
Undecidability of subtyping in System F6:

1 System F6: and variants

We concern ourselves with a minimal system encapsulating the notion of bounded quantifica-
tion, it defines the reflexive and transitive subtype relation and uses a maximal type to recover
unbounded quantification.

Definition 1.1. F6: is the least relation closed under the following.

Refl
Γ ` τ6:τ

Γ ` τ16:τ2 Γ ` τ26:τ3
Trans

Γ ` τ16:τ3

Top
Γ ` τ6:>

Var
Γ ` α6:Γ(α)

Γ ` τ16:σ1 Γ, α6:τ1 ` σ26:τ2
All

Γ ` ∀α6:σ1. σ2 6: ∀α6:τ1. τ2

The contravariance of universal quantifiers makes it possible to rebound a variable in the body
of the left hand side. This is what makes the subtyping undecidable as it can be proven that
a system where the bounds of universal quantifiers are required to be identical has decidable
subtyping.

The first refinement made to the system is to make the the relation syntax directed, so at each
step there is at most one rule applicable. To achive this the Re f l rule is restricted only to variables,
while the Trans rule is subsumed by the new NVar rule which combines an instance of transitivity.

Definition 1.2. FN
6: (normal) is the least relation closed under the following.

NRefl
Γ ` α6:α

NTop
Γ ` τ6:>

Γ ` Γ(α)6:τ
NVar

Γ ` α6:τ

Γ ` τ16:σ1 Γ, α6:τ1 ` σ26:τ2
NAll

Γ ` ∀α6:σ1. σ2 6: ∀α6:τ1. τ2

It is well established that this relation is indeed reflexive and transitive so the proof of the
following is straightforward.

Theorem 1.3. A statement is derivable in F6: iff it is derivable in FN
6:.

1

1.1 Polarized syntax

We now make some syntactical restrictions, terms are classified by whether they are allowed to be
used to the left (negative) or right (positive) of the subtyping relation. The following operator is
defined to flip the sign of a term.

Definition 1.4. τ := ∀α6:τ. α

Lemma 1.5. Γ ` σ6:τ ⇐⇒ Γ ` τ6:σ

Additionally we make negative quantified terms unbounded, as they will be rebounded later.
The grammar of the positive and negative terms is defined as follows.

τ+ ::= > | τ− | ∀α6:τ−. τ+

τ− ::= α | τ+ | ∀α. τ−

We can check that the rules preserve the signs of terms: if a metavariable appears with a given
sign in a premise it has the same sign in the conclusion. We restrict the syntax further to disallow
negative terms being compared to quantified terms.

For a given natural number n, the n-positive and n-negative terms are defined by the following
grammar.

τ+ ::= > | ∀α06:τ−0 . . . αn6:τ−n . τ−

τ− ::= α | ∀α0 . . . αn. τ+

We can now make a new refinement to the system to make the derivation of judgements deter-
ministic. We drop the signs of terms to avoid notational clutter.

Definition 1.6. FD
6: (deterministic) is the least relation closed under the following.

DTop
Γ ` τ6:>

Γ ` Γ(α)6:∀α06:σ0 . . . αn6:σn. τ
DVar

Γ ` α6:∀α06:σ0 . . . αn6:σn. τ

Γ, α06:φ0, . . . , αn6:φn ` τ6:σ
DAllNeg

Γ ` ∀α0 . . . αn. σ 6: ∀α06:φ0 . . . αn6:φn. τ

Statements of FD
6: may be regarded as statements of FN

6: after using the abbreviations for nega-
tion and unbounded quantification.

Theorem 1.7. FN
6: is a conservative extension of FD

6:; an FD
6: statement is derivable iff it is derivable when

considered as an FN
6: statement.

Proof. One direction is immediate, the other follows by induction of FN
6: derivations whose con-

clusions are de-abbreviated FD
6: statements.

To make the transition to row machines easier we need another variation to keep the context
empty so the quantifier rule immediately substitutes the bounds in the body of the statement. This
is safe to do because of the restriction on variables to appear only negatively.

2

1.2 Eager substitution

Definition 1.8. FF
6: (flattened) is the least relation closed under the following.

FTop
` τ6:>

` τ[φ0/α0 . . . φn/αn]6:σ[φ0/α0 . . . φn/αn]
FAllNeg

` ∀α0 . . . αn. σ 6: ∀α06:φ0 . . . αn6:φn. τ

In order to show that FD
6: is a conservative extension of this system we first have to show that

FD
6: indeed supports eager substitution.

Lemma 1.9. For all closed φ1,..., φn the following holds in FD
6:

α16:φ1, . . . , αn6:φn, Γ ` σ6:τ ⇐⇒ Γ[φ1/α1, . . . , φn/αn] ` σ[φ1/α1, . . . , φn/αn]6:τ[φ1/α1, . . . , φn/αn]

Proof. Both sides follow by induction on the derivation.

Theorem 1.10. ` σ6:τ is derivable in FD
6: iff it is derivable in FF

6:

Proof. By induction on the derivation using the previous lemma for the quantifier case.

