
Mechanized undecidability
of subtyping in System F

Roberto Álvarez
Advisor: Yannick Forster

Saarland University
Programming Systems Lab

Final Master’s talk

09.05.2022

Bounded quantification

Combines type polymorphism with subtyping.

Terms and types of System F⩽::

s, t ::= x | λx:τ. t | Λα⩽:τ. t | t s | t τ

σ, τ ::= α | σ → τ | ∀α⩽:σ. τ | ⊤

1 / 20

Bounded quantification

Combines type polymorphism with subtyping.

Terms and types of System F⩽::

s, t ::= x | λx:τ. t | Λα⩽:τ . t | t s | t τ

σ, τ ::= α | σ → τ | ∀α⩽:σ . τ | ⊤

1 / 20

Bounded quantification

Combines type polymorphism with subtyping.

Terms and types of System F⩽::

s, t ::= x | λx:τ. t | Λα⩽:τ . t | t s | t τ

σ, τ ::= α | σ → τ | ∀α⩽:σ . τ | ⊤

Unbounded quantification can be defined with ⊤:

∀α. τ := ∀α⩽:⊤. τ

1 / 20

History

1985 System F⩽: is first introduced by Cardelli and
Wegner.

1990 Curien and Ghelli give a typechecking algorithm
by means of a term rewritting system.
The algorithm is sound and complete by
construction.

1990 Ghelli gives a proof of termination.
The proof turns out to be wrong.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.
2022 Pierces’s proof is mechanized.

2 / 20

History

1985 System F⩽: is first introduced by Cardelli and
Wegner.

1990 Curien and Ghelli give a typechecking algorithm
by means of a term rewritting system.
The algorithm is sound and complete by
construction.

1990 Ghelli gives a proof of termination.
The proof turns out to be wrong.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.
2022 Pierces’s proof is mechanized.

2 / 20

History

1985 System F⩽: is first introduced by Cardelli and
Wegner.

1990 Curien and Ghelli give a typechecking algorithm
by means of a term rewritting system.
The algorithm is sound and complete by
construction.

1990 Ghelli gives a proof of termination.
The proof turns out to be wrong.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.
2022 Pierces’s proof is mechanized.

2 / 20

History

1985 System F⩽: is first introduced by Cardelli and
Wegner.

1990 Curien and Ghelli give a typechecking algorithm
by means of a term rewritting system.
The algorithm is sound and complete by
construction.

1990 Ghelli gives a proof of termination.
The proof turns out to be wrong.

1992 Ghelli gives a counterexample.

1994 Pierce gives a proof of undecidability.
2022 Pierces’s proof is mechanized.

2 / 20

History

1985 System F⩽: is first introduced by Cardelli and
Wegner.

1990 Curien and Ghelli give a typechecking algorithm
by means of a term rewritting system.
The algorithm is sound and complete by
construction.

1990 Ghelli gives a proof of termination.
The proof turns out to be wrong.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.

2022 Pierces’s proof is mechanized.

2 / 20

History

1985 System F⩽: is first introduced by Cardelli and
Wegner.

1990 Curien and Ghelli give a typechecking algorithm
by means of a term rewritting system.
The algorithm is sound and complete by
construction.

1990 Ghelli gives a proof of termination.
The proof turns out to be wrong.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.
2022 Pierces’s proof is mechanized.

2 / 20

Subtyping bounded quantifiers

Γ ⊢ τ1⩽:σ1 Γ, α⩽:τ1 ⊢ σ2⩽:τ2
All

Γ ⊢ ∀α⩽:σ1 . σ2 ⩽: ∀α⩽:τ1 . τ2

3 / 20

Subtyping bounded quantifiers

Γ ⊢ τ1⩽:σ1 Γ, α⩽:τ1 ⊢ σ2⩽:τ2
All

Γ ⊢ ∀α⩽:σ1 . σ2 ⩽: ∀α⩽:τ1 . τ2

we say that σ2 gets rebounded.

