Conclusion and Future Work

Using LEO-II to Prove Properties of an Explicit Substitution M-set Model

Bachelor Thesis - Final Talk Xin Zhang

Supervisor : Chad E. Brown Reponsible Professor : Gert Smolka

October 27, 2008

Conclusion and Future Work

Outline

- 2 Representations
 - Representation I
 - Representation II
 - Rep I & Rep II

3 LEO Results

- Basics Results
- Hoasap and Hoaslam
- Hoaslaminj
- Induction2
- Hoasinduction
- Pushprop
- 4 Conclusion and Future Work
 - Conclusion
 - Future Work

Conclusion and Future Work

We used LEO-II [3] to verify properties of an M-set model

M-set Model [4]

M-sets

A monoid is a triple < M, op, e >

- We write *m* · *n* for op(m,n)
- $(m \cdot (n \cdot k)) = ((m \cdot n) \cdot k)$
- $m \cdot e = m = e \cdot m$

An *M*-set is a pair <*A*, α >

- We write a * m for α(a, m)
 (a * m) * n = a * (m · n)
- a * e = a

Explicit Substitution [1, 5]

Terms $(a, b...) := 1|(ab)|(\lambda a)|(a[s])$ Explicit Substitution $(s, t...) := id| \uparrow |(s \circ t)|(a.s)$

Motivation	Representations ●○○○○	LEO Results	Conclusion and Future Work
Representation I			
Representation	1		

Let *T* be the set of σ -normal terms and *M* be the set of σ -normal substitutions. In thf syntax [2] we can represent these sets as constants of type ι .

- in is a constant of type $\iota \rightarrow \iota \rightarrow o$
- term is a constant of type ι
- subst is a constant of type ι

Conclusion and Future Work

Representation I

- one := 1
- (ap a b) := $(ab)^{\downarrow \sigma}$
- (lam *a*) := $\lambda a^{\downarrow \sigma}$
- (sub a m) := $a[m]^{\downarrow \sigma}$ where $a \in T$ and $m \in M$
- id := id
- Sh := ↑
- (push a m) := $(a.m)^{\downarrow \sigma}$
- (comp m n) := $(m \circ n)^{\downarrow \sigma}$

LEO Results

Conclusion and Future Work

Representation I

. . .

```
one is a constant of type \iota
one_p is an abbreviation defined by
```

inoneterm

```
ap is a constant of type \iota \rightarrow \iota \rightarrow \iota
ap_p is an abbreviation defined by
```

```
\forall A_{\iota}.in A term \Rightarrow \forall B_{\iota}.in B term \Rightarrow in (ap A B) term
```

```
lam is a constant of type \iota \rightarrow \iota
lam_p is an abbreviation defined by
```

```
\forall A_{\iota}.in A term \Rightarrow in (lam A) term
```

Conclusion and Future Work

Representation II

Representation II

We declared the base type term and subst.

- one is a constant of type term
- ap is a constant of type term \rightarrow term \rightarrow term
- lam is a constant of type term \rightarrow term
- sub is a constant of type term \rightarrow subst \rightarrow term
- id is a constant of type subst
- sh is a constant of type subst
- push is a constant of type term \rightarrow subst \rightarrow subst
- comp is a constant of type $subst \rightarrow subst \rightarrow subst$

Rep I & Rep II

Conclusion and Future Work

Axapp: $((ab)[s])^{\downarrow\sigma} = ((a[s])^{\downarrow\sigma} (b[s])^{\downarrow\sigma})$ for $a, b \in T$ and $s \in M$. • Rep 1 $\forall A_{\iota}.in A \text{term} \Rightarrow \forall B_{\iota}.in B \text{term} \Rightarrow$ $\forall M_{\iota}.in M \text{subst} \Rightarrow$ sub (ap AB) M = ap (sub AM) (sub BM)• Rep II $\forall A_{\text{term}} B_{\text{term}} M_{\text{subst}}.$ sub (ap AB) M = ap (sub AM) (sub BM)

axidl, axmap, axvarcons...