2 Rowing Machines

We now turn our attention to an intermediate model that encapsulates the eager substitution of
the last system, the rowing machines.

Definition 2.1. For a given natural number n a rowing machine is a closed tuple of registers

〈ρ1 . . . ρn〉

each of which is a row of width n defined by the following grammar

ρ ::= α | [α1 . . . αn]〈ρ1 . . . ρn〉 | Halt

In the term [α1 . . . αn]〈ρ1 . . . ρn〉 the variables αi are binding occurrences whose scope is all of
the rows ρj. A row is closed if it contains no free variables, and a rowing machine is closed if it
consists of closed rows.

Definition 2.2. The step function is the partial function defined by the following mapping.
If ρ1 = [α1 . . . αn]〈ρ′1 . . . ρ′n〉

〈ρ1 . . . ρn〉 7→ 〈ρ′1[ρ1/α1 . . . ρn/αn] . . . ρ′1[ρ1/α1 . . . ρn/αn]〉

We write M→R M′ to denote that the rowing machine M is mapped to M′ by the step function.

Because rowing machines consists of closed rows the first element cannot be a variable. Addi-
tionally the step function is undefined when the first element is Halt, as expected.

3

Definition 2.3. A rowing machine M halts if for some ρ2, ..., ρn

M→∗R 〈Halt, ρ2 . . . ρn〉

We can now encode rowing machines as subtyping problems in an appropriate way; if the
rowing machine has Halt as its first row then it it should be encoded as a statement that reaches
a subproblem with > on the right, alternatively if the rowing machine steps into another then its
encoded should be a judgment that reaches the encoding of the the second machine.

Abusing notation we write F for both the encoding of rowing machines and rows.

Definition 2.4. The encoding of rows as FF
6: terms is defined as follows.

F (αi) := αi

F (Halt) := ∀γ0, α1 . . . αn. >

F ([α1 . . . αn]〈ρ1 . . . ρn〉) := ∀γ0, α1 . . . αn. ∀γ′06:γ0, α′16:F (ρ1) . . . α′n6:F (ρn). F (ρ1)

Definition 2.5. The encoding of a row machine as an FF
6: statement is defined as follows.

F (〈ρ1 . . . ρn〉) := ` σ6:∀γ06:σ, γ16:F (ρ1) . . . γn6:F (ρn). F (ρ1)

where σ := ∀γ0 . . . γn. ∀γ′06:γ0 . . . γ′n6:γn. γ0

It is easy to check that in fact F (R) is a closed FF
6: statement for any rowing machine R. We can

prove the translation has the expected property.

Lemma 2.6. If R→R R′ then F (R) is derivable from F (R′)

Proof. Let R = 〈ρ1 . . . ρn〉, because R steps to R′ we now that ρ1 is of the form [α1 . . . αn]〈ρ′1 . . . ρ′n〉,
and R′ = 〈ρ′1[ρ1/α1 . . . ρn/αn] . . . ρ′1[ρ1/α1 . . . ρn/αn]〉

F (R′) ≡` σ6:∀γ06:σ, γ16:F (ρ′1)[θ] . . . γn6:F (ρ′n)[θ]. F (ρ′1)[θ] FAllNeg
` F (ρ1)[σ/γ0,F (ρ1)/γ1 . . .F (ρn)/γn]6:∀γ′06:σ, γ′16:F (ρ1) . . . γ′n6:F (ρn).σ

FAllNeg
F (R) ≡` σ6:∀γ06:σ, γ16:F (ρ1) . . . γn6:F (ρn). F (ρ1)

where θ is the substitution [F (ρ1)/α1 . . .F (ρn)/αn].

Lemma 2.7. F (〈Halt, ρ2 . . . ρn〉) is derivable for all ρ2,..., ρn

Proof.

FTop
` σ6:>

FAllNeg
` (∀γ0, α1 . . . αn. >)6:(∀γ′06:σ . . . γ′n6:F (ρn). σ)

FAllNeg
F (〈Halt, ρ2 . . . ρn〉) ≡` σ6:∀γ06:σ, γ16:F (Halt) . . . γn6:F (ρn). F (Halt)

Theorem 2.8. The rowing machine R halts iff F (R) is derivable.

4

We use some abbreviations for denoting rows.

• When the symbol − appears as the ith component of a row [α1 . . . αn]〈ρ1 . . . ρn〉 it stands for
the variable αi.

• Instead of using variable names we use their indices, #i denotes the ith bound variable of the
row in which it appears, ##i denotes the ith bound variable of the row enclosing the one in
which it appears, and so on.

For example, we can abbreviate the following nested row as follows.

[α1 . . . α3]〈α1, [β1 . . . β3]〈α1, β1, β3〉, α1〉 ≡ 〈−, 〈##1, #1,−〉, #1〉

3 Two Counter Machines

A 2-counter machine consists of a program counter and two registers (PC, A, B), and a program
which is a list of instructions of the form:

instr ::=incAn | incBn
|decAn/m | decBn/m
|Halt

Definition 3.1. For a program I1, . . . , In the step function is the partial function defined by the following

(incAn, A, B) 7→ (In, SA, B)
(incBn, A, B) 7→ (In, A, SB)

(decAn/m, 0, B) 7→ (In, 0, B)
(decAn/m, SA, B) 7→ (Im, A, B)
(decBn/m, A, 0) 7→ (In, A, 0)

(decBn/m, A, SB) 7→ (Im, A, B)

We write M→2CM M′ to denote that the 2-counter machine M is mapped to M′ by the step function.

