→G
is implemented according to the algorithm 3.2 on p.50 [39]. Thiel adapted the algo-
rithm by Cheriyan and Mehlhorn to the special structure of the oriented intersection
graph. Regarding the implementation, a component C is represented as a list of y-indices
C = [i0, . . . , ik−1], where yi0 is the leftmost and yik−1 is the rightmost y-node in the compo-
nent. Due to normalization we have Ei0

≤ . . . ≤ Eik−1
and Ei0 ≤ . . . ≤ Eik.1 .

yi1
... yi j−1 yi j yi j+1

... yik

rightleft
right

right

left

right

left

right

left

right

left
left

rightmost

leftmost

Fig. 2. SCC-representation

Finally, this step not only computes the SCCs of −→G , but also labels each X -variable with
the number of the SCC it is contained in. The labeling is performed in O (n). As not only
the labeling is linear but also the SCC computation [39] this step’s overall complexity is

T (S 4) = O (n + n) = O (n)

[S5] - Domain Reduction
In order to explain how the variable domains are narrowed in this step5, we have to define
the reduced intersection graph as follows:

Definition 26 (reduced intersection graph (cf. p.44 [39])). Given an intersection graph
G (cf. definition 23) we obtain the reduced intersection graph by removing all edges e ∈ E
that do not belong to any perfect matching M on G, i.e. we remove every edge neither
contained in the matching computed in [S 3] nor in any SCC computed in [S 4].

By definition of the oriented intersection graph (cf. definition 25) the smallest SCC s that
may occur is s = (y j, xφ(j)) consisting of the single pair formed by an y j-variable and its
matching mate xφ(j).

[S5.1] - Narrowing X
Let G− denote :the reduced intersection graph for X and Y and S i ⊆ Di the reduced domain
of xi. By construction, G− only contains edges {xi, y j} belonging to a perfect matching M

4 sortedness/narrowing.icc
5 sortedness/narrowing.icc

14

on G corresponding to an assignment α. Thus S i is computed as S i = Di ∩
⋃
{xi,y j}∈G− E j

(cf. p. 44 corollary 3.1 [39]) and we infer:

N-X -LB
lmi := min{ j ∈ �n|E j ≤ Di ≤ E j} ylmi Z xi

S i ≥ Elmi

N-X -UB
rmi := max{ j ∈ �n|E j ≤ Di ≤ E j} yrmi Z xi

S i ≤ Ermi

where Elmi is the domain of the leftmost ylmi -variable and Ermi is the domain of the right-
most yrmi -variable, xi can reach in its SCC. By step [S 4], the x-variables are labeled with
the number of their corresponding SCC. According to algorithm 3.3. on p. 53 in [39] we
merge the sequence Ei0 , . . . , Eik−1 with the sequence Dσ(φ(i0)), . . . ,Dσ(φ(ik−1)), such that

. . . E sDt . . .⇔ E s ∩ Dt = ∅

. . .DtE s . . .⇔ E s ∩ Dt , ∅

Hence, we can perform domain reduction for the lower bounds of all X -variables in
at most O (k · (n/k)) = O (n) time, where k is the size of the largest SCC in −→G . We
achieve this linear complexity by merging the sequences Ei0

, . . . , Eik−1
with the sequence

Dσ(φ(i0)), . . . ,Dσ(φ(ik−1)) in order to narrow the upper bounds of the x-variables, such that

. . .DtE s . . .⇔ E s ∩ Dt = ∅

. . . E sDt . . .⇔ E s ∩ Dt , ∅

[S5.2] - Narrowing Y
Due to their normalization, domain reduction for Y is less work. Let T j ⊆ E j denote the
reduced domain of y j. Then we obtain the new upper bounds T j for free from the perfect
matching φ that has already been computed in step [S 3]. Since φmatches the y j with those
xφ(j)-candidates for which Dφ(j) is minimal, we compute the new upper bound of y j by

N-Y -LB
i = φ(j)

T j ≤ Di

Performing the same domain reduction on the lower bounds requires a new matching ψ,
where ψ matches the y j-variables from n down to 1 and always chooses the neighbor xi

from N(y j) with maximal Di. Thus we can reduce the lower bounds of the domains E j

symmetrically by setting

N-Y -UB
i = ψ(j)

T j ≥ Di

Since the matching computation [S 3] is in O (n) and since the update for every y j is in
O (1) the domain reduction for the y j-variables is performed in Θ (n). Hence, the overall
complexity for the narrowing step is

T (S 5) = Θ (n)

Total complexity of sortedness
Summing up the complexity for the different steps, we get the following result for the
overall complexity of the sortedness constraint:
As table 2 shows, the complexity of the sortedness constraint depends on the time
needed to generate the sorting permutations σ and τ for X in step [S 2].

15

T (S 1) = Θ (n)
T (S 2) = O (n · log(n))
T (S 3) = O (n ·G(n))
T (S 4) = O (n)
T (S 5) = Θ (n)

T (sortedness) = O (n · log(n))
Table 2. complexity-sortedness

3.2.2 Extended Sortedness
In the previous sections we have discussed the theoretical background of a global prop-
agation algorithm for the sortedness constraint as described in [39]. As Thiel points
out in his doctoral dissertation there is a straightforward approach for extending the
sortedness constraint to explicit permutation variables Z as a third argument. Never-
theless, this approach does neither achieve bounds consistency on X nor on the permuta-
tion variables Z . Motivated by Thiel’s comparison with related work [39, sec. 3.1] we
introduce the extended version of sortedness as sortedness+ and define it as follows:

Definition 27 (Sortedness+). Given finite sets of FDVars X de f .
= {x0 : D0, . . . , xn−1 :

Dn−1}, Y de f .
= {y0 : E0, . . . , yn−1 : En−1} and Z de f .

= {zo : Fo, . . . , zn−1 : Fn−1} and let

S de f .
= X ∪ Y ∪Z. Then

sortedness+ (X ,Y ,Z)
de f .
= {α ∈ assbnd(S)|α(y0) ≤ . . . ≤ α(yn−1) ∧ α(xi) = α(yα(zi))}
∩alldiff (Z)

Hence, sortedness+ now has an extended scope of n extra variables in Z . These vari-
ables are called permutation variables because Z explicitly implements the sorting per-
mutation π ∈ Πn such that ∀i ∈ �n : xi = yπ(i) holds. Thus π does no longer only exist on
the denotational level of the propagator but is made accessible through Z which can be
used to perform inferences on X and Y . Reconsider the finite sets of FDVars from table 1
and the following additional finite sets of FDVars for the permutation variables. Then the
following table presents some examples for the sortedness+ constraint:

X1 = {x0 : {1}, x1 : {2}, x2 : {5}, x3 : {9}, x4 : {2}}
X2 = {x0 : {9}, x1 : {5}, x2 : {2}, x3 : {1}, x4 : {2}}
Y3 = {y0 : {9}, y1 : {5}, y2 : {2}, y3 : {2}, y4 : {1}}
Y1 = {y0 : {1}, y1 : {2}, y2 : {2}, y3 : {5}, y4 : {9}}
Y2 = {y0 : {1}, y1 : {2}, y2 : {2}, y3 : {7}, y4 : {9}}
Z1 = {z0 : {1}, z1 : {2}, z2 : {4}, z3 : {5}, z4 : {3}}
Z2 = {z0 : {1}, z1 : {2}, z2 : ∅, z3 : {5}, z4 : {3}}
Z3 = {z0 : {1}, z1 : {2}, z2 : {3}, z3 : {5}, z4 : {4}}
Z4 = {z0 : {4, 5}, z1 : {1}, z2 : {4}, z3 : {5}, z4 : {3}}

sortedness+ (X1,Y1,Z1) X correct
sortedness+ (X1,Y2,Z2) values 5 and 7 do not match
sortedness+ (X2,Y3,Z3) Y3 not sorted in non-decreasing order
sortedness+ (X1,Y1,Z4) Z4 is no sorting permutation

Table 3. Examples for sortedness+

16

In order to achieve bounds consistency on all variables in S we introduce additional com-
putation steps [S 2.1] and [S 5.3] to the 5 steps above. Furthermore we extend step [S 5.1]
by the following two inferences for the reduced domains Ui of the permutation variables
zi : Fi ⊇ Ui:

lmi := min{ j ∈ �n|E j ≤ Di ≤ E j} ylmi Z xi

U i ≥ lmi

rmi := max{ j ∈ �n|E j ≤ Di ≤ E j} yrmi Z Di

U i ≤ rmi

[S2.1] - Connecting X and Y
The first additional step6 [S 2.1] correlates the permutation variables in Z with the problem
variables in X and Y . It not only connects X with Y but also ensures that the domain
bounds of all variables are consistent at the start of the propagation algorithm. Consider
a permutation variable zi : Fi = [l..r] connecting the corresponding problem variable
xi : Di to possible matching mates from yl : El to yr : Er. At first this step ensures that the
permutation variables only connect the X variables with feasible Y variables by ensuring
that ∀i ∈ �n:

VP-LB
l := min{ j ∈ �n|E j ≤ Di ≤ E j}

Di ≥ El F i ≥ l

VP-UB
r := max{ j ∈ �n|E j ≤ Di ≤ E j}

Di ≤ Er F i ≤ r

In case that zi : Fi = {p} is already determined we can perform the following inferences
∀i ∈ �n:

Di = {v}

Tp := {v}

Ep = {v}

S i := {v}

|Di| > 1 nl := max(Di, Ep) nr := min(Di, Ep)

Di ≥ nl Di ≤ nr Ep ≥ nl Ep ≤ nr

Otherwise, if |Fi| > 1, we cannot do any better than inferring:

Di ≥ El Di ≤ Er

These inferences are applied such that the complexity for this step is

T (S 2.1) = Θ (n)

[S5.3] - Crossing Edges
In contrast to the consistency check above step [S 5.3] is based on the following ob-
servation: As discussed in [S 4], the major insight into the propagation algorithm for
sortedness is the link between X and Y via a sorting permutation π ∈ Πn. Furthermore
the SCC computation in [S 4] showed that there is a one-to-one correspondence between
permutations π and perfect matchings M on the intersection-graph G := 〈X] Y ,E〉.
Let Ui denote the reduced domain of a permutation variable zi : Fi, such that zi : Ui ⊆ Fi

holds. Hence we have the following information about the permutation variables in Z :

∀i ∈ �n : Ui = {k ∈ �n|Di ∩ Ek , ∅}

6 sortedness/sortedness.icc

17

Thus the reduced domain Ui of a permutation variable zi : Fi contains exactly the indices
of those yk : Ek being a matching mate for xi : Di in a perfect matching M on G. Further-
more U i := l is the index of the leftmost reachable Y -node yl of xi in G that belongs to
a perfect matching M on G and U i := r is the index of the rightmost reachable Y -node
yr of xi belonging to such a perfect matching. Thus we can shrink Fi to Ui := [l..r]. Now
the question arises, why setting U i := l and U i := r does not suffice to achieve bounds
consistency on X and Z ?
As permutations π encode all perfect matchings M between X and Y on G they also en-
code those matchings M′, such that:

M′ ⇔ β ∈ ass(S) ∧
(
∃i, j ∈ �n : i < j ∧ β(yi) > β(y j)

)
which is an obvious contradiction to the definition of sortedness+ where we require
∀α ∈ sortedness+ : α(y0) ≤ . . . ≤ α(yn−1). From step [S 2] we are given sorting per-
mutations σ and τ, such that Dσ(0) ≤ . . . ≤ Dσ(n−1) ∧ Dτ(0) ≤ . . . ≤ Dτ(n−1). After the
narrowing of the X -domains [S 5.1] the bounds of Z variables possibly encode a match-
ing M ⇔ β < sat(sortedness+) containing crossing edges violating the definition of
sortedness+ . This violation can occur on both, the lower and the upper bounds of vari-
ables in Z . Nonetheless, if those crossing edges belong to an SCC that we just computed
in step [S 4] the propagation algorithm must not delete them as they take part in some
solution to the matching problem. The decision whether to prune such an edge or not is
done by checking whether the permutation variable zi : Ui = [l..r] on a crossing edge
coincides with the indices of the leftmost and rightmost reachable variables belonging
to the same SCC that xi : S i belongs to. In the formula below we denote these indices
with lmi for the index of the leftmost variable and rmi respectively. If these indices do
coincide with the bounds of the permutation variable l and r these bounds do take part in
some solution to the constraint. Otherwise, we can exclude them as inconsistent as they
neither belong to any SCC nor, by definition of the Glover algorithm (3.2.1), belong to the
perfect matching computed in step [S 3]. Thus taking possible SCCs into account we can
formalize a crossing edge on the lower bound of a variable zi : Ui ⊆ Fi ∈ Z as follows (a
crossing edge on the upper bound is specified symmetrically):

p := σ(i) ∧ q := σ(j) ∧ p < q = p + 1 ∧ Dp < Dq (1)
Up = [l0..r0] ∧ Uq = [l1..r1] ∧ 0 < l1 < l0 ∧ lmq , l1 < r1 (2)
Ui = {k ∈ �n|Di ∩ Ek , ∅} (3)

(2)&(3)⇒ ∀k ∈ {0, . . . , l0 − 1} : Dp ∩ Ek = ∅ (4)

⇔

(
∀k ∈ {0, . . . , l0 − 1} : Ek < Dp

(1)
< Dq

)
(5)

⇒ El1 < Dq (6)

(2)&(3)⇒ Dq ∩ El1 , ∅ ⇔ Dq ≤ El1 (7)

(6)&(7)⇒ El1 < Dq ∧ Dq ≤ El1 ⇒ (8)

Further we know that r1 ≥ l0 which is proved by contradiction. Assume r1 < l0 and let

(H)
de f .
= r1 < l0. Then we get:

(H)&(2)&(3)⇒ Dq < Dp (9)
(1)⇒ (10)
⇒ r1 ≥ l0 (11)

Symmetrically the occurrence of a crossing edge on an upper bound can be found by
considering cases where u := τ(i) ∧ v := τ(j) ∧ u < v = u + 1 and Uu = [l0..r0] ∧ Uv =

18

[l1..r1] ∧ 0 < r1 < r0 ∧ l0 < r0 , rmu. Analogously to the proof for the lower bound we
can show by contradiction that for the case of a crossing edge on an upper bound l0 ≤ r1
holds. Summing up a crossing edge occurs on:

CE1 - [a lower bound]
1. σ is a valid sorting permutation as specified in [S 2]
2. lmi := min{ j ∈ �n|E j ≤ Di ≤ E j}, that is lmi is the minimal index of the variable

ylmi : Elmi ∈ Y belonging to the same SCC as xi

3. ∃i, j ∈ �n : i , j ∧ σ(i) < σ(j) ∧ Uσ(j) < Uσ(i) ≤ Uσ(j) ∧ lmσ(j) , Uσ(j) < Uσ(j)

CE2 - [an upper bound]
1. τ is a valid sorting permutation as specified in [S 2]
2. rmi := max{ j ∈ �n|E j ≤ Di ≤ E j} that is rmi is the maximal index of the variable

yrmi : Ermi ∈ Y belonging to the same SCC as xi

3. ∃i, j ∈ �n : i , j ∧ τ(i) < τ(j) ∧ Uτ(i) ≤ Uτ(j) < Uτ(i) ∧ Uτ(i) > Uτ(i) , rmτ(i)

In order to ensure bounds consistency on the lower bounds of the permutation vari-
ables after the successful domain reduction of X and Y we apply the following algorithm
1(symmetrically for the upper bounds):

Algorithm 1 perm_bc on lower bound
Require: σ with Dσ(0) ≤ . . . ≤ Dσ(n−1), idxi := min{ j ∈ �n|xi Z y j in G−}
1: for i = 1; i < n; i← i + 1 do
2: if

(
σ(i − 1) < σ(i) ∧ U

σ(i−1) > U
σ(i) ∧ U

σ(i) , idxσ(i)

)
then

3: if
(∣∣∣Uσ(i)

∣∣∣ = 1
)

then // Vital matching edge do not remove it

4: if
(
S σ(i−1) < S

σ(i)

)
then

5: return P1 // Report failure (sec.2.3.2)
6: end if
7: else
8: U

σ(i) ← U
σ(i−1) // Update the lower bound

9: end if
10: end if
11: end for

The update in line 8 is motivated as follows:

1. If
∣∣∣Uσ(i)

∣∣∣ = 1 holds (line 3) the conflicting value Uσ(i) represents a vital matching
edge and must not be removed. If also S σ(i−1) < S σ(i) holds the violation cannot be
repaired even using the upper bound sorting τ as a matching.