3 / 20

F⩽: subtyping

Γ ⊢ τ1⩽:σ1 Γ, α⩽:τ1 ⊢ σ2⩽:τ2
All

Γ ⊢ ∀α⩽:σ1 . σ2 ⩽: ∀α⩽:τ1 . τ2

Γ ⊢ τ1⩽:σ1 Γ ⊢ σ2⩽:τ2
Arrow

Γ ⊢ σ1 → σ2 ⩽: τ1 → τ2

Refl
Γ ⊢ τ⩽:τ

Γ ⊢ σ⩽:ϕ Γ ⊢ ϕ⩽:τ
Trans

Γ ⊢ σ⩽:τ

Top
Γ ⊢ τ⩽:⊤

Var
Γ ⊢ α⩽:Γ(α)

F⩽: subtyping:
Given arbitrary Γ, σ and τ, is there a derivation of Γ ⊢ σ⩽:τ?

4 / 20

F⩽: typechecking

Var
∆; Γ ⊢ x : ∆(x)

∆, x : σ; Γ ⊢ t : τ
Term-Abst

∆; Γ ⊢ λx:σ.t : σ → τ

∆; Γ, α⩽:σ ⊢ t : τ
Type-Abst

∆; Γ ⊢ Λα⩽:σ.t : ∀α⩽:σ.τ

∆; Γ ⊢ t : σ Γ ⊢ σ⩽:τ
Subsumption

∆; Γ ⊢ t : τ

∆; Γ ⊢ t : σ → τ ∆; Γ ⊢ u : σ
Term-Inst

∆; Γ ⊢ t u : τ

∆; Γ ⊢ t : ∀α⩽:σ.τ Γ ⊢ σ1⩽:σ
Type-Inst

∆; Γ ⊢ t σ1 : τ[σ1/α]

F⩽: typechecking:
Given arbitrary ∆,Γ, t and τ, is there a derivation of ∆; Γ ⊢ t : τ?

5 / 20

Undecidability

Theorem
F⩽: subtyping is undecidable.

Theorem
F⩽: typechecking is undecidable.

6 / 20

Undecidability

Theorem
F⩽: subtyping is undecidable.

Proof.
By a chain of many-one reductions, Pierce [1994]:
2CM halting ⪯m RM halting ⪯m · · · ⪯m F⩽: subtyping

Theorem
F⩽: typechecking is undecidable.

6 / 20

Undecidability

Theorem
F⩽: subtyping is undecidable.

Proof.
By a chain of many-one reductions, Pierce [1994]:
2CM halting ⪯m RM halting ⪯m · · · ⪯m F⩽: subtyping

Theorem
F⩽: typechecking is undecidable.

Proof.
By reduction from subtyping; we give a term that is well-typed
iff a subtyping statement holds:

Γ ⊢ σ⩽:τ ⇐⇒ Γ ⊢ (Λα⩽:τ.λx:α.x) σ : σ → σ

6 / 20

Undecidability
Theorem
F⩽: subtyping is undecidable.

Proof.
By a chain of many-one reductions, Pierce [1994]:
2CM halting ⪯m RM halting ⪯m · · · ⪯m F⩽: subtyping

Theorem
F⩽: typechecking is undecidable.

Proof.
By reduction from subtyping; we give a term that is well-typed
iff a subtyping statement holds:

Γ ⊢ σ⩽:τ ⇐⇒ Γ ⊢ (Λα⩽:τ.λx:α.x) σ : σ → σ

Note: arrow types are only required on the second proof.
6 / 20

Overview

To show RM halting ⪯m F⩽: subtyping Pierce shows:

R halts ⇐⇒ ⊢ σ⩽:T (R)

7 / 20

Overview

To show RM halting ⪯m F⩽: subtyping Pierce shows:

R halts ⇐⇒ ⊢ σ⩽:T (R)

