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• The ability to dynamically import code at runtime

• Popular example: Java applets on web sites

• Type safety guarantees that the program never goes wrong - but what
about malicious programs?

➡ Open programming raises new security concerns
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Open Programming: Dangers

• Resources may be corrupted (where „resources“ may mean any locally 
available set of data or system capabilities):

‣ Deletion of data from hard disk

‣ Publication of sensitive data

‣ Abuse of system as spam server

• How to prevent this from happening?
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Naive approach

• Never grant access rights to local resources!

• May be too rigorous

‣ Write access may be necessary for saving files

‣ Net access for „live“ functionality (e.g. football results)

➡ We need a flexible, general-purpose solution!
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Sandboxes

• Provide a controlled (monitored) environment for execution of unknown code 

• Grant only access to resources considered „safe“

• Dynamic distribution of access rights to client on a „need-to-have“ basis

• In a given sandbox, only „smaller“ new sandboxes can be created (i.e., the 
child sandbox always inherits all limitations of its parent)
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Sandboxes in Java

• Each program/applet has an associated security manager

• Instance of class SecurityManager

• Supports calls like
security_manager.checkConnect(„google.com“, 80)

• Is utilized by every security-sensitive API function
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Sandboxes in Java

• Example: File Deletion

‣ Application calls API function
file.delete();

‣ API function checks permissions (and possibly throws SecurityException)
SecurityManager sec = System.getSecurityManager();
sec.checkDelete(file.getName());

‣ If permission is granted, API function deletes file and returns
<delete file>
return true;

• Since applets only see API functions, no security breach is possible
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Further Security Issues

• Clients should not be able to modify their security policies, e.g. by

‣ gaining write access to permissions file or interpreter binary

‣ executing unchecked native code

‣ creating their own security managers

• Careful API design: insert checks at the proper place!
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• Open programming is supported by pickling

• Pickles never contain references to resources

• Resource access is gained via the component manager structure:
COMPONENT_MANAGER = sig
    load: Url -> Component
  eval: Url * Component -> Package
  link: Url -> Package
... end

• Component manager corresponds to Java class loader + security manager

• Implicit inheritance of component managers along import chains
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Sandboxes in Alice ML

• Access policies are created by implementing custom component managers
(e.g. with different link functions)

• Possible models:

‣ Reject or accept requests based on URL syntax
(e.g. „x-alice:/lib/system/TextIO“ might be rejected)

‣ Restrict module signatures
(e.g. only supply the parts from TextIO that require read access
to the stream)

‣ Wrap module functions with dynamic security checks
(similar to Java)

• Introduce convenience functor SECURITY_POLICY -> COMPONENT_MANAGER
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