2. If
∣∣∣Uσ(i)

∣∣∣ > 1 and CE1 holds the conflicting value does neither belong to a matching on
the intersection graph G nor to a SCC computed in step [S 4]. Hence the corresponding
variable xσ(i) : Dσ(i) ∈ X can only take values greater than those xσ(i−1) : Dσ(i−1) can
take. Hence we achieve bounds consistency on the permutation variables by updating
Uσ(i) as described in line 8.

As the algorithm processes all permutation variables it has the same complexity as the
normalization step [S 1] for X and Y . Hence we have T (S 5.3) = Θ (n). Thus extending
the sortedness constraint to permutation variables results in the same total complexity
as sortednesswhich is T (sortedness+) = T (sortedness) = O (n · log(n)).

1 sortedness/order.icc

19

3.2.3 Idempotency for sorting propagators

Sortedness
Provide a space S = X ∪ Y such that S is solvable(sortedness (S) , [P1]) and
sortedness is not subsumed on S (sortedness (S) , [P4]) and that ∀i ∈ �n Di and
Ei are ranges of the form [a..b] we notice the following behavior: At first the propagation
algorithm checks in the normalization step [S 1] whether the variable domains in the initial
space are feasible inputs for the constraint and eventually modifies the variable domains
in order to restore feasibility. After the initial modification it uses the domain information
from the variables in order to compute all perfect matchings on a special graph structure
of X and Y . Having found out what values in the domains form such a matching it finally
reduces the variable domains such that there are only those values left needed by any
matching computed by the above steps. Thus if the variable domains are not modified ex-
ternally sortedness cannot infer more information than gathered in the above mentioned
computation steps and hence achieves its fixpoint [P2]. There are only two possibilities
that sortedness is not at a fixpoint after one pass of the propagation algorithm:

1. Holes in the domains:
There is at least one variable domain D such that D ⊂ {a, . . . , b} ∧ {a, b} ⊂ D. As the
propagation algorithm for sortedness is bounds consistent he treats such a domain
as range D = [a..b]. Hence a modification of the domain bounds could result in
the loss of bounds consistency and we need at least another pass of the propagation
algorithm to restore bounds consistency again.

2. Shared variables:
Sharing is a special Gecode mechanism that we explain in more detail in section
4. If sharing is detected while propagating the computed domain information back
to the variables we also loose bounds consistency and have to perform at least one
additional pass of the propagation algorithm in order to restore consistency on the
domain bounds.

Sortedness with Permutation Variables As sortedness+ is an extension of the above
discussed sortedness constraint the same two cases as above may occur where the prop-
agator is not at a fixpoint. Nevertheless, the propagation algorithm for sortedness+ does
not support sharing on the permutation variables. Because of the extension to permutation
variables however, there is a third possibility that the propagator is not at a fixpoint:

3. Crossing edge:
From step [S 5.3] we know that crossing edges come along with the loss of bounds con-
sistency on the permutation variables. Although this inconsistency is fixed with the
perm_bc algorithm presented in the same step the connection of X and Y through Z
could have changed in the sense that there might by stronger bounds for the problem
variables. Hence, the propagator can possibly infer new domain information about
the variables in X and Y , is not at a fixpoint and we have to perform another pass of
the propagator. But why is one additional pass of the propagator sufficient to restore
idempotency? Using Thiel’s graph view[39] on the work of Bleuzen-Guernalec and
Colmerauer the bounds of the permutation variables can be characterized as follows:
either the bounds represent edges belonging to an SCC on G− including matching
edges or they represent edges joining smaller SCCs to a larger SCC. The latter ones
directly correspond to the crossing edges mentioned above. Hence, removing those
edges joining strongly connected components in G− we obtain only those edges that
take part in some perfect matching on G and respect the variable sorting. Thus, the
second pass of the propagator is able to identify the smaller SCCs and narrow the X
-variables accordingly. As by the removal of the crossing edges there is no need to
execute perm_bc and the second pass of the propagator does not modify the bounds

20

of the permutation variables and proceeds according to the propagation algorithm for
the sortedness constraint achieving its fixpoint again.

If the perm_bc algorithm detects no crossing edges on the reduced intersection graph then
not only the variables in X and Y are bounds consistent but also the permutation variables
in Z since all values in the domains of the permutation variables do take part in some so-
lution to the constraint. Hence sortedness+ cannot propagate other domain information
back to the variables than it already deduced in the computation steps mentioned above.

3.3 Global Cardinality

In this section we focus on propagations algorithms for the globalcardinality con-
straint (gcc) that is also referred to as the generalized cardinality constraint. The
implementation of the domain consistent propagator gcc dom in Gecode is based on Im-
proved Algorithms for the Global Cardinality Constraint [25] by Quimper et al. and the
implementation of the bounds consistent propagator gcc bnd in Gecode is taken from An
Efficient Bounds Consistency Algorithm for the Global Cardinality Constraint [24] by
Quimper et al.. The denotational semantics of gcc are defined as follows:

Definition 28 (Global Cardinality). Given a finite set of FDVars X , the union of all
variable domains D(X), a finite set V ⊆ D(X) of values for the variables with |V | = m
and a finite set F ⊂ {(l, u) ∈ �n+1 ×�n+1 | l ≤ u} with

∣∣∣F ∣∣∣ = |V | = m, we define global
cardinality as

gcc (X ,V,F)
de f .
= {α ∈ asscl(X) | ∀i ∈ �n : vi ∈ V ∧ (li, ui) ∈ F ∧ li ≤ #(α, vi) ≤ ui}

where cl ∈ {val, bnd, dom} indicates the consistency level of the global cardinality
which is cl = val for the value consistent, cl = bnd for the bounds consistent and cl = dom
for the domain consistent version of the gcc propagation algorithm.

Obviously, gcc is a generalization of alldiff since the above definition enables us to
rewrite alldiff as

alldiff (X) := gcc(X ,D(X),F) withF =


{(0, 1), . . . , (0, 1)} if

∣∣∣D(X)
∣∣∣ > ∣∣∣X ∣∣∣

{(1, 1), . . . , (1, 1)} if
∣∣∣D(X)

∣∣∣ = ∣∣∣X ∣∣∣
If X , V and F are specified as below the following table presents some examples for the
global cardinality constraint:

X1 = {x0 : {1}, x1 : {2}, x2 : {3}, x3 : {2}, x4 : {1}} V1 = {1, 2, 3} F1 = {(2, 2), (1, 2), (1, 1)}
X2 = {x0 : {1}, x1 : {1}, x2 : {1}, x3 : {3}, x4 : {3}} V2 = {1, 3} F2 = {(1, 2), (2, 2)}
X3 = {x0 : {1}, x1 : {2}, x2 : {3}, x3 : {4}, x4 : {1}} V3 = {1, 2, 3, 4} F3 = {(3, 3), (1, 1), (1, 1), (1, 1)}

gcc (X1,V1,F1) X correct
gcc (X2,V2,F2) value 1 occurs to often
gcc (X3,V3,F3) value 1 occurs to few

Table 4. Examples for global cardinality

3.3.1 From alldiff to global cardinality - Theoretical Results

Before we go into the detail of the propagation algorithms of a bounds and a domain
consistent propagator for the global cardinality constraint we first want to recapitu-
late what we just learned from the computation steps S 3 and S 4 of the bounds consistent

21

sortedness propagator: Every assignment α ∈ sat(sortedness) corresponds to a per-
fect matching M on the bipartite convex intersection graph G (see def.23). In contrast to
the sortedness constraint the alldiff constraint requires a different bipartite graph to
argue about. Hence we introduce the following graph structure:

Definition 29 (Variable value graph [see 26, p. 4]). The undirected bipartite graph G :=
〈X]D(X), E〉, where E = {(xi : Di, v j) | v j ∈ Di} is called the variable value graph of X
or VVGX .

Thus we can exchange the intersection graph from the sortedness constraint by the
variable value graph for the alldiff constraint with the result that every assignment
β ∈ sat(alldiff) corresponds to a maximum matching M on VVGX where either M
is a set cover on X in VVGX if

∣∣∣D(X)
∣∣∣ > ∣∣∣X ∣∣∣ or a perfect matching M on VVGX if∣∣∣D(X)

∣∣∣ = ∣∣∣X ∣∣∣. In this case we can apply the following theorem from graph theory:

Theorem 1 (König-Hall Theorem [5]). Let G := 〈V = V1] V2, E〉 be a bipartite graph.
Let further ΓG(A) ⊆ V2 denote the set of vertices adjacent to set A for any subset A ⊆ V1.
Then G has a perfect matching if and only if for every subset A ⊆ V1 the inequality

|A| ≤ |ΓG(A)|

holds.

In the case of the alldiff constraint we instantiate this theorem by definition 29 to A =
X and ΓG(A) = ΓVVGX (X) = D(X) deducing the following equivalence:

sat(alldiff) , ∅ ⇔ |X| ≤
∣∣∣D(X)

∣∣∣ (12)

stating that the alldiff constraint on X is satisfiable if and only if the union of all vari-
able domains D(X) contains at least as many values as there are variables in X . Never-
theless, this equivalence is not sufficient for the gcc constraint as the definition of the gcc
allows a value v ∈ D(X) to occur more than once in a variable assignment α permitting
that the node representing v in VVGX can have more than only one incident matching
edge. Hence, we extend the above definition of a variable value graph such that it fits the
requirements of the global cardinality constraint as:

Definition 30 (Variable value graph for global cardinality). The undirected bi-
partite graph G := 〈X] (D(X) ×�n+1 ×�n+1), E〉 E = {(xi : Di, (v j, l j, u j)) | v j ∈

Di ∧ ∀α ∈ assdom(X) : l j ≤ #(α, v j) ≤ u j} is called the variable value graph of X or
VVGX .

The main idea required for extending the equivalence from equation (12) to the gcc is the
following (see [24]): Since the structure of the gcc imposes a lower bound li and an upper
bound ui on the value occurrences #(α, vi) in α where li ≤ #(α, vi) ≤ ui is required for all
values vi ∈ V ⊆ D(X) the constraint is decomposed into an upper bound constraint (ubc
) and a lower bound constraint (lbc) such that the following equivalence holds:

gcc (X ,V,F)⇔
(
lbc (X ,V,F) ∩ ubc (X ,V,F)

)
In this case lbc and ubc are defined analogously to the gcc as:

lbc (X ,V,F)
de f .
= {α ∈ asscl(X) | (13)
∀i ∈ �m : vi ∈ V ∧ (li, ui) ∈ F ∧ li ≤ #(α, vi)}

ubc (X ,V,F)
de f .
= {α ∈ asscl(X) | (14)
∀i ∈ �m : vi ∈ V ∧ (li, ui) ∈ F ∧ #(α, vi) ≤ ui}

In addition to this decomposition of the gccwe define

22

Definition 31 (Capacities). Given a finite set S ⊆ D(X) we define the capacity of S as

C(S)
de f .
=

∣∣∣{xi : Di ∈ X | Di ⊆ S }
∣∣∣

the intersection capacity of S as

I(S)
de f .
=

∣∣∣{xi : Di ∈ X | Di ∩ S , ∅}
∣∣∣

the minimal capacity of S as

bS c
de f .
=

∑
vi∈S

li

and the maximal capacity of S as

dS e
de f .
=

∑
vi∈S

ui

where li is the lower and ui the upper bound of #(α, vi) as mentioned in the above gcc
definition.

Provided this decomposition we instantiate the value cv of the capacity function c such that
for the ubc constraint ∀i ∈ �m : c(vi) = ui and for the lbc constraint ∀i ∈ �m : c(vi) = li
holds. This finally leads to the following extension of equation (12):

sat(ubc) , ∅ ⇔ |X| ≤
⌈D(X)

⌉
(15)

sat(lbc) , ∅ ⇔
⌊D(X)

⌋
≤ |X| (16)

which, taken as a conjunction, result in the following satisfiability criterion for the global
cardinality constraint:

sat(gcc) , ∅ ⇔
⌊D(X)

⌋
≤ |X| ≤

⌈D(X)
⌉

(17)

As a result of these equivalences we conclude that the global cardinality constraint
is satisfiable if and only if there is a maximum matching Mu on VVGX with |Mu| =

∣∣∣X ∣∣∣
and a maximum matching Ml on VVGX such that |Ml| =

⌊D(X)
⌋

[see 25, sec. 3.2]. Hav-
ing this extension from alldiff to gcc at hand the next sections present two propagation
algorithms for the global cardinality constraint which despite their different consis-
tency levels are both based on the equivalence described in equation (17).

3.3.2 A Bounds Consistent View

During this section we focus on a propagation algorithm for the global cardinality
that achieves bounds consistency on the problem variables in X and whose implementa-
tion is taken from An Efficient Bounds Consistency Algorithm for the Global Cardinality
Constraint [24] by Quimper et al.. Due to the close relation of gcc to alldiff (see sec.
3.3.1) the essence of this implementation consists in reusing an existing implementation
of the alldiff constraint as provided in [20] and extending this implementation to the
needs of the global cardinality constraint. The basic theory behind the bounds con-
sistent alldiff propagator presented in [20] is motivated by the following definition:

Definition 32 (Hall interval (cf. section 3.1 [24])). If there is a set H ⊆ D(X) such that

C(H) = |H|

holds, H is called a Hall interval and we write Hall(H). Thus Hall(H) indicates that the
number of variables xi : Di ∈ X whose domains are contained in H equals the cardinality
of H.

23

By this definition and equation (12) it follows that:

sat(alldiff) , ∅ ⇔ |X| ≤
∣∣∣D(X)

∣∣∣ (18)
⇔ ∀H ⊆ D(X) : C(H) ≤ |H| (19)

Thus the bounds consistent propagation algorithm for the alldiff constraint processes
the problem variables in X checking whether there are Hall intervals in D(X) and per-
forming domain reduction according to the detected Hall intervals. Conversely, the defi-
nition of the ubc constraint permits matching the values in D(X) more than once and we
have to extend the above definition of Hall intervals to the notion of Hall sets as follows:

Definition 33 (Hall Sets). If there is a set H ⊆ D(X) such that

C(H) = dHe

holds, H is called a Hall set and we write HallS (H). Thus we write HallS (H) if the number
of variables xi : Di ∈ X whose domains are contained H equals the maximum capacity
of H.