LEO Results ●○○○○○○○○○○○○○○○

Conclusion and Future Work

Basics Results

Name	Rep I		Rep II		
	gthm	lthm	gthm	lthm	lthm with lemmas
Substmonoid	11.589s	5.165s	1.324s	0.521s	NA
Termmset	3.299s	0.564s	1.354s	0.505s	NA
Hoasapinj1	3.573s	0.481s	1.411s	0.515s	NA
Hoasapinj2	3.680s	0.479s	1.452s	0.509s	NA
Hoaslamnotap	6.194s	0.778s	1.622s	0.508s	NA
Hoaslamnotvar	6.495s	0.760s	1.685s	0.509s	NA
Hoasapnotvar	6.671s	0.575s	1.762s	0.503s	NA
Hoasap	3.317s	0.437s	NA	NA	NA
Hoaslam	3.343s	0.636s	NA	NA	NA
Hoaslaminj	-	-	1.556s	0.533s	NA
Induction2	-	-	-	0.581s	NA
Pushprop	-	-	-	-	0.655s
Hoasinduction	-	-	-	-	0.807s
Induction2lem	-	-	-	-	-

LEO Results

Conclusion and Future Work

Hoasap and Hoaslam

Theorem

(hoasap) For $m, n \in M$ and $a, b \in T$, we have hoasap $(m, a)(n, b) \in T$.

We encoded this theorem in LEO with Representation I:

• hoasap

```
\lambda M_{\iota} A_{\iota} N_{\iota} B_{\iota}.ap(sub AN) B
```

hoasap_p

 $\forall M_{\iota}.in \ M \ subst \Rightarrow \forall A_{\iota}.in \ A \ term \Rightarrow$ $\forall N_{\iota}.in \ N \ subst \Rightarrow \forall B_{\iota}.in \ B \ term \Rightarrow$ $in \ (hoasap \ M \ A \ N \ B) \ term$

We encoded the definition of hoasap in LEO with Representation II:

 $\lambda M_{\text{subst}} A_{\text{term}} N_{\text{subst}} B_{\text{term.ap}} (\text{sub} A N) B$

LEO Results

Conclusion and Future Work

We want our model to satisfy this axiom:

$$\forall f \forall g(((Lam f) = (Lam g)) \Rightarrow (f = g))$$

We interpret this property in our model as:

Theorem

(hoaslaminj) Let $f, g: M \times T \rightarrow T$ be functions such that

$$f(m, a)n = f(mn, an)$$

and

$$g(m, a)n = g(mn, an)$$

for all $a \in T$ and $m, n \in M$. If hoaslam(id, f) = hoaslam(id, g), then f = g.

LEO Results

Conclusion and Future Work

We encoded this theorem in LEO with Representation I as follows:

 $\forall F_{\iota \to \iota \to \iota} (\forall M_{\iota}. \text{in } M \text{ subst} \Rightarrow \forall A_{\iota}. \text{in } A \text{ term} \Rightarrow \text{in } (F M A) \text{ term}) \Rightarrow$ $(\forall M_{l}.in M \text{ subst} \Rightarrow \forall A_{l}.in A \text{ term} \Rightarrow \forall N_{l}.in N \text{ subst} \Rightarrow$ $sub(FMA)N = F(compMN)(subAN)) \Rightarrow$ $\forall G_{\iota \to \iota \to \iota}.(\forall M_{\iota}.in M \text{ subst} \Rightarrow \forall A_{\iota}.in A \text{ term} \Rightarrow in (GMA) \text{ term}) \Rightarrow$ $(\forall M_{l}.in M \text{ subst} \Rightarrow \forall A_{l}.in A \text{ term} \Rightarrow \forall N_{l}.in N \text{ subst} \Rightarrow$ $sub(GMA)N = G(comp MN)(subAN)) \Rightarrow$ hoaslamid $(\lambda M, A, F M A) =$ hoaslamid $(\lambda M, A, G M A) \Rightarrow$ $\forall M_{i}, \text{in } M \text{ subst} \Rightarrow \forall A_{i}, \text{in } A \text{ term} \Rightarrow F M A = G M A$