Definition 3.2. A 2-counter machine M halts if for some A and B

M→∗2CM (Halt, A, B)

In order to encode 2-counter machines as rowing machines we need an encoding of instructions
and of natural numbers in each register. For a program of length n the encodings are rows of
width n + 5, the first 5 registers store PC, A, B, and the branching addresses for the decreasing
instruction, the last n registers store the encoding of the program. Abusing notation we use R for
all the encodings.

5

Definition 3.3. The encoding of instructions is defined as:

R(incAm) :=〈#m + 5, 〈#5, ##2,−,Halt,Halt,− · · · −〉,−,Halt,Halt,− · · · −〉
R(incBm) :=〈#m + 5,−, 〈#5,−, ##3,Halt,Halt,− · · · −〉,Halt,Halt,− · · · −〉

R(decAm/n) :=〈#2,−,−, #m + 5, #n + 5,− · · · −〉
R(decBm/n) :=〈#3,−,−, #m + 5, #n + 5,− · · · −〉
R(Halt) :=〈Halt,−,−,Halt,Halt,− · · · −〉

The encoding of the contents of each register is defined as:

RA(0) :=〈#4,−,−,Halt,Halt,− · · · −〉
RA(n + 1) :=〈#5,RA(n),−,Halt,Halt,− · · · −〉

RB(0) :=〈#4,−,−,Halt,Halt,− · · · −〉
RB(n + 1) :=〈#5,−,RB(n),Halt,Halt,− · · · −〉

The encoding of a 2-counter machine and a program is defined as:

R(PC, A, B, I1, . . . , In) := 〈R(PC),RA(A),R(B),RB(I1), . . . ,R(In)〉

Lemma 3.4. If M→2CM M′ thenR(M)→+
R R(M′)

Proof. By case analysis on PC, as the machine steps it cannot be Halt.
Case PC = incAn, so M′ = (In, A + 1, B)

R(M) ≡〈〈#m + 5, 〈#5, ##2,−,Halt,Halt,− · · · −〉,−,Halt,Halt,− · · · −〉,
RA(A),RB(B),Halt,Halt,R(I1) . . .R(Iw)〉

→R〈R(Im), 〈#5,RA(A),−,Halt,Halt,− · · · −〉,RB(B),Halt,Halt,R(I1) . . .R(Iw)〉
≡〈R(Im),RA(A + 1),RB(B),Halt,Halt,R(I1) . . .R(Iw)〉 ≡ R(M′)

Case PC = decAm/n and A = 0, so M′ = (Im, 0, B)

R(M) ≡〈〈#2,−,−, #m + 5, #n + 5,− · · · −〉,RA(0),RB(B),Halt,Halt,− · · · −〉
→R〈〈#4,−,−,Halt,Halt,− · · · −〉,RA(0),RB(B),R(Im),R(In),R(I1) . . .R(Iw)〉
→R〈R(Im),RA(0),RB(B),Halt,Halt,R(I1) . . .R(Iw)〉 ≡ R(M′)

Case PC = decAm/n and A = A′ + 1, so M′ = (In, A′, B)

R(M) ≡〈〈#2,−,−, #m + 5, #n + 5,− · · · −〉,RA(A′ + 1),RB(B),Halt,Halt,− · · · −〉
→R〈〈#5,RA(A′),−,Halt,Halt,− · · · −〉,RA(A′ + 1),RB(B),R(Im),R(In),R(I1) . . .R(Iw)〉
→R〈R(In),RA(A′),RB(B),Halt,Halt,R(I1) . . .R(Iw)〉 ≡ R(M′)

The cases for the register B are similar.

Lemma 3.5. For all A, B, and programs I1, . . . , In

R(Halt, A, B, I1, . . . , In)→R 〈Halt,RA(A),RB(B),Halt,Halt,R(I1) . . .R(Iw)〉

Theorem 3.6. M halts iffR(M) halts.

6

4 Undecidability

Theorem 4.1. Subtyping in F6: is undecidable.

Proof. Assuming we have a decider, we get a decider for any 2-counter machine T:
T halts

iffR(T) halts (Theorem 3.6)
iff F (R(T)) is derivable in FF

6: (Theorem 2.8)
iff F (R(T)) is derivable in FD

6: (Theorem 1.10)
iff F (R(T)) is derivable in FN

6: (Theorem 1.7)
iff F (R(T)) is derivable in F6: (Theorem 1.3)

References

[Pierce, 1994] Pierce, B. C. (1994). Bounded quantification is undecidable. Information and Compu-
tation, pages 131–165.

[Pierce, 2002] Pierce, B. C. (2002). Types and programming languages. MIT Press.

7