Analogously to equation (19) it follows from this definition of Hall sets that:

sat(ubc) , ∅ ⇔ |X| ≤
⌈D(X)

⌉
(20)

⇔ ∀H ⊆ D(X) : C(H) ≤ dHe (21)

Moreover the propagation algorithm presented in [24] uses the following notation in order
to achieve a similar result for the lbc constraint:

Definition 34 (Failure, Unstable and Stable Sets (cf. section 3.2 [24])). Given a set
T ⊆ D(X) we call T

1. a failure set F(T) if
I(T) < bT c

2. an unstable set U(T) if
I(T) = bT c

3. a stable set S (T) if

C(T) > bT c ∧ ∀R ⊆ D : (U(R) ∨ F(R)⇒ T ∩ R = ∅)

Since from this definition it follows that:

sat(lbc) , ∅ ⇔
⌊D(X)

⌋
≤ |X| (22)

⇔ ¬∃H ⊆ D(X) : F(H) (23)

Obviously, for any interval H ⊆ D(X) the computation of |H| = H − H + 1 takes only
constant time. Though, this computation only reasons about the bounds H and H and
it is impossible to compute dHe or bHc likewise. As computation step [S 2], which is
orthogonal to [S 1], solves this deficiency the computation steps for the gcc bnd propagator
can be summarized as follows:

[S1] - Sorting X
The first step7 of the algorithm for gcc bnd creates sorting permutations ν and µ such that

Dν(0) ≤ . . . ≤ Dν(n−1) ∧ Dµ(0) ≤ . . . ≤ Dµ(n−1)

holds. As for [S 1] of the sortedness propagator we also apply an optimized quicksort
algorithm8 in order to achieve this sorting. Hence the creation of µ has a worst case com-
plexity of T (S 1) = O (n · log(n)).

7 gcc/bnd.icc
8 support/sort.hh

24

[S2] - Additional Structures
In addition to the sorting of the domain bounds the propagation algorithm creates support-
ing structures that are required to reason about the satisfiability of the lbc and the ubc .
At first this step creates the union of all domain bounds B(X) such that

B(X)
de f .
=

⋃
i∈�n

Di

 ∪
⋃

i∈�n

(
Di + 1

) ∪ {min(D(X)) − 2,max(D(X)) + 2}

Further [S 2] also creates a mapping r ∈ B(X) 7→ {0, . . . , q − 1} with ∀i ∈ {0, . . . , q − 1} :
r(v) = i ⇔ bi = v such that B(X) can be accessed via the set B(X) = {b0, . . . , bq−1} ∧∣∣∣B(X)

∣∣∣ = q where q is the number of unique domain bounds. The first and the last element
in this set are used as sentinels where b0 = min(D(X)) − 2 and bq−1 = max(D(X)) +
2. Apart from B(X) and the mapping r step also introduces a structure that allows the
computation of dHe and bHc in constant time. This is achieved by creating partial sum
structures Φ for the ubc and Ψ for the lbcwhich are defined as:

Φi =


i if 0 ≤ i ≤ 2
i−3∑
j=0

u j if 3 ≤ i < m + 3

Φi−1 + 1 if m + 3 ≤ i < m + 5

Ψi =


i if 0 ≤ i ≤ 2
i−3∑
j=0

l j if 3 ≤ i < m + 3

Ψi−1 + 1 if m + 3 ≤ i < m + 5

This creation of Φ and Ψ which is in Θ
(∣∣∣B(X)

∣∣∣) results in a constant time computation
of dHe = ΦH+3−min(D(X)) −ΦH+3−min(D(X))−1 and bHc = ΨH+3−min(D(X)) −ΨH+3−min(D(X))−1.
Since the setup of B(X), r and the partial sums each take Θ (n) time the complexity of
this step is T (S 2) = Θ (n).

[S3] - Satisfying the upper bounds constraint (ubc)
Eq. (21) implies that the ubc is only satisfiable if there is no subset H ⊆ D(X) whose
capicity exceeds its maximal capacity. Hence, a subset H either is a Hall set or its capacity
is strictly smaller than its maximal capacity. Thus, the main task of this computation step
is detecting and marking Hall sets and updating the variable bounds according to detected
Hall sets.

[S3.1] - Updating the lower bounds
In order to update the lower domain bounds the X variables are processed in increasing
order of their upper domain bounds according to the sorting permutation µ computed in
step [S 1]. Moreover, the detection of Hall sets and the update of the domain bounds are
based on the central principle of domination whose explanation requires the following
definitions:

Definition 35 (Cardinality counter [see 20, 21, sec. 3.1]). Given a value s ∈ B(X) and

i, j ∈ �n we define the cardinality counter for value s as ci
s

de f .
=

∣∣∣{ j ≤ i | Di ≥ s}
∣∣∣ and the

capacity of s as vi
s

de f .
=

⌈
[s,Di]

⌉
−ci

s with respect to the corresponding variable xi : Di ∈ X
in process.

By µ sorting of the variables and the above definition index m = µ(i) marks the variable
in process according to µ. With respect to this sorting it follows immediately that cm

s =

Cm([s,Dm]) where Cm(S) denotes the value of C([s,Dm]) up to the iteration when variable
xm is processed. Hence vm

s is the number of values v ∈ [s,Dm] that can still be assigned to
unprocessed variables. Considering the above definitions the principle of domination can
be defined as:

Definition 36 (Domination (Lemma 1, section 3.3, [21])).

∀i ∈ �n,∀ j, z ∈ �q : j < z : vm
b j
≥ vm

bz
∧ m = µ(i) (24)

25

S 1 = [b j,Dm] ⊃ S 2 = [bz,Dm] (25)

j dominates z
Lemma 1
⇔ vm

b j
≤ vm

bz

(24)−(26)
⇔ vm

b j
= vm

bz
(26)

With this definition in mind updating the lower domain bounds is performed as follows:
In order to keep track of capacity and cardinality counters we define

pm(z) =
{

0 if z = 0
max{ j ∈ �q | j < z ∧ vm

b j
− vm

bz
> 0} if z > 0

as the undominated preceeding index of z while xm is in process. Corresponding to the
predecessor pi(z) of an index z we also define

sm(z) =
{

q − 1 if z = q − 1
min{ j ∈ �q | j > z ∧ vm

b j
− vm

bz
> 0} if z < q − 1

as the undominated succeeding index of z while processing xm. In addition to this, the
propagation algorithm maintains a balanced binary tree datastructure where every value
bs in B(X), but the left sentinel b0, points to bpi(s), its undominated predecessor. Further,
we define the shorthand notation

d(z) = vi
bpi (z)
− vi

bz

as the difference of capacities between a value bz and its predecessor in B(X), bpi(z).
Hence, if no variable has been processed so far ∀z ∈ {1, . . . , q − 1} : bp0(z) = bz−1 holds
that is all values bz in B(X) but the left sentinel point initially to their direct predecessor in
B(X) which is bp0(z) = bz−1. Having initialized the pointer structure in this way the domain
update for the lower bound processes the next variable xm : Dm ∈ X with m = µ(i) in
ascending order and computes indices z, y and j such that:

– z = min{ j ∈ �q | b j ≥ Dm ∧ d(j) > 0}
– y = r(Dm)
– j = pm(z) such that b j is the undominated predecessor of bz

Given these indices the algorithm checks whether one of the succeding cases holds:

1. Domination
Let S 1 = [b j,Dm] ⊃ S 2 = [bz,Dm]. If d(z) = 0 holds after processing xm, j dominates
z and the propagator infers that a possible Hall set H = [bz, bh] ⊆ S 2 is not left-
maximal and extends H to H := [b j, bh] ⊆ S 1. Thus we only have to check whether
S 1 contains a Hall set and can safely ignore z and S 2. In order to keep the undominated
capacity pointer structure consistent bz points to its undominated successor bsm(z).

2. Negative Capacity
A negative capacity is detected if there is an interval H ⊆ D(X) such that Cm(H) >
dHe ⇒ C(H) > dHe. If so, from equation (21) it follows that the ubc is not satisfiable
and neither is the gcc . In case that y ≤ z failure is detected by testing whether d(z) <⌈
[by, bz − 1]

⌉
for y ≤ z. Hence we get:

d(z) <
⌈
[by, bz − 1]

⌉
(27)

de f d(z)
⇔ vm

b j
− vm

bz
<

⌈
[by, bz − 1]

⌉
de f vi

k
⇔

⌈
[b j, bz − 1]

⌉
−

⌈
[by, bz − 1]

⌉
< Cm([b j, bz − 1])

de f Cm

⇔
⌈
[b j, by − 1]

⌉
< Cm([b j,Dm])

de f B(X)
⇔

⌈
[b j,Dm]

⌉
< Cm([b j,Dm])

26

In case that z < y the algorithm checks whether d(z) <
⌈
[bz − 1, by]

⌉
holds since:

d(z) <
⌈
[bz − 1, by]

⌉
(28)

de f d(z)
⇔ vm

b j
− vm

bz
<

⌈
[bz − 1, by]

⌉
de f vi

k
⇔

⌈
[b j, bz − 1]

⌉
< Cm([b j, bz − 1]) +

⌈
[bz − 1, by]

⌉
⇔

⌈
[b j, bz − 1]

⌉
< Cm([b j, bz − 1])

3. Narrowing the lower bound
Let S m denote the reduced variable domain of the processed variable xm : Dm. Then
the proper update of its lower domain bound is performed by applying the following
inference rule:

UBC-L B
H = [bl, br] ∧ HallS (H) xm : Dm ∈ X ∧ bl ≤ Dm ≤ br

S m ≥ bk k = sm(r)

If a Hall set H = [bl, br] is detected such that the currently processed variable xm :
Dmintersects H such that bl ≤ Dm ≤ br (cf section 4.1 in [24]) the new lower bound
S m for xm is computed as S i := bk where bk ∈ B(X) is the undominated successor of
br.

4. Zero-Test (Lemma 2, section 3.3, [21])
This step checks, whether d(z) =

⌈
[by, bz − 1]

⌉
⇔ HallS ([b j,Dm]) and marks the

detected Hall set [b j,Dm]. The equivalence results from exchanging < with = in (27)
Negative Capacity. As HallS ([b j,Dm]) ⇔ vm

b j
= 0 this test is also refered to as Zero-

Test.

[S3.2] - Updating the upper bounds
Narrowing the upper domain bounds is done in a symmetric way by processing the vari-
ables in decreasing order of the lower domain bounds starting with the last variable. As
the decreasing order of the lower domain bounds is given by the sorting permutation ν cre-
ated in step [S 1] the index of the variable in process xm is given by m = ν(i). Further the
index structure in the balanced binary tree is inverted such that a value bz initially points
towards b j with j = sm(z) instead of pointing to its predecessor bpm(z) as in step [S 3.1].

Moreover, we redefine the cardinality counter of a value s as ci
s

de f .
=

∣∣∣{ j ≥ i | Di ≤ s}
∣∣∣ and

the capacity of s as vi
s = [Di, s] − ci

s, but ∀i ∈ �n,∀ j, z ∈ �q : z < j : vi
b j
≥ vi

bz
still

holds. The inversion of the pointer direction causes this step of the propagation algorithm
to compute:

– z = min
j
{ j ∈ �q | b j ≤ Dm ∧ d(j) > 0}

– y = r(Dm)
– j = sm(z) such that b j is the undominated succesor of bz

and yields the following changes in the four different cases checked by the propagator:

1. Domination still checks whether d(z) = 0, but semantically it checks whether [Dm, bz]
is right-maximal or whether the interval can be extended to [Dm, b j]. In order to keep
the undominated capacity pointer structure consistent bz points to its undominated
predecessor bs with s = pm(z).

2. Negative Capacity detects a failure if d(z) <
⌈
[bz, by − 1]

⌉
or d(z) <

⌈
[by, bz − 1]

⌉
3. Narrowing the upper bound applies

UBC-U B
H = [bl, br] ∧ HallS (H) xm : Dm ∈ X ∧ bl ≤ Dm ≤ br

S m ≤ bk k = pm(l)

27

Thus this step updates Dm whenever there is a Hall set H = [bl, br], such that bl ≤

Di ≤ br holds (cf. section 4.1 in [24]). If so, the new upper bound S m of xm is com-
puted as S m := bk where bk is the undominated predecessor of bl.

4. Zero-Test checks whether d(z) =
⌈
[bz, by − 1]

⌉
and marks [Dm, j] as a Hall set.

The overall complexity of [S 3] is bounded by the operations for maintenance and update
of the pointers in the underlying balanced binary tree data structure for the values in B(X)
and the Hall sets which is achieved in O (n · log(n)) as explained in Lemma 3, section 3.3
of [21, 20].

[S4] - Satisfying the lower bounds constraint (lbc)
From equation (23) we know that the lbc constraint is only satisfiable if there is no subset
H ⊆ D(X) such that H is a failure set (cf. Lemma 2, section 3.2 in [24]). Hence this
step analyzes the matching problem between X and D(X) in terms of failure, stable and
unstable sets as explained in definition 34. In order to keep track of those different kind
of sets the balanced binary tree data structure used in S 3 is extended by pointers for
potentially stable and stable sets.

[S4.1] - Updating the lower bounds
Updating the lower domain bounds of the problem variables requires processing them
according to the sorting permutation µ created in step [S 1] where m = µ(i) is the index of
the variable in process. Using the same definitions as described in [S 3] this step computes
indices j, y, z such that:

– j = pm(z) such that b j is the undominated predecessor of bz

– y = r(Dm)
– z = min{ j ∈ �q | b j ≥ Dm ∧ d(j) > 0}

After the computation of these indices this step checks whether one of the following cases
matches:

1. Potentially stable set
If the propagator detects that Dm < bz ⇔ z > r(Dm) + 1 the set S = [Dm,min(by, bz)]
contains more variables xk : Dk 3 Dm than required by the corresponding lower
bound lDm−min(D(X)). Hence it is possible that S becomes a stable set and S is marked
as a potentially stable set by setting ps(min(y, z)) = Dm.

2. Stable set
First the propagator checks whether U([b j,Dm]) holds before xm is processed. Anal-
ogously to the negative capacity step in [S 3.1] we check for a stable this check is
performed by testing whether d(z) ≤

⌊
[by, bz − 1]

⌋
since:

d(z) ≤
⌊
[by, bz − 1]

⌋
⇔ Cm([b j,Dm]) ≥

⌊
[b j,Dm]

⌋
⇒ I([b j,Dm]) =

⌊
[b j,Dm]

⌋
⇔ U([b j,Dm])

If d(z) ≤
⌊
[by, bz − 1]

⌋
applies, we have z > y and z > j. Thus, processing xm results in

increasing Cm([b j,Dm]) by one and we obtain Cm([b j,Dm]) >
⌊
[b j,Dm]

⌋
. Neverthe-

less, it is possible that ∃R ⊆ D(X) : U(R) ∧ S ∩ R , ∅ contradicting to the definition
of a stable set. However, z > y implies that z > r(Dm) + 1 stating that there is a po-
tentially stable set that has become a stable set. In order to obtain the maximal stable
subset of [b j,Dm] the algorithm then marks [ps(y),Dm] as a stable set where ps(y) is
the lower bound of the maximal stable set S ⊆ [b j,Dm] not intersecting an unstable
or a failure set such that the former unstable set [b j,Dm] is now partitioned into the
unstable set [b j, ps(y) − 1] and the stable set [ps(y),Dm].