LEO Results

Conclusion and Future Work

We encoded this theorem in LEO with Representation II as follow:

 $\forall F_{\text{subst} \rightarrow \text{term}} \cdot \\ (\forall M_{\text{subst}} A_{\text{term}} N_{\text{subst}} \cdot \text{sub} (FMA) N = F (\operatorname{comp} MN) (\operatorname{sub} AN)) \Rightarrow \\ \forall G_{\text{subst} \rightarrow \text{term}} \cdot \\ (\forall M_{\text{subst}} A_{\text{term}} N_{\text{subst}} \cdot \text{sub} (GMA) N = G (\operatorname{comp} MN) (\operatorname{sub} AN)) \Rightarrow \\ \text{hoaslamid} (\lambda M_{\text{subst}} A_{\text{term}} \cdot FMA) = \text{hoaslamid} (\lambda M_{\text{subst}} A_{\text{term}} \cdot GMA) \Rightarrow \\ \forall M_{\text{subst}} A_{\text{term}} \cdot FMA = GMA \end{cases}$

LEO Results

Conclusion and Future Work

LEO Results

Conclusion and Future Work

We want to prove this property in our model.

Then for all $a \in T$, a satisfies Φ .

LEO Results

Conclusion and Future Work

Induction2

Global and Local Theorems

The induction2_gthm is:

 $\verb+axapp \Rightarrow \verb+axvarcons \Rightarrow \verb+axvarid \Rightarrow \verb+axabs \Rightarrow \verb+axclos \Rightarrow \verb+axidl \Rightarrow$

 $axshiftcons \Rightarrow axassoc \Rightarrow axmap \Rightarrow axidr \Rightarrow axvarshift \Rightarrow axscons \Rightarrow$

 $\texttt{ulamvarl} \Rightarrow \texttt{ulamvarsh} \Rightarrow \texttt{ulamvarind} \Rightarrow \texttt{apinjl} \Rightarrow \texttt{apinj2} \Rightarrow \texttt{laminj} \Rightarrow$

shinj⇒lamnotap⇒apnotvar⇒lamnotvar⇒induction

 \Rightarrow pushprop \Rightarrow induction2lem \Rightarrow induction2

The induction2_lthm is:

 $\texttt{axvarid} \Rightarrow \texttt{induction2lem} \Rightarrow \texttt{induction2}$

LEO Results

Conclusion and Future Work

Induction2

1 1 1 1	` †		<u>' 1</u>	<u>-</u>	n
IVIC	וע	IV	a	J	

LEO Results

Conclusion and Future Work

Hoasinduction

Hoasinduction

In the HOAS [6] theory we have the following induction axiom

 $\forall p((\forall x(\operatorname{Var} x \Rightarrow (px))) \\ \land (\forall x \forall y(px \land py \Rightarrow p(\operatorname{Ap} xy))) \\ \land (\forall f((\forall x(px \Rightarrow p(fx))) \Rightarrow p(\operatorname{Lam} f))) \Rightarrow (\forall x(px))))$

N/lotu/otu		
	-	n
wouvau	U	

LEO Results

Conclusion and Future Work

Hoasinduction

Hoasinduction

Theorem

(hoasinduction) Let $\Psi: M \times T \to \mathcal{P}(M)$ be a function such that

 $kn \in \Psi(m, a)$ iff $n \in \Psi(mk, ak)$

for all $a \in T$ and $m, n, k \in M$. Suppose we have the following:

1 For all $x \in T$, if $id \in hoasvar(id, x)$, then $id \in \Psi(id, x)$.

- 2 For all $a, b \in T$, if $id \in \Psi(id, a)$ and $id \in \Psi(id, b)$, then $id \in \Psi(id, hoasap(id, a)(id, b))$
- **3** For all $f : M \times T \to T$ such that f(m, a)n = f(mn, an) for all $a \in T$ and $m, n \in M$, if $id \in \Psi(id, a)$ implies $id \in \Psi(id, f(id, a))$ for all $a \in T$, then $id \in \Psi(id, hoaslam(id, f))$.