(⇒) By induction on the trace, in order to encode the stepping
of the machine we need:

7 / 20

Overview
To show RM halting ⪯m F⩽: subtyping Pierce shows:

R halts ⇐⇒ ⊢ σ⩽:T (R)

(⇒) By induction on the trace, in order to encode the stepping
of the machine we need:
▶ To rebound the right hand side with an operator that flips

inequalities using contravariance:

τ := ∀α⩽:τ.α

Γ ⊢ σ⩽:τ ⇐⇒ Γ ⊢ τ⩽:σ (1)

▶ To substitute variables eagerly, as the machine does:

α⩽:ϕ ⊢ σ⩽:τ ⇐⇒ ⊢ σ[ϕ/α]⩽:τ[ϕ/α] (2)

Does not hold in general, e.g. with ϕ = σ = ⊤ and τ = α.

7 / 20

Overview
To show RM halting ⪯m F⩽: subtyping Pierce shows:

R halts ⇐⇒ ⊢ σ⩽:T (R)

(⇒) By induction on the trace, in order to encode the stepping
of the machine we need:
▶ To rebound the right hand side with an operator that flips

inequalities using contravariance:

τ := ∀α⩽:τ.α

Γ ⊢ σ⩽:τ ⇐⇒ Γ ⊢ τ⩽:σ (1)

▶ To substitute variables eagerly, as the machine does:

α⩽:ϕ ⊢ σ⩽:τ ⇐⇒ ⊢ σ[ϕ/α]⩽:τ[ϕ/α] (2)

Does not hold in general, e.g. with ϕ = σ = ⊤ and τ = α.

7 / 20

Overview

To show RM halting ⪯m F⩽: subtyping Pierce shows:

R halts ⇐⇒ ⊢ σ⩽:T (R)

(⇒) By induction on the trace, in order to encode the stepping
of the machine we need:
▶ Flip property:

Γ ⊢ σ⩽:τ ⇐⇒ Γ ⊢ τ⩽:σ (1)

▶ Eager substitution:

α⩽:ϕ ⊢ σ⩽:τ ⇐⇒ ⊢ σ[ϕ/α]⩽:τ[ϕ/α] (2)

7 / 20

Overview

R halts ⇐⇒ ⊢ σ⩽:T (R)

(⇐) We need to analyze the derivation, however:

▶ Transitivity is too general; the intermediate type is
arbitrary, there might be infinitely many derivations.

▶ We need to obtain derivations deterministically, to match
the behaviour of the machine.

▶ The types are too general; we need an invariant on the
syntax. We only care about types of the form of translated
machines.

8 / 20

Overview

R halts ⇐⇒ ⊢ σ⩽:T (R)

(⇐) We need to analyze the derivation, however:

▶ Transitivity is too general; the intermediate type is
arbitrary, there might be infinitely many derivations.

▶ We need to obtain derivations deterministically, to match
the behaviour of the machine.

▶ The types are too general; we need an invariant on the
syntax. We only care about types of the form of translated
machines.

8 / 20

Overview

R halts ⇐⇒ ⊢ σ⩽:T (R)

(⇐) We need to analyze the derivation, however:

▶ Transitivity is too general; the intermediate type is
arbitrary, there might be infinitely many derivations.

▶ We need to obtain derivations deterministically, to match
the behaviour of the machine.

▶ The types are too general; we need an invariant on the
syntax. We only care about types of the form of translated
machines.

8 / 20

Overview

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Pierce defines the intermediate systems to address the
requirements:

FN
⩽: Restricted transitivity and flip property.

FD
⩽: Deterministic subtyping and syntactic invariants.

FF
⩽: Eager substitution.

The systems are implemented with deBrujin indices, however
are presented with named variables.

9 / 20

Overview

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Pierce defines the intermediate systems to address the
requirements:

FN
⩽: Restricted transitivity and flip property.

FD
⩽: Deterministic subtyping and syntactic invariants.