28

3. Failure Set
Let S 1 = [b j,Dm] ⊃ S 2 = [bz,Dm]. If d(z) = 0 holds after processing xm, j dominates
z and the propagator infers that a possible stable or unstable set S = [bz, bh] ⊆ S 2 is
not left-maximal and extends H to S := [b j, bh] ⊆ S 1. Thus we only have to check
whether S 1 is stable or unstable and can safely ignore z and S 2. In order to keep the
pointer structure consistent bz points to bs with s = sm(z) such that bpm(s) = b j.

4. Unstable Set
Corresponding to the zero-test case in the ubc step [S 3.1] this step tests whether d(z) =⌊
[by, bz − 1]

⌋
since

d(z) =
⌊
[by, bz − 1]

⌋
⇔

⌊
[b j,Dm]

⌋
= Cm([b j,Dm])

⇒
⌊
[b j,Dm]

⌋
= I([b j,Dm])⇔ U([b j,Dm])

If the above condition holds, we know that there are sufficiently many variables in
[b j,Dm] such that ∃α ∈ assbnd(X) : ∀vi ∈ [b j,Dm] : #(α, vi) ≥ li.

5. Narrowing the lower bound
If at iteration m we are already given a set H ⊆ [bl, br] that is no failure set and that
intersects the domain Dm of xm we can apply the following inference rule:

LBC-L B
H = [bl, br] ¬F(H) xm : Dm ∈ X ∧ bl ≤ Dm < br

S m ≥ bk k > r ∧ d(k) > 0

since the variable xm : Dm is needed to cover the required minimum number of value
occurrences in Dm \H. Hence the lower bound Dm is set to the next value in B(X) not
in H in order to cover its minimum occurrence. As at iteration m the partition of D(X)
into stable and unstable sets is still unknown we do not know whether S (H) holds.
Hence S m is stored as newBoundm in the data structure for later update. Thus, the
proper reduction step of Dm to S m is only performed if after processing all variables
xi the following holds:

LBC-L B

H = [bl, br]
¬F(H) xm : Dm ∈ X ∧ bl ≤ Dm < br ∀R ⊆ D(X) : S (R) ∧ Dm 1 R

S m ≥ bk k = sm(r)

[S4.2] - Updating the upper bounds
Analogously to the ubcwe narrow the variables’ upper bounds in a symmetric way by
processing the variables in order of the lower bounds which is given by the sorting per-
mutation ν such that the variable in process is xm where m = ν(i). Further, the underly-
ing pointer structure of the balanced binary tree is inverted such that a value bz initially
points to its undominated successor bsm(z) in B(X) instead of pointing to its undominated
predecessor. Further we redefine the cardinality counter and the capacity counter such

that cm
s

de f .
=

∣∣∣{ j ≥ m | Dm ≤ s}
∣∣∣ and vm

s = [Dm, s] − cm
s holds for value s after variable xm

has been processed. These structural changes result in the following modifications to the
above steps:

1. Potentially stable and stable sets
The maximal stable subset S ⊆ D(X) has already been determined in step [S 4.1] and
hence we can omit the steps for potentially stable and stable sets for the upper domain
bounds since the stable set information can be reused in this step without recomputing
the set again.

29

2. Failure Set
This step still checks whether d(z) = 0 holds, but now tests whether the current the
unstable set S := [Dm, bz] is right-maximal or whether it can be extended to [Dm, b j].

3. Unstable Set
This case tests whether d(z) =

⌊
[bz, by − 1]

⌋
and marks ([Dm, b j]) as an unstable set if

the former condition holds.
4. Narrowing the upper bound

If at iteration m there is a set H ⊆ [bl, br] that is no failure set and that intersects the
domain Dm of xm we can apply the following inference rule:

LBC-U B
H = [bl, br] ¬F(H) xm : Dm ∈ X ∧ Dm < bl ≤ Dm ≤ br

S m ≤ bk k = pm(l)

Although we already now the maximal stable subset of D(X) the proper update of the
upper bounds is performed after all variables have been processed where the propa-
gator performs the following inference:

LBC-U B

H = [bl, br]
¬F(H) xm : Dm ∈ X ∧ Dm < bl ≤ Dm ≤ br ∀R ⊆ D(X) : S (R) ∧ Dm 1 R

S m ≤ bk k = pm(l)

As the computation step for the lbc part uses the same balanced binary tree data struc-
ture as the ubc step [S 3] its complexity depends likewise on the complexity of the most
expensive tree operations

[Find]
Find undominated capacity pointers in the balanced binary tree

[Path compression]
Given a path p in the tree and a node v make every node on p a direct successor of v.

having each a worst case complexity of O (n · log(n)). Hence, the worst case complexity
of the lbc step is the same as for the ubc step that also depends on those operations on
the underlying data structure. Thus, the time needed for checking satisfiability of the lbc
is at least ω(n) and at most O (n · log(n)).

Total complexity of gcc A synopsis of the complexity for all computation steps for
gcc bnd is shown in table 5 underlining

T (S 1) O (T)
T (S 2) Θ (n)
T (S 3) O (n · log(n))
T (S 4) O (n · log(n))

T (gcc) O (n · log(n))
Table 5. complexity-bounds consistent gcc

that the complexity of the bounds consistent propagation algorithm for the gcc con-
straint is bounded by the complexity of the lbc and the ubc part which themselves are
bounded by aO (n · log(n)) worst case complexity of the find and compression operations
in the balanced binary tree structure as described in [24].

30

3.3.3 A Domain Consistent View

In the previous section we discussed a bounds consistent propagation algorithm for the
gcc based on the theory of Hall intervals and an extension thereof. The essence of this
bounds consistent algorithm is to project the result from the König-Hall Theorem (see
theorem 1) on the domain bounds. Hence, the bounds consistent propagation algorithm
does not need to construct the full VVGX in order to determine the satisfiability of the gcc
on the given problem variables in X . Conversely, this section gives a glance at the under-
lying theory of a domain consistent propagation algorithm gcc dom explicitly constructing
the full VVGX and relying on graph algorithms as used in the propagation algorithm for
the sortedness constraint in section 3.2. The implementation of gcc dom described in
this section is based on Improved Algorithms for the Global Cardinality Constraint [25]
by Claude-Guy Quimper et al. Analogously to gcc bnd (see section 3.3.2) the propagation
algorithm for gcc dom determines the satisfiability of the constraint by decomposing it into
two smaller constraints, namely the ubc and the lbc .

[S1] - Construction of the variable value (VVG)
Since all further computation steps reason about the variable value graph for the gcc as ex-
plained in definition 30 the propagator’s first step constructs VVGX for the problem vari-
ables in X . Let X = {x0 : {2}, x1 : {1, 2}, x2 : {2, 3}, x3 : {2, 3}, x4 : [1..4], x5 : {3, 4}},
V = {1, 2, 3, 4} and F = {(1, 3), (1, 3), (1, 3), (2, 3)} then the picture below shows a vari-
able value graph for gcc (X ,V,F):

x0 x1 x2 x3 x4 x5

1 1 3 2 1 3 3 1 3 4 2 3

Fig. 3. Example of a variable value graph

In this figure a vertex in the upper X - partition of the graph represents a variable xi : Di ∈

X and a vertex in the lower D(X) ×�n+1 ×�n+1 - partition represents a triple (v j, l j, u j)
such that the first component of the vertex denotes a value v j ∈ D(X) associated with the
respective lower bound l j and upper bound u j on its occurrence in a variable assignment
α ∈ assdom(gcc). Given such a variable value graph we redefine the notion of a free
vertex for a vertex v j ∈ D(X) × �n+1 × �n+1 as: v j free with respect to the lbc if∣∣∣{e ∈ E | inc(v j, e)}

∣∣∣ < l j and free with respect to the ubc if
∣∣∣{e ∈ E | inc(v j, e)}

∣∣∣ < u j.
From the above example and by definition of the VVGX it becomes obvious that it takes
Θ (|Di|) time to construct a variable vertex in the graph representing a variable xi : Di

with all outgoing edges to the value partition. Let further d
de f .
= max

(⋃
i∈�n
|Di|

)
denote

the cardinality of the largest variable domain. As the domain size |Di| is bounded by
the size of the largest variable domain, d, the setup of the complete VVGX is done in
T (S 1) = O

(∣∣∣X ∣∣∣ · d) time. For the remainder of this section we refer to d as the size of

31

the largest variable domain Di, to mX
de f .
=

∣∣∣d · X ∣∣∣ as the maximal number of edges in the

VVGX and to nX
de f .
=

∣∣∣X ∣∣∣ + ∣∣∣D(X)
∣∣∣ as the number of vertices in the VVGX .

[S2] - Maximum matching
As depicted in sec. 3.3.1 the major insight into a propagation algorithm for the global
cardinality constraint is the correspondence between a maximum matching on VVGX
and a variable assignment α ∈ sat(gcc). From corollary 1 we know that an initial max-
imum matching M on VVGX is sufficient to determine whether edges of the variable
value graph belong to some maximum matching on VVGX or not. Due to the decompo-
sition of the gcc into the ubc and the lbc (see equation (13)) this step of the propaga-
tor checks whether there are two maximum matchings Mu and Ml on VVGX such that
|Mu| =

∣∣∣X ∣∣∣ ∧ |Ml| =
⌊D(X)

⌋
. At first we describe the maximum matching step for the

ubc and compare it subsequently to the maximum matching step for the lbc . Instead
of the advanced Hopcroft-Karp bipartite maximum matching algorithm as proposed in
[15, 26, 25] we use a hybrid algorithm HM for testing whether there exists maximum
matchings Mu and Ml on VVGX . The first step of HM is a greedy algorithm GM to com-

pute a maximal matching Nu on VVGX where γu
de f .
= |Nu|. If GM results in a matching Nu

with max| |(Nu,VVGX) we set Mu = Nu and we are done. If Nu is not maximum we use
the following corollary:

Corollary 2 (Extending a maximal matching [see 5, chp. 7]) Given a graph G and a
matching M on G, M is maximum if, and only if, there exists no augmenting path between
any two free vertices in G.

In case that γu ,
∣∣∣X ∣∣∣ we know that max⊂(Nu,VVGX) and the second step of HM tests

whether there exist k vertex-disjoint augmenting paths pi such that Nu can be extended

to a maximum matching Mu
de f .
= Nu ⊕

⊕
i∈�k

pi

, where k ∈ O
(∣∣∣X ∣∣∣ − γu

)
. If this aug-

mentation step fails and Nu cannot be extended to a maximum matching Mu the prop-
agator detects that the gcc constraint is unsatisfiable and fails. As GM is a factor-2-
approximation-algorithm for a maximum cardinality matching [9, chp. 4] and T (GM) =
O (mX) the resulting matching Nu has minimum cardinality |Nu| ≥

1
2 · |Mu|. Hence,

the augmentation phase of Hm performs at most
(∣∣∣X ∣∣∣ − γu

)
≤
|X |
2 augmentation steps.

Given a free vertex v f in the variable value graph VVGX the search for an augmenting
path pi is a depth-first search (dfs) on VVGX starting from v f and inverting all edges
along pi. As the complexity of dfs on VVGX is T (dfs) = O (mX) and the edge inver-
sion along pi is in O (nX) the overall complexity for one augmentation phase is at most
O (mX + nX). Hence, the computation of an initial maximum matching Mu is bounded by

O
(

1
2 ·

∣∣∣X ∣∣∣ · (mX + nX)
)
= O

(
d ·

∣∣∣X ∣∣∣2), since T (Gm) = O (mX). At first sight this com-
plexity is worse than the complexity of the above mentioned Hopcroft-Karp algorithm,

O
(
mX ·

√∣∣∣X ∣∣∣) = O (∣∣∣X ∣∣∣ 3
2 ·

∣∣∣D(X)
∣∣∣). However, Shapira showed in [36] that due to a the-

orem of Erdös and Gallai [5]

T (HM) = O
(
mX · max

(√
n2

X − nX − 2mX −
nX
2
,

nX
2
−

√
mX
2

))
is an exact bound for the hybrid algorithm HM . Taking a closer look at the number of edges
it turns out that due to a CSP’s problem structure the initial variable domains are rather
large than small resulting in a VVGX where mX ∈ Θ

((
nX
2

))
. For this case the complexity

T (Mu) for computing a maximum matching Mu is:

T (Mu) = O
(
mX · max

(√
n2

X − nX − 2mX −
nX
2
,

nX
2
−

√
mX
2

))

32

mX ∈Θ
((nX

2

))
= O

(
mX ·

nX
2
−

√
mX
2

)
= O

(
mX ·

(
nX −

√
n2

X − nX

))
L′Hôpital
= o

(
mX ·

√
nX

)
= o

(
mX ·

√∣∣∣X ∣∣∣ + ∣∣∣D(X)
∣∣∣)

In order to compute a maximum matching Ml for the lbcwe only exchange Nu by Nl

setting γl
de f .
=

⌊D(X)
⌋
. Given this changes we perform the same hybrid algorithm as for

the ubc part resulting in a complexity of T (Ml) = o
(
mX ·

√∣∣∣X ∣∣∣), since
⌊D(X)

⌋
≤

∣∣∣X ∣∣∣.
Thus, the T (S 2) is upper bounded by T (Mu). Keeping in mind that

∣∣∣D(X)
∣∣∣ ≤ ∣∣∣X ∣∣∣k , k >

0 we have to distinguish between two cases. If
∣∣∣D(X)

∣∣∣ ∈ O (X)
holds it follows from

T (Mu) =
∣∣∣D(X)

∣∣∣ ∈ o
(
mX ·

√∣∣∣X ∣∣∣ + ∣∣∣D(X)
∣∣∣) = o

(
mX ·

√
X

)
that the HM has the same

upper bound than a more elaborate maximum matching algorithm like the Hopcroft-Karp

algorithm. For all other cases where O
(∣∣∣X ∣∣∣k) for k > 1 we know that Hm performs at

most |X |2 augmentation steps. Hence, we obtain an overall complexity for the maximum

matching step of T (S 2) = O
(
d ·

∣∣∣X ∣∣∣ ·min
(√∣∣∣X ∣∣∣ + ∣∣∣D(X)

∣∣∣, 1
2

∣∣∣X ∣∣∣)).
[S3] - Free alternating paths
As the previous step [S 1] only computes initial maximum matchings Mu and Ml it is still
possible that some vertices of the graph remain unmatched. By corollary 1 it suffices to
check the existence of alternating paths starting in a free vertex and of strongly connected
components in VVGX to decide whether an edge of the variable value graph belongs to
some maximum matching M or not. In context of the bipartite variable value graph Régin
showed in [26, sec. 4] that an alternating path starting in a free vertex corresponds to a
directed simple path starting in a free vertex in an oriented version of VVGX . Hence we
introduce the following two graph definitions:

Definition 37 (Upper (Lower) oriented variable value graph). Given a variable value
graph VVGX := 〈X] (D(X) ×�n+1 ×�n+1), E〉 as defined in definition 30 and a maxi-
mum matching Mu on VVGX with |Mu| =

∣∣∣X ∣∣∣ we define the upper oriented variable value
graph by directing every edge e ∈ E \ Mu from the variable to the value partition and
adding the reverse edge for every edge e ∈ Mu. Likewise, we define the lower oriented
variable value graph for a maximum matching Ml with |Ml| =

⌊D(X)
⌋

by directing every
edge e ∈ E \ Ml from the value to the variable partition and adding the reverse edge for
every edge e ∈ Ml. As shorthand notation we write −−→GU for the upper- and −→GL for the lower
oriented variable value graph.