Then for all $a \in T$, $id \in \Psi(id, a)$.

hoasinduction_lthm_1 is:

```
induction2 \Rightarrow axvarid \Rightarrow axclos \Rightarrow axvarshift \Rightarrow
```

```
axmap \Rightarrow axidl \Rightarrow hoas induction
```

Motiva	tion	Representations	LEO Results	Conclusion and Future Wo		
Hoasir	nduction					
Pro	of					
	Use Induction2 with Φ	$x \text{ iff } id \in \Psi(id, a).$				
1	Theorem					
	(hoasinduction) Let $\Psi: M \times T \to \mathcal{P}(M)$ be a function such that					
	$kn \in \Psi(m, a)$ iff $n \in \Psi(mk, ak)$					
	for all $a \in T$ and m, n	, $k \in M$. Suppose we hav	e the following:			
	1 For all $x \in T$,	if $id \in hoasvar(id, x)$, t	hen id $\in \Psi(id, x)$.			
	2 For all $a, b \in then id \in \Psi(i)$	T, if $id \in \Psi(id, a)$ and id id, hoasap(id, a)(id, b))	$\in \Psi(\mathit{id}, \mathit{b}),$			
	$ 3 For all f : M > implies id \in V $	$\langle T \rightarrow T$ such that f(m, a $\Psi(id, f(id, a))$ for all $a \in T$	$f(mn, an)$ for all $a \in T$ and $m, n \in T$, then $id \in \Psi(id, hoaslam(id, f))$.	$\textit{M, if id} \in \Psi(\textit{id}, \textit{a})$		
	Then for all $a \in T$, id	$\in \Psi(\mathit{id}, \mathit{a}).$				

Theorem

(induction2) Let Φ be a property such that the following hold:

For all x ∈ Var, x satisfies Φ.
 For all a, b ∈ T, if a and b satisfy Φ, then (a b)^{↓σ} satisfies Φ.
 For all a ∈ T, if (a[b.id])^{↓σ} satisfies Φ whenever b ∈ T satisfies Φ, then (λa)^{↓σ} satisfies Φ.

LEO Results

Conclusion and Future Work

Hoasinduction

We define the hoasinduction_p_and_p_prime and hoasinduction_lem0.

	Induction2	Hoasinduction
Property	$Q_{\texttt{term} o o}$	$P_{\text{subst} \rightarrow \text{term} \rightarrow \text{subst} \rightarrow o}$

hoasinduction_p_and_p_prime

 $\lambda PQ. \forall X_{\texttt{term}}. QX \Leftrightarrow P \texttt{id} X \texttt{id}$

hoasinduction_lem0

 $\forall P. \exists Q.$ hoasinduction_p_and_p_prime PQ

LEO Results

Conclusion and Future Work

Hoasinduction

we match three condition of hoasinduction with three condition of induction2

- hoasinduction_lem1v2
- hoasinduction_lem2v2
- hoasinduction_lem3v2

hoasinduction_lthm_2 should be:

hoasinduction_lem0 \Rightarrow hoasinduction_lem1v2 \Rightarrow hoasinduction_lem2v2 \Rightarrow hoasinduction_lem3v2 \Rightarrow induction2 \Rightarrow hoasinduction

LEO could prove this and also following version:

 $\label{eq:hoasinduction_lem0} hoasinduction_lem3v2 \Rightarrow \\ induction2 \Rightarrow axvarid \Rightarrow hoasinduction$

Conclusion and Future Work

We want to prove this result in LEO.