Obviously, after the computation of matching Mu in [S 1] there can only be free vertices
in the value partition of −−→GU since |Mu| =

∣∣∣X ∣∣∣ states that Mu corresponds to a vertex cover
on X . As a value vertex in a variable value graph can match more than one variable ver-
tex the number of free vertices in the value partition is bounded by

∣∣∣D(X)
∣∣∣. Contrarily,

after the computation of the Ml matching for the lbc constraint there can not only be
free variables vertices but also free value vertices, where the number of free value ver-
tices is bounded by O

(∣∣∣D(X)
∣∣∣) and the number of free variable vertices is bounded by

O
(∣∣∣X ∣∣∣). Performing breadth-first search (bfs) on the respective partition possibly con-

taining free vertices we compute all simple directed paths in the −−→GU in O
(∣∣∣D(X)

∣∣∣ + mX
)

and all simple directed paths in −→GL in O
(∣∣∣X ∣∣∣ + mX

)
. Hence, the complexity of step [S 3]

is T (S 3) = O
(
max

(∣∣∣X ∣∣∣ , ∣∣∣D(X)
∣∣∣) + ∣∣∣X ∣∣∣ · d).

33

[S4] - Strongly Connected Components of VVGX
Given an initial maximum matching M from [S 1] and having computed all existing free
alternating paths this step of gcc dom has to check whether there exist even alternat-
ing cycles in −−→GU and −→GL. As described by Régin [26] the even alternating cycles in
−−→GU and −→GL directly correspond to the strongly connected components in those graphs.
Hence, we use the dfs- based algorithm Mehlhorn presents in [22, chp. 4] to compute
the strongly connected components of −−→GU and −→GL in at most T (S 4) = O (nX + mX) =
O

(∣∣∣X ∣∣∣ + ∣∣∣D(X)
∣∣∣ + ∣∣∣d · X ∣∣∣) time.

[S5] - Narrowing X
Concluding the above computation steps for gcc dom we now define the domain reduc-
tion step the propagator performs. Let G := 〈X] (D(X) ×�n+1 ×�n+1), E〉 denote the
variable value graph for X as defined above and let Mu ⊆ E be a maximum matching

for the ubc and −−→GU the resulting upper oriented variable graph. Let further S ∗(−−→GU)
de f .
=⋃

SCC(S ,
−−→GU)

S ⊆ E denote the union of all SCCs in −−→GU and let A∗(−−→GU)
de f .
=

⋃
p̃ p ⊆ E

denote the union of all even alternating paths in −−→GU starting in a free vertex. Then we
compute the narrowed domain S i of a variable xi : Di by applying the following inference
rule:

R E-UBC

max| |(Mu ⊂ E,G) ∧ |Mu| =
∣∣∣X ∣∣∣

E′ = {e = (xi : Di,w j = (v j, l j, u j)) ∈ E | e ∈ Mu ∨ e ∈ A∗(−−→GU) ∨ e ∈ S ∗(−−→GU)}

S i = {v j ∈ Di | e = (xi, (v j, l j, u j)) ∈ E′}

Similarly, for the lbc case we exchange Mu with Ml and −−→GU with −→GL resulting in the
following reduction rule for the lbc :

R E-LBC

max| |(Ml ⊂ E,G) ∧ |Ml| =
⌊D(X)

⌋
E′ = {e = (xi : Di,w j = (v j, l j, u j)) ∈ E | e ∈ Ml ∨ e ∈ A∗(−→GL) ∨ e ∈ S ∗(−→GL)}

S i = {v j ∈ Di | e = (xi, (v j, l j, u j)) ∈ E′}

As the propagation algorithm has to check all values in all variable domains the narrowing
step of gcc dom takes at most T (S 5) = Θ (mX) = Θ

(∣∣∣d · X ∣∣∣) time.

Total complexity of gcc A brief summary of the complexities for all computation steps
in the domain consistent propagation algorithm gcc dom is given by table 6 highlighting

T (S 1) O
(∣∣∣d · X ∣∣∣)

T (S 2) O
(∣∣∣d · X ∣∣∣ ·min

(√∣∣∣X ∣∣∣ + ∣∣∣D(X)
∣∣∣, 1

2

∣∣∣X ∣∣∣))
T (S 3) O

(
max

(∣∣∣X ∣∣∣ , ∣∣∣D(X)
∣∣∣) + ∣∣∣d · X ∣∣∣)

T (S 4) O
(∣∣∣X ∣∣∣ + ∣∣∣D(X)

∣∣∣ + ∣∣∣d · X ∣∣∣)
T (S 5) Θ

(∣∣∣d · X ∣∣∣)
T (gcc) T (S 2)

Table 6. complexity - gcc dom

that the complexity of the gcc propagation algorithm is bounded by the complexity of the
initial maximum matching computation in [S 2].

34

Edge deletion Nevertheless, a variable xi : Di in X may be constrained by more propa-
gators than just the gccwe studied in this section and it is possible that during constraint
propagation another propagator p, different from the gcc , reduces a variable domain Di.
Consequently, the X -variables and the union of their respective domains, D(X), now dif-
fer from the previously constructed VVGX . Therefore Régin proposes in [26] to restore
the consistency of the VVGX by deleting the corresponding edge e = (xi : Di, (v j, l j, u j)) ∈
E from VVGX instead of reconstructing the whole graph. Let M be a maximum matching
on VVGX . If e < M the algorithm restores the consistency of VVGX by removing e from
the graph. Otherwise, if e ∈ M, M is no longer maximum and has to be augmented again.
Let R denote the set of edges that have to be removed from the graph such that |R| = δ.
Assume further that mX − δ ≥ |M| since otherwise there exist no maximum matching on
VVGX . In case that δ < |M| the algorithm has to perform at most δ augmentation steps

resulting in a worst case complexity of O
(
d ·

∣∣∣X ∣∣∣2) if M ⊆ R. Again, taking a closer

look at the number of edges and the correlation of
∣∣∣X ∣∣∣ and

∣∣∣D(X)
∣∣∣ we can do better than

this upper bound: Let mX =
∣∣∣d · X ∣∣∣ and |M| = α. The probability of deleting δ matching

edges from the VVGX is Pr(|R ∩ M| = δ) =
(
α! · (mX − δ)!
(α − δ)! · mX !

)
≤

(
α

mX

)δ
≤


∣∣∣X ∣∣∣∣∣∣d · X ∣∣∣

δ =
1∣∣∣D(X)

∣∣∣δ ≤ 1∣∣∣X ∣∣∣k·δ with k > 0. As the probability of deleting a matching edge decreases

with increasing domain size and increasing size of X the worst case complexity for edge
deletion including a possible augmentation of the defective matching shrinks to O (mX).
Therefore, respecting value removal by other propagators p in this way the propagator’s
complexity can only improve from T (S 2) to T (S 5) but does not exceed the upper bound
of T (S 2).

3.3.4 Extended Global Cardinality

In the previous section we focused on propagation algorithms for the gccwith static lower
and upper bounds l j and u j on the occurence of a value v j in some variable assignment α.
In the remainder of this section we discuss how to apply the above studied propagation al-
gorithms in order to extend the gcc to an extended version of the global cardinality
constraint we refer to as global cardinality+ or gcc+ that is defined as follows:

Definition 38 (Extended Global Cardinality). Given a finite set of FDVars X := {x0 :
D0, . . . , xn−1 : Dn−1}, the union of all variable domains D(X), a finite set V ⊆ D(X) of
values for the variables with |V | = m, a finite set of FDVars K := {k0 : C0, . . . , km−1 :

Cm−1} such that ∀i ∈ �m : Ci = [Ci..Ci] ⊆ {0, . . . ,
∣∣∣X ∣∣∣} and S de f .

= X ∪ K , we define
global cardinality+ as

gcc+ (X ,V,K)
de f .
= {α ∈ asscl(S) | ∀i ∈ �m : vi ∈ V ∧ #(α, vi) = α(ki)}

where cl ∈ {val, bnd, dom} denotes the consistency level of the global cardinality
which is cl = val for the value consistent version of the gcc cl = bnd for the bounds
consistent version and cl = dom for the domain consistent version.

The above restriction of the variable domains Ci to be intervals is necessary in order to
obtain domain consistency for cl = dom. Otherwise, the problem of enforcing domain
consistency on X and K is NP -complete [25, 27]. Given X , K as specified below the
table 4 presents some examples for the global cardinality+ constraint: Provided the
restriction on the cardinality variables as explained in definition 38 we extended the above
propagation algorithms by the following computation steps:

35

X1 = {x0 : {1}, x1 : {2}, x2 : {3}, x3 : {2}, x4 : {1}} V1 = {1, 2, 3}
K1 = {k0 : {2}, k1 : [1..2], k2 : {1}}
X2 = {x0 : {1}, x1 : {1}, x2 : {1}, x3 : {3}, x4 : {3}} V2 = {1, 3}
K2 = {k0 : [1..2], k1 : {2}}
X3 = {x0 : {1}, x1 : {2}, x2 : {3}, x3 : {4}, x4 : {1}} V3 = {1, 2, 3, 4}
K3 = {k0 : {3}, k1 : {1}, k2 : {1}, k3 : {1}}

gcc+ (X1,V1,K1) X correct
gcc+ (X2,V2,K2) value 1 occurs to often
gcc+ (X3,V3,K3) value 1 occurs to few

Table 7. Examples for global cardinality+

[S1] - Consistency
At first we ensure that all Ci contain only feasible values such that

∀i ∈ �k : 0 ≤ Ci ∧Ci ≤
∣∣∣X ∣∣∣

holds as required in the definition of the gcc+ . Checking, whether the cardinality vari-
ables are consistent is in Θ

(∣∣∣K ∣∣∣). Because of the restriction that a domain Ci of a car-
dinality variable ki is an interval Ci = [li..ui] we can apply the propagation algorithms
as discussed above where the domain bounds Ci and Ci are used as bounds on the value
occurrence for vi ∈ V such that Ci ≤ #(α, vi) ≤ Ci.

[S2] - Additional Constraints
Analogously to the filtering algorithm Régin applies for the cardinality variables in [27]
the definition of gcc+ constrains the domain bounds of the Ci’s in a stronger way than the
consistency check in [S 1] by applying an additional bounds consistent propagator linear
such that:

linear (K)
de f .
= {α ∈ assbnd(K) |

m−1∑
i=0

α(ki) ∼
∣∣∣X ∣∣∣}

where we set ∼
de f .
= = if V = D(X) and ∼

de f .
= ≤ if V ⊂ D(X).

[S3] - Narrowing K
After having applied the above gcc propagators with l j = C j and u j = C j, 0 ≤ j ≤
|V | =

∣∣∣K ∣∣∣ we can perform the following reduction steps: Taking into account that the
Ci’s are restricted to be ranges we cannot do any better for the reduced lower bound U j
than applying the following inference rule before and after the application of the gcc
propagator:

C-LB
c =

∣∣∣{xi : Di ∈ X | |Di| = 1 ∧ Di = {v j}}
∣∣∣

U i ≥ c

From this rule immediately follows a trivial inference rule for the reduced upper bound
U j, namely:

C-UB
a =

∣∣∣{xi : Di ∈ X | |Di| = 1}
∣∣∣ c =

∣∣∣{xi : Di ∈ X | |Di| = 1 ∧ Di = {v j}}
∣∣∣

U j ≤
∣∣∣X ∣∣∣ − (c − a)

As the lookup operation for finding the corresponding cardinality variable k j for a value
v j is bounded by O

(
log

(∣∣∣D(X)
∣∣∣)) = O (

log
(∣∣∣D(X)

∣∣∣)) the worst case complexity for the

maintenance of the above rules is given by O
(∣∣∣X ∣∣∣ · log

(∣∣∣D(X)
∣∣∣) + ∣∣∣D(X)

∣∣∣), where a is
defined as defined in the above inference rules.

36

For the bounds consistent case of gcc+ we add the following inference rule after the
application of gcc bnd. If S i denotes the reduced variable domain of a problem variable
xi : Di ∈ X it follows that:

C-UB-B
l =

∣∣∣{xi : S i ∈ X | S i < v j}
∣∣∣ u =

∣∣∣{xi : S i ∈ X | S i > v j}
∣∣∣

U j ≤
∣∣∣X ∣∣∣ − l − u

As the lookup operation for finding the corresponding cardinality variable k j for a value v j

is bounded byO
(
log

(∣∣∣D(X)
∣∣∣)) = O (

log
(∣∣∣D(X)

∣∣∣)) the above narrowing steps is bounded

by O
(∣∣∣X ∣∣∣ · log

(∣∣∣D(X)
∣∣∣) + ∣∣∣D(X)

∣∣∣). In case of the domain consistent gccwe know that
after one pass of the propagator the VVGX contains only those edges taking part in a
solution to the constraint Let VVG−X := 〈X] (D(X) ×�n+1 ×�n+1), E〉 denote the vari-
able value graph for the gcc after the removal of all infeasible edges. Hence, the domain
C j of the corresponding cardinality variable k j for a value v j in the variable domains of X
can be reduced to the domain U j such that:

C-UB-D
w j = (vi,Ci,Ci) ∈ D(X) ×�n+1 ×�n+1 u =

∣∣∣{e ∈ E | inc(w j, e)}
∣∣∣

U i ≤ u

Obviously, this reduction step is in Θ
(∣∣∣D(X)

∣∣∣) and can be incorporated by the narrowing
step [S 5] of the gcc dom propagator.

3.3.5 Idempotency for cardinality propagators
Provided a space S = X such that S is solvable, gcc (S) , [P1], and gcc is not subsumed
on S , gcc (S) , [P4],the gcc propagation algorithm follows the same global propagation
scheme as the propagator for the sortedness constraint: At first the propagation algo-
rithms collects the domain information as provided by the variable domains Di. Given
this domain information the algorithms proceed by applying their respective computation
steps as specified in 3.3.2 for gcc bnd and 3.3.3 for gcc dom. Unless the satisfiability tests
for lbc or ubc report a failed space the gcc bnd and gcc dom propagate the new domain
information from their computation steps back to the variables and achieve a fixpoint [P2]
as they cannot infer more information than provided by one pass of the propagation al-
gorithms. Clearly, we require for the bounds consistent case that the variable domains Di

contained in S are ranges of the form Di = [a..b]. Analogously to the idempotency condi-
tions of a sortedness propagator in section 3.2.3 both propagators, gcc bnd and gcc dom,
can be hindered from achieving a fixpoint by the presence of shared variables. Addition-
ally, gcc bnd is not at a fixpoint, if it detects domains with holes the propagator was not
aware of which is also the case for the bounds consistent sortedness propagator. As
gcc+ is an extension of gcc the same two cases as for global cardinalitymay occur
where the propagator is not at a fixpoint.

4 The Gecode framework

In section 2 we looked at basic definitions of CP and introduced propagators as important
concept to increase the efficiency of a constraint solver pruning variable domains with
different strength and returning status information about inconsistencies or their idem-
potency. The subsequent section 3 discussed advanced propagation algorithms for global
constraints and their extensions. In this section we give a short outline of important corner-
stones in the Gecode framework that directly relate to the aspect of constraint propagation
and the implementation of the above propagators in Gecode . The following definitions
and introduced notions are mainly taken from the Gecode reference documentation [32],
from Speeding Up Constraint Propagation[34] by Christian Schulte and Peter Stuckey.

37

Computation Space
The essential component of the Gecode architecture is a computation space CS as defined
in [31] forming the computational equivalent of a CSP P := 〈X ;C〉 by encapsulating prop-
agators p ∈ P implementing constraints C ∈ C and a constraint store s that implements
the set of problem variables X the constraints in C are defined on and that the propagators
p ∈ P are connected to. The connection of propagators to variables in the constraint store
is realized by the mechanism of variable subscription [35]. On the one hand variable sub-
scription associates propagators to those variables in the store s being in the scope of the
constraint C implementing p. Moreover, variable subscription stores on the other hand
the condition under that a propagator p is scheduled for execution. Hence, a form of com-
munication between two independent propagators p1, p2 becomes only possible if they
both depend at least on one common variable in the constraint store s. In addition to the
encapsulation of propagators and variables, C S also manages the constraint propagation
of propagators p ∈ P by implementing the set P of propagators as a queue Q scheduling
the propagators that have to be applied next [32, 34].

Scheduling Propagators
An essential criterion which propagator to perform next in Q is the idempotency of a
propagator as mentioned in 2.3.2. Obviously, an idempotent propagator p cannot infer
new domain information for the variables in store s it is connected to directly after being
run. Due to the design that a propagator p always returns is current propagation status
with respect to its input store s as discussed in 2.3.2 the computation space is dynami-
cally aware of the propagator’s idempotency. Thus, constraint propagation inside C S is
optimized by dynamically removing idempotent propagators p from Q [34]. Along with
the idempotency criterion Gecode takes also care of the changes imposed to the variable
domains. This is realized by introducing modification events . The following definition
summarizes the modification events used in Gecode for constraint propagation on FD-
Vars:

Definition 39 (Modification Event). Given a FDVar xi : Di and S i ⊆ Di a reduced
variable domain a modification event describes the result of an inference applied to Di

where we distinguish:

[M1] Failure:
The domain update resulted in a failure such that S i = ⊥

[M2] Unmodified:
The variable domain has not been modified and S i = Di

[M3] Assigned:
Di has been reduced to the set of a single value S i = {v}

[M4] Bounds Modification:
Applies if Di = [a..b] has been narrowed to S i = [c..d] such that either a < c ≤ d = b
denotes the change of the lower domain bound or a = c ≤ d < b denotes the change
of the upper domain bound

[M5] Domain Modification:
∃R ⊂ Di : |R| ≥ 1 ∧ S i = Di \ R. Note that this modification event overlaps with [M3]
and [M4].

With the help of these modification events indicating what change in the variable domain
recently occurred during constraint propagation the computation space is able to define
propagation conditions for propagators as follows:

Definition 40 (Propagation Condition). In case that a variable domain Di of a FDVar
xi : Di has been changed we define a propagation condition as an indicator what propa-
gators p depending on xi : Di have to be scheduled in Q for execution. For propagation
on FDVars Gecode distinguishes the following propagation conditions:

38

[PC1] Value change
Execute propagators p ∈ P connected to xi under the condition that [M3] occurred
on xi.

[PC2] Bounds change
Execute propagators p ∈ P connected to xi under the condition that [M4] occurred
on xi.

[PC3] Domain change
Execute propagators p ∈ P connected to xi under the condition that [M5] occurred
on xi.

Let us assume that a propagator p has already reached its fixpoint before the domain of
a variable xi : Di has been changed that p is connected with in C S . Obviously, the
propagator p can only infer new domain information for Di if the propagation condition
after a modification event on xi coincides with p’s consistency level. Otherwise repeated
application of p to the store s containing xi would not lead to new domain information.
Hence, the above modification events are used to define propagation conditions under
which the computation space detects whether the fixpoint of a propagator p has been
affected by a modification event or not and consequently whether p has to be rescheduled
in Q or not resulting in a further improvement [34] of the constraint propagation inside
the computation space. In addition to the prioritization of Q according to a propagator’s
complexity [34] Gecode further improves the constraint propagation inside a computation
space by introducing the mechanism of staged propagation. Consider the two propagation
algorithms gcc bnd and gcc dom we discussed in sections 3.3.2 and 3.3.3, where gcc dom
has an asymptotically greater theoretical complexity than gcc bnd. From the definitions
of modification events and propagation conditions we know that once at its fixpoint the
gcc bnd is only enqueued for execution if [M4] is detected on the variables it depends on
whereas gcc dom is rescheduled in Q if [M5] occurs on the variables it has subscribed
to. In this context, the idea of staged propagation is to combine different propagators
as gcc bnd and gcc dom implementing the same constraint to one single propagator gcc
that decides depending on the current modification event which propagation algorithm to
execute. Thus, staged propagation not only decreases the number of enqueued propagators
but also combines multiple propagators to an efficient and effective propagator [34].

5 Experimental Results

In the last section of the paper we present an empirical evaluation of the implementations
of the propagation algorithms for the sortedness and the global cardinality con-
straint we discussed in section 3. The main goals of this empirical analysis are as follows:

Efficiency We want to demonstrate that advanced propagation algorithms for global con-
straints as presented in section 3 are more efficient with respect to constraint propagation
than their respective decomposition into local constraints.

Competitiveness on the same platform Second we want to show that the implementa-
tions for sortedness and global cardinality are competitive with an alldiff im-
plementation in the above mentioned cases.

Competitiveness with other platforms Last, we want to highlight that these global con-
straints are competitive with their respective counterparts in other constraint solvers like
SICStus and ILOG . For cross-platform comparison we tried hard to literally implement
the same model on different platforms by using the same or constraints or equivalent
constraints with respect to denotational semantics and consistency level and assured the
same number of backtracks [41] for the respective problem on both platforms in focus.

39

The experiments with the following models use the Gecode C++ constraint programming
library [38] and are either part of the Gecode library or can be obtained by request from
the author of this paper. Due to license restrictions and server capacities the benchmarks
were carried out on two different platforms:

[B1] is a Fujitsu-Siemens with a Pentium IV 2,8 Ghz hyper-threading processor with
1024 MB of working memory running RedHat Linux using GNU GCC Compiler
3.4.3. This platform was used for the competitiveness benchmarks against ILOG us-
ing ILOG Solver 6.0.

[B2] is a S260 MSI Megabook Laptop with a Pentium M 2,0 Ghz processor with 1024
MB of working memory running Cygwin on Windows XP using the Microsoft Vi-
sual C++ Toolkit 2003. This platform was used for the competitiveness benchmarks
against SICStus using SICStus 3.12.3.

The runtimes for the benchmarks have been measured as the arithmetic mean of 20 runs
for each problem, with a coefficient of deviation below 2% .

5.1 Sortedness

In order to evaluate whether the discussed propagator for the sortedness constraint is
able to improve constraint propagation we compare it to a propagation algorithm for a
naive sortedness constraint we define as follows:

Definition 41 (D-Sort). Given two finite sets of FDVars X = {x0 : D0, . . . , xn−1 : Dn−1},
and Y = {y0 : E0, . . . , yn−1 : En−1} and a space S = X ∪ Y we define:

d-sort (X ,Y)
de f .
=

⋂
0≤i< j≤|Y |

leq yi≤y j
∩

⋂
0≤i≤|X |

element (xi,Y) ∩
⋂

0≤i≤|X |

element (yi,X)

with

leq x≤y
de f .
= {α ∈ assbnd(S)|α(x) ≤ α(y)}

element (x,Y)
de f .
= {α ∈ assbnd(S)|∃i ∈ �|Y | : α(x) = α(yi)}

element (y,X)
de f .
= {α ∈ assbnd(S)|∃i ∈ �|X | : α(y) = α(xi)}

Apart from evaluating whether sortedness outperforms its decomposition or not we
are also able to test it against other global propagators as motivated by the following
equivalences. Consider an alldiff constraint as presented in section 2.3.4. Let X and Y
be finite sets of FDVars with Y = {y0 : E0, . . . , yn−1 : En−1} such that

∣∣∣D(X)
∣∣∣ = ∣∣∣X ∣∣∣ = ∣∣∣Y ∣∣∣,

E0 ≤ . . . ≤ En−1 and
⊎

i∈�|Y |

Ei = D(X) hold. Then we obtain the equivalence:

sortedness (X ,Y) ≡ alldiff (X) (29)

If so we are able to compare the bounds consistent propagator for sortednesswith a
bounds consistent propagation algorithm for the alldiff constraint and hence can test
with every model using the alldiff constraint under the above requirements, whether
the sortedness propagator is competitive with an established efficient and advanced
propagation algorithm for a global constraint like the alldiff . Moreover, we observe
that, given finite sets of FDVars X and Y with Y = {y0 : E0, . . . , yn−1 : En−1}, the
union of all variable domains in X , D(X) with

∣∣∣D(X)
∣∣∣ = m, and a finite set F ⊂

{(l, u) ∈ �n × �n | l ≤ u} such that
∣∣∣Y ∣∣∣ = ∑

0∈�m

, ∀(l j, u j) ∈ F : l j = u j
de f .
= k j and

40

∀i ∈ �m :
∣∣∣{E j | 0 ≤ j ≤

∣∣∣Y ∣∣∣ ∧ E j = {vi}}
∣∣∣ = ki, we can deduce the following correspon-

dence:

sortedness (X ,Y) ≡ global cardinality (X ,D(X),F) (30)

Hence, every CSP model fulfilling the above requirements also provides the possibility to
compare the bounds consistent sortedness propagator to the gcc bnd.

5.1.1 Permutation problem

Problem description
Given a integer n ∈ � and the set�n, the set of integer residues modulo n, the permutation
problem perm − n consists in finding all tuples x = (x0, . . . , xn−1), y = (y0, . . . , yn−1)
∈ � × . . . ×�︸ ︷︷ ︸

n

such that x forms a permutation of �n, a permutation of y and ∀i, j ∈

�n, i < j : yi ≤ y j. Thus, a solution to perm − 5 is x = (3, 4, 1, 2, 0) and y = (0, 1, 2, 3, 4).

Problem representation
We encode the vectors x and y as sets of FDVars X and Y and introduce a set Z such
that |X| = |Y | = |Z| = n and ∀i ∈ �n : xi ∈ �n ∧ yi ∈ �n ∧ zi ∈ {i}. The problem of
finding assignments for the X - and Y -variables subject to the above description with the
sortedness constraint and model the problem as:

1. sortedness (X , Z) - X is a permutation of �n

2. sortedness (X , Y) - Y is the sorted permutation of X

Obviously, the size of the search space is
∣∣∣S ∣∣∣ = n! and constructing a single solution

can be done in O (n). Thus, the difficulty of the problem consists in finding all possible
permutations x of �n.

Results
Table 8 presents the comparison of a perm − n model using the sortedness propaga-
tor with a perm − n model using the decomposition d-sort on platform [B2]. Strikingly,
the search tree for the sortednessmodel consists only of solvable spaces, whereas the
number of failed spaces in search tree for the d-sortmodel increases with the prob-
lem size. Thus, the propagator for sortedness outperforms its decomposition by a fac-
tor of 6.3 due to a stronger propagation. Apart from testing the sortedness propagator
against its decomposition we also want to compare it with a sorting constraint of a differ-
ent constraint solver. As ILOG provides no such constraint we choose the SICStus plat-
form for a cross-platform comparison. However, SICStus provides a sorting constraint
taking also permutation variables into account. Hence, we compare the above presented
sortedness+ propagator with SICStus ’ sorting propagator. The results of this com-
parison for the permutation problem as depicted in table 9 show that the sortedness+

propagator solves the problem 80% faster on average than SICStus and we obtain a first
indicator that the sortedness propagator and its extension are competitive with respect
to other constraint solvers. In the following benchmark problems we want to underline
this statement and further analyze whether the sortedness constraint is also competitive
with the alldiff constraint on the same platform.

41

sortedness d-sort
n solutions clones cpu cpu

(in millisecs) (rel in %)
3 6 5 0.033515 376
4 24 23 0.188800 429.5
5 120 119 1.123400 528.24
6 720 719 7.710500 607.73
7 5040 5039 59.650000 713.12
8 40320 40319 521.090000 825.34
9 362880 362879 5202.850000 947.36

632.47
Table 8. sortedness vs. d-sort on [B2]

sortedness+ sorting
n solutions clones cpu cpu

(in millisecs) (rel in %)
3 6 5 0.055780 258.59
4 24 23 0.300000 197.92
5 120 119 1.820300 171.42
6 720 719 12.671500 162.77
7 5040 5039 100.272500 158.95
8 40320 40319 893.825000 155.95
9 362880 362879 8820.050000 154.39

180
Table 9. sortedness+ vs. sorting on [B2]

5.1.2 All-interval series

Problem description - Prob007[11]
Given the twelve standard pitch-classes (c, #c, d, . . . , h, c), each represented by numbers
0, 1, . . . , 11, find a series in which each pitch-class occurs exactly once and in which
the musical intervals between neighboring notes cover the full set of intervals from the
minor second (1 semitone) to the major seventh (11 semitones). That is, for each of the
intervals, there is a pair of neighboring pitch-classes in the series, between which this
interval appears. The problem of finding such a series can be easily formulated as an
instance of a more general arithmetic problem on �n. Given an integer n ∈ �, find a
vector x = (x0, . . . , xn−1), such that x is a permutation of �n and the interval vector v =
(|x1 − x0| , . . . , |xn−2 − xn−1|) is a permutation of �∗n = �n \ {0}. A vector v satisfying these
conditions is called an all-interval series of size n. The problem of finding such a series
is the all-interval series problem of size n we refer to as allint − n.

Problem representation
As in the previous example we encode the vectors x and v as sets of FDVars X and V and
introduce sets Z , Z∗ such that |X| = |Z| = n, |V | =

∣∣∣Z∗∣∣∣ = n − 1, ∀i ∈ �n : xi ∈ �n∧yi ∈

�∗n ∧ zi ∈ {i} and ∀i ∈ �n−1 : z∗i ∈ {i + 1}. Thus, we can model the problem as:

1. sortedness (X ,Z) - X is a permutation of �n

2. sortedness (V ,Z∗) - V is a permutation of �∗n
3. ∀i ∈ �n−2 : |xi+1 − xi| = vi

The implementation of this problem is provided with the Gecode library and uses the work
of Gent et al. to reduce the size of the search space by static symmetry breaking [12] that
eliminates:

1. the negation of the sequence x by adding xo < xn−1
2. the reversal of the sequence x by adding vo < vn−2

Results
Comparing the sortedness propagator with the bounds consistent alldiff propagator
on the allint − n problem, table 10 shows that the alldiff bnd propagator is 30% faster
on average than the sortedness propagator demonstrating that both propagators belong
to the same complexity class.

42

sortedness alldiff bnd

solutions fails clones cpu cpu
(in millisecs) (rel in %)

4 1 3 3 0.055037 78.93
5 2 7 8 0.171850 77.1
6 6 20 25 0.646850 74.15
7 8 69 76 2.276500 72.96
8 10 255 264 9.265500 71.84
9 30 942 971 38.071667 71.41

10 74 3845 3918 165.465000 70.44
11 162 16695 16856 770.300000 73.83
12 332 77335 77666 3789.920000 73.11

73.75
Table 10. sortedness vs. alldiff on [B2]

sortedness+ sorting
n solutions fails clones cpu cpu

(in millisecs) (rel in %)
4 1 3 3 0.079906 410.86
5 2 7 8 0.255200 363.58
6 6 20 25 0.964850 323.56
7 8 69 76 3.434400 306.14
8 10 255 264 14.023000 289.31
9 30 942 971 58.435000 281.42

10 74 3845 3918 256.640000 278.48
11 162 16695 16856 1195.300000 321.91
12 332 77335 77666 5992.975000 309.2

320.5
Table 11. sortedness+ vs. sorting on [B2]

Moreover table 11 depicts that the mean runtime of the sortedness+ model is 3.2 times
faster on average than for the corresponding sorting constraint in SICStus as it was the case
for the permutation problem. A third example where we can evaluate the competitiveness
of the sortedness and the sortedness+ propagators is Langford’s number problem.