Theorem

(pushprop) Let Φ be a property, $a \in T$ and $m \in M$. Assume for all $x \in Var$, $(x[m])^{\downarrow \sigma}$ satisfies Φ . Assume a satisfies Φ . Then $(x[a.m])^{\downarrow \sigma}$ satisfies Φ for all $x \in Var$.

Conclusion and Future Work

Pushprop

Theorem

(pushprop_lem0) For every property ϕ , term a and substitution *m*,there is a property ϕ' such that for every term *x*, *x* satisfies ϕ' iff $(x[a.m])^{\downarrow\sigma}$ satisfies ϕ .

Proof: Just define ϕ' in this way.

Conclusion and Future Work

Also LEO could prove the following version of pushprop_lthm:

pushprop_lem0⇒ulamvar1⇒axvarcons⇒axclos⇒
 axshiftcons⇒ulamvarind⇒pushprop

- LEO is sensitive to the representation.
- LEO is sensitive to how many assumptions are given.
- Instantiation of higher order variables is hard.

Conclusion and Future Work $\circ \bullet \circ \circ$

• Prove some intermediate lemmas for hoasinduction

• Prove induction21em by creating intermediate lemma.

LEO Results

Conclusion and Future Work

Future Work

Build induction into LEO

Theorem

(induction2) Let Φ be a property such that the following hold:

- **1** For all $x \in Var$, x satisfies Φ .
- 2 For all $a, b \in T$, if a and b satisfy Φ , then $(ab)^{\downarrow \sigma}$ satisfies Φ .
- For all a ∈ T, if (a[b.id])^{↓σ} satisfies Φ whenever b ∈ T satisfies Φ, then (λa)^{↓σ} satisfies Φ.

Then for all $a \in T$, a satisfies Φ .

To use induction2, a theorem prover should:

- Recognize induction2 is an induction principle.
- 2 Choose an appropriate Φ.
- Or Prove each of 1, 2 and 3 for this Φ.

LEO Results

Conclusion and Future Work $_{\odot \odot \odot \bullet}$

Future Work

Thank you

Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lèvy.

Explicit substitutions.

In Conference Record of the Seventeenth Annual ACM Symposium on Principles of Programming Languages, San Francisco, California, pages 31–46. ACM, 1990.

Christoph Benzmüller, Florian Rabe, and Geoff Sutcliffe.

The core tptp language for classical higher-order logic.

In Fourth International Joint Conference on Automated Reasoning (IJCAR'06), volume 5195 of LNAI. Springer, 2008.

Christoph Benzmüller, Frank Theiss, Larry Paulson, and Arnaud Fietzke.

LEO-II - a cooperative automatic theorem prover for higher-order logic.

In Fourth International Joint Conference on Automated Reasoning (IJCAR'06), volume 5195 of LNAI. Springer, 2008.

Chad E. Brown.

M-set models.

In C. E. Benzmüller, C. E. Brown, J. Siekmann, and R. Statman, editors, *Reasoning in Simple Type Theory: Festschrift in Honor of Peter B. Andrews on His 70th Birthday*, Studies in Logic and the Foundations of Mathematics. IFCoLog, 2008. To appear.

Gilles Dowek, Thérèse Hardin, and Claude Kirchner.

Higher-order unification via explicit substitutions.

In D. Kozen, editor, *Proceedings of the Tenth Annual Symposium on Logic in Computer Science*, pages 366–374, San Diego, California, June 1995. IEEE Computer Society Press.

Frank Pfenning and Conal Elliott.

Higher-order abstract syntax.

In Proceedings of the ACM SIGPLAN '88 Symposium on Language Design and Implementation, pages 199–208, Atlanta, Georgia, June 1988.