5.1.3 Langford’s number problem

Problem Description - Prob024[11]
Consider two sets of the numbers from 1 to 4. The problem is to arrange the eight numbers
in the two sets into a single sequence in which the two 1’s appear one number apart, the
two 2’s appear two numbers apart, the two 3’s appear three numbers apart, and the two 4’s
appear four numbers apart. The problem generalizes to the L(k, n) problem, which is to
arrange k sets of numbers 1 to n, so that each appearance of the number m is m numbers
apart from the last. Thus the following sequence

x = < 1 9 1 6 1 8 2 5 7 2 6 9 2 5 8 4 7 6 3 5 4 9 3 8 7 4 3 >

is a solution to the L(3, 9) problem. A complete history of Langford’s number problem
can be found on John E. Miller webpage [16]. For our benchmark we focus only on the
L(k, n) problem for k = 2.

Problem Representation
The set P of FDVars represents the vector containing the position of each number in the
sequence of Langford’s numbers. Additionally, we use the set Z such that, ∀i ∈ �k·n :
pi ∈ �n ∧ zi ∈ {i}. Then we can model the problem as follows:

1. sortedness (P ,Z)
2. ∀i ∈ �n : ∀ j ∈ �k−2 : pi·k+ j + i + 2 = pi·k+(j+1)

Again, due to Smith [37] we further introduce a set of FDVars Y dual to X representing
the numbers in the Langford sequence such that ∀i ∈ �n : ∀ j ∈ �k : ypi·k+ j = i + 1 and
order the numbers in the sequence by adding y0 < yn−1.

Results
Like in the previous examples table 12 emphasizes that the sortedness propagator is
competitive with the alldiff propagator since the runtimes for the examples using the
alldiff propagator are only 0.5% faster on average than those using the sortedness
propagator.

43

sortedness alldiff bnd

solutions fails clones cpu cpu
(in millisecs) (rel in %)

2 0 1 0 0.006348 93.84057971
3 1 0 0 0.014367 98.802812
4 1 4 4 0.085656 104.3592977
5 0 14 13 0.297265 78.7109145
6 0 48 47 1.057970 129.5301379
7 26 166 191 5.066250 121.221811
8 150 620 769 23.117000 84.89423368
9 0 4015 4014 127.781000 85.44854086

10 0 21959 21958 753.633333 85.93701627
11 17792 113804 131595 5124.200000 84.03750829
12 108144 794213 902356 36522.650000 86.98150326

95.79675956
Table 12. sortedness vs. alldiff on [B2]

sortedness+ sorting
n solutions fails clones cpu cpu

(in millisecs) (rel in %)
2 0 1 0 0.006735 1010.126206
3 1 0 0 0.019796 833.0218226
4 1 4 4 0.108825 378.6951528
5 0 14 13 0.361090 315.3881304
6 0 48 47 1.330450 299.5415085
7 26 166 191 6.417750 285.6452807
8 150 620 769 29.562500 302.1919662
9 0 4015 4014 165.031000 298.6275306

10 0 21959 21958 991.133000 300.7669001
11 17792 113804 131595 6775.750000 296.7612441
12 108144 794213 902356 47504.650000 313.3097497

310.1
Table 13. sortedness+ vs. sorting on [B2]

Comparing the Langford problem between the sortedness+ and SICStus ’ sorting
propagator table 13 highlights that sortedness+ runs 3.1 times faster on average than the
corresponding sorting constraint in SICStus . Hence we can state that the implementa-
tion of the sortedness propagator is able to compete with an equivalent implementation
of alldiff bnd propagator and moreover is also competitive with respect to the sorting
constraint in SICStus .

5.2 Global Cardinality

Evaluating whether the propagation algorithms for the global cardinality constraint
are able to improve constraint propagation we compare them to a propagation algorithm
for a cardinality constraint combining several weaker constraints that are defined as:

Definition 42 (D-GCC). Given a finite set of FDVars X := {x0 : D0, . . . , xn−1 : Dn−1},
the union of all variable domains D(X), a finite set V ⊆ D(X) of values for the variables
with |V | = m and a finite set F ⊂ {(l, u) ∈ �m ×�m | l ≤ u} with

∣∣∣F ∣∣∣ = |V | = m, we define
d-gcc as:

d-gcc (X ,V,F)
de f .
=


⋂

0≤ j≤m

(
atleast (X , v j, l j) ∩ atmost (X , v j, u j)

)
if |V | ≤

∣∣∣D(X)
∣∣∣⋂

0≤ j≤m

(
exactly (X , v j, l j)

)
if |V | =

∣∣∣D(X)
∣∣∣

where

atleast (X , v j, l j)
de f .
= {α ∈ asscl(X)|l j ≤ #(α, v j)}

atmost (X , v j, u j)
de f .
= {α ∈ asscl(X)|#(α, v j) ≤ u j}

exactly (X , v j, c j)
de f .
= {α ∈ asscl(X)|#(α, v j) = c j}

5.2.1 Pathological

In order to test, whether the global cardinality propagator is competitive with its
decomposition and with the alldiff constraint our first test is the modified pathological
problem [20] (originally by Puget[23]).

44

Problem Description
Given n ∈ �, the pathological problem P(k, n) consists in finding a sequence x of length
|x| = k · n such that every number v ∈ {0, . . . , 2 · n} appears exactly k times in x.

Problem Representation
We represent the sequence x using a set of FDVars X , such that

∣∣∣X ∣∣∣ = k · (2 · n+ 1) where
∀i ∈ �c·n : xi : Di = [0..n] and ∀i ∈ {k · n, . . . , k · 2 · n} : xi : Di = [n..i]. Thus, we can
model the pathological problem as:

1. gcc (x, {0, . . . , 2 · n},F), where ∀i ∈ �2·n+1 : (li, ui) = (k, k)

A possible solution to P(2, 4) is the sequence

x = < 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 >

Results
Table 14 contains the comparison between the gcc dom propagator and its decomposed
equivalent d-gcc dom on the pathological problem P(2, n), where n denotes the number of
problem variables. From the relative runtimes for the d-gcc dom propagator it follows that
the gcc dom outperforms its decomposition by a mean factor of 50.

gcc dom d-gcc dom

n cpu cpu
(in millisecs) (rel in %)

100 3.161700 393.25
500 112.941667 1751.35

1000 451.795000 3387.52
1500 1017.660000 5121.89
2000 1898.825000 6354.38
2500 3087.100000 8206.96
3000 4715.600000 9948.51

5023.41
Table 14. gcc dom vs. d-gcc dom on B2

5.2.2 Social golfers

Problem Description - Prob010[11]
The coordinator of a local golf club has come to you with the following problem. In her
club, there are 32 social golfers, each of whom play golf once a week, and always in
groups of 4. She would like you to come up with a schedule of play for these golfers, to
last as many weeks as possible, such that no golfer plays in the same group as any other
golfer on more than one occasion. Possible variants of the above problem include: finding
a 10-week schedule with maximum socialisation; that is, as few repeated pairs as possible
(this has the same solutions as the original problem if it is possible to have no repeated
pairs), and finding a schedule of minimum length such that each golfer plays with every
other golfer at least once (full socialisation). The problem can easily be generalized to
that of scheduling g groups of s golfers over w weeks, such that no golfer plays in the
same group as any other golfer twice (i.e. maximum socialisation is achieved).

45

Problem Representation
As the commonly used finite set model of the golfer problem is not well-suited for the
application of the gcc propagator we choose a more naive finite domain integer model for
the social golfers problem as presented in [3]. This model introduces a set G of FDVars
such that |G| = g · s · w and gw,p represents the group number of player p in week w and
∀i ∈ �w∀ j ∈ �g·s : gi, j ∈ {1, · · · , g}. Hence, we can model the problem as follows:

1. ∀i ∈ �w : gcc ({Gi, j|0 ≤ j < g · s}, {1, . . . , g},F), where ∀i ∈ �g : (li, ui) = (s, s).
2. 0 ≤ p < q ≤ g · s − 1

∑
0≤i<w

(
Gi,p == Gi,q

)
≤ 1 - for maximum socialisation.

Note that this is naive approach, since the constraint for maximum socialisation uses
quadratically many variables in the size of the players. Therefore we add symmetry break-
ing constraint to our model as proposed by Barnier and Brisset[3]:

1. Fix the first week:
∀i ∈ �g : ∀i ∈ �p : G0,g·s+i = i

2. Players in the first group of the second week have smallest possible group numbers:
∀p ∈ �s : G1,p = p + 1

3. Players with small group numbers are put in small groups:
∀i ∈ �w : ∀ j ∈ �p : Gi,p ≤ p + 1

4. Groups in the second week are ordered:
∀i ∈ �g : ∀ j ∈ {0, . . . , p − 1} : G1,i·s+ j < G1,i·s+i+1

5. Groups in the second week are ordered lexicographically:
∀i ∈ {0, . . . , g − 1} : ∀p ∈ �s : G1,g·s+p ≤ G1,(g+1)·s+p

Results
As ILOG does not provide an explicit gcc the results in table 15 have been measured
as comparison to a semantically equivalent IloDistribute algorithm[30] with domain-
consistency on platform [B1]. As we used the above described integer model for the social
golfers problem to perform the benchmarks for this section interesting instances like 8 −
4 − 9 did not terminate in less than 30 minutes neither on the Gecode platform nor on the
ILOG platform. Hence, we have tested instances g − s − w of the social golfers problem
such that: g ∈ {5, 8}, s ∈ {2, 3, 4}, w ∈ {2, . . . , 9}. As table 15 shows the gcc dom propagator
found a first solution 4.9 times faster on average than the equivalent ILOG constraint for
test instances with g = 5 and 4.0 times faster on average for test instances with g = 8.
Thus, these benchmarks for the integer model of the social golfers problem indicate that
the global cardinality propagator is obviously competitive with equivalent global
constraints of other constraint solvers.

46

gcc dom IloDistribute
g-s-w cpu cpu

(in milliseconds) (rel in %)
5 - 2 - 2 0.197667 3562.3
5 - 2 - 3 0.425000 1883.13
5 - 2 - 4 0.923000 875.41
5 - 2 - 5 1.646667 603.82
5 - 2 - 6 2.385000 463.73
5 - 2 - 7 4.070000 356.02
5 - 2 - 8 4.425000 339.44
5 - 2 - 9 4.295000 344.35
5 - 3 - 2 0.338000 2582.1
5 - 3 - 3 1.387500 871.35
5 - 3 - 4 3.045000 500.82
5 - 3 - 5 4.645000 409.15
5 - 3 - 6 715.500000 354.65
5 - 3 - 7 2511.500000 319.99

494.43

gcc dom IloDistribute
g-s-w cpu cpu

(in milliseconds) (rel in %)
8 - 2 - 2 0.534000 1860.67
8 - 2 - 3 1.875000 676
8 - 2 - 4 3.635000 443.88
8 - 2 - 5 6.030000 337.23
8 - 2 - 6 9.330000 251.02
8 - 2 - 7 14.600000 225
8 - 2 - 8 29.700000 210.54
8 - 2 - 9 64.700000 206.68
8 - 3 - 2 1.411667 1326.8
8 - 3 - 3 5.660000 449.12
8 - 3 - 4 11.875000 277.31
8 - 3 - 5 45.600000 282.92
8 - 3 - 6 4868.000000 323.31
8 - 4 - 2 2.835000 352.73
8 - 4 - 3 11.250000 280.92
8 - 4 - 4 1486.500000 397.17

402.71

Table 15. gcc dom vs. IloDistribute on [B1]

5.2.3 Car sequencing

In order to underline the statement from table 15 that the gcc propagator is competi-
tive with ILOG ’s IloDistribute implementation this section compares these two con-
straints in a model for the car sequencing problem.

Problem Description - Prob001[11]
In Automotive industry there are a number of cars to be produced. They are not identical,
because different options are available as variants on the basic model. The assembly line
has different stations which install the various options (air-conditioning, sun-roof, etc.).
These stations have been designed to handle at most a certain percentage of the cars
passing along the assembly line. Furthermore, the cars requiring a certain option must not
be bunched together, otherwise the station will not be able to cope. Consequently, the cars
must be arranged in a sequence so that the capacity of each station is never exceeded. For
instance, if a particular station can only cope with at most half of the cars passing along
the line, the sequence must be built so that at most 1 car in any 2 requires that option. The
problem has been shown to be NP-complete (Gent 1999).

Problem Representation
A set of FDVars X represents the assembly line of all cars and a set of FDVars Y , such
that ∀yi : Ei ∈ Y : E = [0..1] representing the options a configuration of a certain car
class needs. Next the required data is taken from a problem data sheet looking as follows
[8]:

47

10 5 6 → number of cars nc, number of options no, number of classes ncl
1 2 1 2 1 → the maximum number of cars with that option in a block
2 3 3 5 5 → the block size to which the maximum number refers to
1 1 0 1 1 0
1 0 0 0 1 0
2 0 1 0 0 1
2 0 1 0 1 0→ line for c3: demand(c3) = 2, c3 requires options 1 and 3
2 1 0 1 0 0
2 1 1 0 0 0

A valid sequence for the above data sheet is:

0 1 5 2 4 3 3 4 2 5→ assembly line with classes of cars
1 0 1 0 1 0 0 1 0 1→ options the cars are using
0 0 1 1 0 1 1 0 1 1
1 0 0 0 1 0 0 1 0 0
1 1 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 0 1 0

The model has been encoded as follows:

1. There have to be as many cars of configuration ci as required by the first column of
the data sheet:
gcc (X , {c0, . . . , cncl−1},F), where ∀i ∈ �ncl(li, ui) = (demand(i), demand(i))

2. Option i occurs at most p times in a block s of size |s| = q: ∀i ∈ {0, . . . , nc − q + 1} :
∀ j ∈ {i + 1, . . . , i + q} : |s| = q ∧ s j−i = yno·nc+ j ∧

∑
j∈�q

sq ≤ p

Additionally we added a redundant constraint on the Y -variables as described in [8]:
Consider an option oi with capacity p/q, that is at most p cars out of a block s of x with
length |s| = q require option oi. If the total number of cars using option oi is M and we
consider a block s of x, containing v ≤ p cars requiring option oi then all remaining blocks
t contain must contain M − v cars that require oi.

Results
In table 5.2.3 we compare the runtime of the gcc propagator with the runtimes of the
IloDistribute implementation for finding a first solution to the above specified car se-
quencing problem. The instances we used were two instances from A filtering algorithm
for global sequencing constraints by [29] denoted as RP0 and RP1, the example from
Solving the Car-Sequencing Problem in Constraint Logic Programming denoted as DB1
and further examples provided by CSPlib[11]. Like in the preceding car sequencing ex-
ample table 5.2.3 underlines that the gcc propagator was a factor 1.17 faster on average
in finding a first assignment for the assembly line than the IloDistribute constraint.

48

gcc dom IloDistribute
instance cpu cpu

(in millisecs) (rel in %)
DB1 0.510000 1000.980392
RP0 40.150000 133.063512
RP1 45.850000 129.661941
60-01 126.050000 124.672749
60-02 121.750000 127.392197
60-03 152.200000 110.052562
60-04 164.800000 118.719660
60-05 139.900000 112.830593
60-06 960.800000 148.407577
60-07 113.400000 132.936508
60-08 268.200000 152.628635
60-09 158.700000 114.744802
60-10 134.150000 119.567648

127.28
Table 16. gcc dom vs. IloDistribute on [B1]

5.2.4 Sports-League Scheduling

Problem Description - Prob026[11]
As proposed by [11] the sports-league scheduling problem which is also referred to as the
round robin tournament is specified as follows: The problem is to schedule a tournament
of n teams over n − 1 weeks, with each week divided into n

2 periods, and each period
divided into 2 slots. The first team in each slot plays at home, whilst the second plays
away. A tournament must satisfy the following three constraints:

1. Every team plays once a week
2. Every team plays at most twice in the same period over the tournament
3. Every team plays every other team.

An example schedule for 8 teams is:

week 1 week 2 week 3 week 4 week 5 week 6 week 7
period 1 0 v 1 0 v 2 4 v 7 3 v 6 3 v 7 1 v 5 2 v 4
period 2 2 v 3 1 v 7 0 v 3 5 v 7 1 v 4 0 v 6 5 v 6
period 3 4 v 5 3 v 5 1 v 6 0 v 4 2 v 6 2 v 7 0 v 7
period 4 6 v 7 4 v 6 2 v 5 1 v 2 0 v 5 3 v 4 1 v 3

Table 17. Sports-League Schedule for n = 8

One extension of the problem is to double round robin tournaments in which each team
plays every other team (as before) but now both at home and away. This is often solved
by repeating the round robin pattern, but swapping home games for away games in the
repeat.

Problem Representation
Analogously to the model presented in [14] we use sets of FDVars, ,̋ A , G , where m̋odels
all home teams, A models all of away teams and set G models all numbers of a match
m = (hi, ai) between a home and an away team, such that

∣∣∣H ∣∣∣ = ∣∣∣A ∣∣∣ = n
2 · n and

∣∣∣G ∣∣∣ =
n
2 ·(n−1). As mentioned in the above description the model uses the following constraints:

49

1. ∀i ∈ {0, . . . n} :
(
∀ j ∈ � n

2
: coliwith

∣∣∣coli
∣∣∣ = n ∧ h j·n+i ∈ coli ∧ a j·n+i ∈ coli

)
∧alldiff (coli) - Every team plays once a week

2. ∀ j ∈ � n
2

:
(
∀i ∈ �2·n : row jwith

∣∣∣row j
∣∣∣ = 2 · n ∧ h j·n+ i

2
∈ rowi ∧ a j·n+ i

2
∈ row j

)
∧gcc (row j, {1, . . . , n},F), where ∀i ∈ �n : (li, ui) = (2, 2) - Every team plays at
most twice in the same period over the tournament

3. alldiff (G) - Every match occurs only once

Apart from these constraints the model also uses a initial round robin schedule[14] re-
stricting the domains of the variables such that only those matches can be scheduled that
the round robin schedule allows. Furthermore we break the symmetry of interchanging
the teams of a match by stating that ∀i ∈ � n

2
: ∀ j ∈ �n : hi·n+ j < ai·n+ j and fix the first

pair such that h0,0 = 1 and a0,0 = 2. Apart from this we order the home weeks in the first
week such that ∀i ∈ {0, . . . , n

2 − 1} : hi·n < h(i+1)·n.

Results
Comparing the gcc dom propagator with the IloDistribute in case of the sports league
scheduling problem we can see in table 5.2.4 that the mean runtime of the gcc dom propa-
gator is 1.2 times faster on average than the corresponding ILOG constraint.

gcc dom IloDistribute
n failures clones cpu cpu

(in milliseconds) (rel in %)
6 2 4 0.619000 841.03
8 18 25 4.135000 232.89

10 2 12 3.490000 315.33
12 121 142 39.610000 123.48
14 1984 2013 627.500000 103.63
16 2092 2132 794.400000 100.77
18 236 293 160.500000 109.53
20 1778 1851 984.800000 99.6
22 2456 2549 1568.000000 100.96
24 1837 1949 1935.000000 95.61
26 9298 9428 7034.500000 91.63
28 68048 68105 47486.000000 103.57
30 6033 6094 6510.000000 98.62

121.2
Table 18. gcc dom vs. IloDistribute on [B1]

Summary Although benchmarking itself “is a difficult business” [41] and “even more
so for complex constraint programming systems”[41] the experiments conducted dur-
ing this section allow the following conclusions: propagation algorithms for global con-
straints clearly outperform their local decompositions as we have seen for sortedness
and d-sort and global cardinality and d-gcc . Hence, the use of global constraints
in a constraint solver definitely increases the efficiency of constraint propagation. Further-
more, we saw that in case the sortedness propagator can be used instead of a bounds
consistent alldiff propagator, the time complexity of the sortedness propagator is not
dramatically worse than the complexity of alldiff bnd, that is they belong to the same
complexity class. Moreover, a cross-platform comparison with SICStus showed that the
propagator for the sortedness constraint as well as its extension are definitely compet-
itive with the sorting constraint as provided in SICStus . Finally, the same result di-
rectly transfers to the global cardinality propagator being at least as efficient as ILOG ’s
IloDistribute constraint with respect to semantics and consistency level.

50

6 Conclusion & Contributions

The contributions of this paper are as follows: we recapitulated basic definitions and no-
tations of constraint programming focusing on the principle of constraint propagation.
We discussed advanced propagation algorithms for global constraints developed in the
work of Thiel [39], Quimper et al. [24] and Quimper et al. [25] and provided a possi-
ble extension for the sortedness constraint[39]. Moreover, we also gave a trace of how
propagation is handled in Gecode , a generic constraint development environment and fi-
nally the above propagation algorithms have been implemented as part of this Gecode
-library emphasizing that these propagation algorithms are not only theoretically smart
but also practically increase performance of constraint propagation.

7 Future Work

In so far as further research on the discussed propagation algorithms is concerned we want
to point out that there remains interesting aspects to look at that would have gone beyond
the scope of this thesis and the related implementation: It would be interesting to use the
extended sortedness constraint in order to model the job-shop scheduling problem as
referenced in the work of [42]. Furthermore, one could implement the bounds consis-
tent propagator for the global cardinality as presented by Katriel and Thiel in [17]
and compare it to the propagator we discussed during the course of this paper. Finally it
would also be nice to further exploit the knowledge of the global cardinality con-
straint to implement and evaluate propagation algorithms for the cardinality matrix
constraint[28] and the global sequencing constraint [29] as proposed by Régin
and Puget.

8 Acknowledgement

First of all, I want to thank Gert Smolka, the responsible professor, for giving me the op-
portunity of doing my Fortgeschrittenenpraktikum at his chair for programming systems
at Saarland University. I also want to thank my supervisor Guido Tack who introduced
me to the topic of Constraint Programming and who was very patient answering all my
questions and helping me out if got stuck. Further I want to thank Marco Kuhlmann and
Guido Tack for their work in the Constraint Programming lecture formalizing very nicely
the necessary notation I used throughout my paper Last, but not least I want to thank
Christian Schulte, chief supervisor of the Gecode - project for the possibility of taking
part in that project.

9 References

[1] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1974). The Design and Analy-
sis of Computer Algorithms, volume - of Addison-Wesley Series in Computer Sci-
ence and Information Processing. Addison-Wesley, Reading,Massachusetts - Menlo
Park,California - London.

[2] Baptiste, P., Pape, C. L., and Nuijten, W. (2001). Constraint-Based Scheduling.
Kluwer Academic Publishers.

[3] Barnier, N. and Brisset, P. (2002). Solving the kirkman’s schoolgirl problem in a few
seconds.

[4] Barták, R. (1999). Constraint programming: In pursuit of the holy grail. In In Pro-
ceedings of the Week of Doctoral Students (WDS99), volume Part IV, Prague. MatFyz-
Press.

51

[5] Berge, C. (1979). Graphs and hypergraphs, volume 6 of North - Holland Mathemat-
ical Library. North-Holland, Elsevier, Amsterdam, repr. of the 2., rev. ed. edition.

[6] Bleuzen-Guernalec, N. and Colmerauer, A. (2000). Optimal narrowing of a block of
sortings in optimal time. Constraints: An International Journal, 5(1/2), 85–118m.

[7] Cormen, T. H., Leierson, C. E., and Rivest, R. L. (2001). Introduction to Algorithms,
second edition. MIT Press, Cambridge, Massachusetts - London, England.

[8] Dincbas, M., Simonis, H., and Hentenryck, P. V. (1988). Solving the car-sequencing
problem in constraint logic programming. In ECAI, pages 290–295.

[9] Emden-Weinert, T., Hougardy, S., Kreuter, B., Prömel, H. J., and Steger, A. (1996).
Einführung in Graphen und Algorithmen.

[10] Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co.

[11] Gent, I. and Walsh, T. (1999). Csplib: a benchmark library for constraints. Technical
report, Technical report APES-09-1999. Available from http://csplib.cs.strath.ac.uk/.
A shorter version appears in the Proceedings of the 5th International Conference on
Principles and Practices of Constraint Programming (CP-99).

[12] Gent, I., McDonald, I., and Smith, B. (2003). Conditional symmetry in the all-
interval series problem. In B. Smith, I. Gent, and W. Harvey, editors, Proceedings of
the Third International Workshop on Symmetry in Constraint Satisfaction Problems,
pages 55–65.

[13] Glover, F. (1967). Maximum matching in a convex bipartite graph. Naval Research
Logistics Quarterly, 14(3), 313–316.

[14] Hentenryck, P. V., Michel, L., Perron, L., and Régin, J.-C. (1999). Constraint pro-
gramming in opl. In G. Nadathur, editor, Proceedings of the International Conference
on Principles and Practice of Declarative Programming (PPDP’99), volume 1702 of
Lecture Notes in Computer Science, pages 98–116.

[15] Hopcroft, J. E. and Karp, R. M. (1973). An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM: Journal of Computing, 2(4), 225–231.

[16] John E. Miller (20064). Langford’s problem. Available from http://www.
lclark.edu/~miller/langford.html.

[17] Katriel, I. and Thiel, S. (2003). Fast bound-consistency for the global cardinality
constraint. In F. Rossi, editor, Principles and Practice of Constraint Programming -
CP 2003 : 9th International Conference, CP 2003, volume 2833 of Lecture Notes in
Computer Science, pages 437–451, Kinsale, Ireland. Springer.

[18] Kuhlmann, M. and Tack, G. (2005a). Constraint satisfaction problems.
[19] Kuhlmann, M. and Tack, G. (2005b). Propagators.
[20] López-Ortiz, A., Quimper, C.-G., Tromp, J., and van Beek, P. (2003a). A fast and

simple algorithm for bounds consistency of the alldifferent constraint. In Proceedings
of the 18th International Joint Conference on Artificial Intelligence, pages 245–250,
Acapulco, Mexico.

[21] López-Ortiz, A., Quimper, C.-G., Tromp, J., and van Beek, P. (2003b). A fast and
simple algorithm for bounds consistency of the alldifferent constraint, technical re-
port. Technical report, School of Computer Science, University of Waterloo, Waterloo,
Canada, Acapulco, Mexico.

[22] Mehlhorn, K. (1984). Data Structures and Algorithms, volume 2 Graph Algorithms
and NP-Completeness of EATCS Monographs. Springer Verlag.

[23] Puget, J.-F. (1998). A fast algorithm for the bound consistency of alldiff constraints.
In AAAI ’98/IAAI ’98: Proceedings of the fifteenth national/tenth conference on Ar-
tificial intelligence/Innovative applications of artificial intelligence, pages 359–366,
Menlo Park, CA, USA. American Association for Artificial Intelligence.

[24] Quimper, C.-G., van Beek, P., López-Ortiz, A., Golynski, A., and Sadjad, S. B.
(2003). An efficient bounds consistency algorithm for the global cardinality constraint.
In Proceedings of the 9th International Conference on Principles and Practice of Con-
straint Programming, volume 2833, pages 600–614, Kinsale, Ireland.

http://www.lclark.edu/~miller/langford.html
http://www.lclark.edu/~miller/langford.html

52

[25] Quimper, C.-G., van Beek, P., López-Ortiz, A., and Golynski, A. (2004). Improved
Algorithms for the Global Cardinality Constraint. In Proceedings of the 10th Inter-
national Conference on Principles and Practice of Constraint Programming, volume
3528, Toronto, Canada.

[26] Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSPs. In
Proceedings of 12th National Conference on AI (AAAI’94), volume 1, pages 362–367,
Seattle.

[27] Régin, J.-C. (2005). Combination of Among and Cardinality Constraints. In
R. Barták and M. Milano, editors, Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems: Second International Con-
ference, CPAIOR, volume 3524 of Lecture Notes in Computer Science, pages 288 –
303, Prague, Czech Republic. Springer-Verlag.

[28] Régin, J.-C. and Gomes, C. P. (2004). The cardinality matrix constraint. In CP,
pages 572–587.

[29] Régin, J.-C. and Puget, J.-F. (1997). A filtering algorithm for global sequencing
constraints. In CP, pages 32–46.

[30] S.A., I. (2000). ILOG Solver 5.0:Reference Manual. ILOG S.A.
[31] Schulte, C. (2000). Programming Constraint Services. Doctoral dissertation, Saar-

land University, Faculty for Natural Sciences I, Department of Computer Science,
Saarbrücken, Germany.

[32] Schulte, C. (2006). Gecode 1.0.0 Reference Documentation, 1.0.0 edition.
[33] Schulte, C. and Smolka, G. (2004). Finite Domain Constraint Programming in Oz.

A Tutorial, 1.3.0 edition.
[34] Schulte, C. and Stuckey, P. J. (2004). Speeding up constraint propagation. In M. Wal-

lace, editor, Tenth International Conference on Principles and Practice of Constraint
Programming, volume 3258 of Lecture Notes in Computer Science, pages 619–633,
Toronto, Canada. Springer-Verlag.

[35] Schulte, C. and Tack, G. (2005). Views and iterators for generic constraint imple-
mentations. In C. Schulte, F. Silva, and R. Rocha, editors, Proceedings of the Fifth
International Colloqium on Implementation of Constraint and Logic Programming
Systems, pages 37–48, Sitges, Spain. To appear.

[36] Shapira, A. (1997). An exact performance bound for an o(m+n) time greedy match-
ing procedure. The Electronic Journal of Combinatorics, 4.

[37] Smith, B. (2000). Modelling a permutation problem. In Proceedings of ECAI’2000
Workshop on Modelling and Solving Problems with Constraints. Also available as
Research Report from http://www.comp.leeds.ac.uk/bms/papers.html.

[38] The Gecode team (2006). Generic constraint development environment. Available
from http://www.gecode.org.

[39] Thiel, S. (2004). Efficient Algorithms for Constraint Propagation and for Process-
ing Tree Descriptions. Doctoral dissertation, Saarland University, Faculty for Natural
Sciences I, Department of Computer Science, Saarbrücken, Germany.

[40] Tsunetomo, Y. (1716). The Hagakure - A Code to the Way of the Samurai.
[41] Wallace, M., Schimpf, J., Shen, K., and Harvey, W. (2004). On benchmarking con-

straint logic programming platforms. response to fernandez and hill’s "a comparative
study of eight constraint programming languages over the boolean and finite domains".
Constraints, 9(1), 5–34.

[42] Zhou, J. (1973). A permutation-based-approach for solving the job-shop problem.
Constraints: An International Journal, 2(2), 185–213.

http://www.gecode.org