FF
⩽: Eager substitution.

The systems are implemented with deBrujin indices, however
are presented with named variables.

9 / 20

Overview

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Pierce defines the intermediate systems to address the
requirements:

FN
⩽: Restricted transitivity and flip property.

FD
⩽: Deterministic subtyping and syntactic invariants.

FF
⩽: Eager substitution.

The systems are implemented with deBrujin indices, however
are presented with named variables.

9 / 20

Overview

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Pierce defines the intermediate systems to address the
requirements:

FN
⩽: Restricted transitivity and flip property.

FD
⩽: Deterministic subtyping and syntactic invariants.

FF
⩽: Eager substitution.

The systems are implemented with deBrujin indices, however
are presented with named variables.

9 / 20

Overview

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Pierce defines the intermediate systems to address the
requirements:

FN
⩽: Restricted transitivity and flip property.

FD
⩽: Deterministic subtyping and syntactic invariants.

FF
⩽: Eager substitution.

The systems are implemented with deBrujin indices, however
are presented with named variables.

9 / 20

System FN
⩽: (normal)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Makes subtyping syntax directed:

NRefl
Γ ⊢0

N α⩽: α

Γ ⊢i
N Γ(α)⩽:τ

NVar
Γ ⊢Si

N α ⩽:τ

10 / 20

System FN
⩽: (normal)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Makes subtyping syntax directed:

NRefl
Γ ⊢0

N α⩽: α

Γ ⊢i
N Γ(α)⩽:τ

NVar
Γ ⊢Si

N α ⩽:τ

Theorem 1
(∃i. Γ ⊢i

N σ⩽:τ) ⇐⇒ Γ ⊢ σ⩽:τ

10 / 20

System FN
⩽: (normal)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Makes subtyping syntax directed:

NRefl
Γ ⊢0

N α⩽: α

Γ ⊢i
N Γ(α)⩽:τ

NVar
Γ ⊢Si

N α ⩽:τ

Theorem 1
(∃i. Γ ⊢i

N σ⩽:τ) ⇐⇒ Γ ⊢ σ⩽:τ

The flip property is now immediate.

Lemma 2
Γ ⊢Si

N σ⩽:τ ⇐⇒ Γ ⊢i
N τ⩽:σ

10 / 20

System FD
⩽: (deterministic)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

The w-fold polarized syntax classifies positive and negative
types:

τ+ ::= ⊤ | ∀α0⩽:τ−
0 ,...,αw⩽:τ−

w
. τ−

τ− ::= α | ∀α0,...,αw . τ+

The w-fold polyadic binders are the syntactic invariant required:
machines have a constant number of registers that are updated
simultaneously.

New quantifier rule:

Γ, α0⩽:ϕ−
0 , . . . αw⩽:ϕ−

w ⊢i
D τ−⩽:σ+

DAllFlip
Γ ⊢Si

D ∀α0,...,αw . σ+⩽:∀α0⩽:ϕ−
0 ,...,αw⩽:ϕ−

w
. τ−

11 / 20

System FD
⩽: (deterministic)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

The w-fold polarized syntax classifies positive and negative
types:

τ+ ::= ⊤ | ∀α0⩽:τ−
0 ,...,αw⩽:τ−

w
. τ−

τ− ::= α | ∀α0,...,αw . τ+

The w-fold polyadic binders are the syntactic invariant required:
machines have a constant number of registers that are updated
simultaneously.

New quantifier rule:

Γ, α0⩽:ϕ−
0 , . . . αw⩽:ϕ−

w ⊢i
D τ−⩽:σ+

DAllFlip
Γ ⊢Si

D ∀α0,...,αw . σ+⩽:∀α0⩽:ϕ−
0 ,...,αw⩽:ϕ−

w
. τ−

11 / 20

System FD
⩽: (deterministic)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

The w-fold polarized syntax classifies positive and negative
types:

τ+ ::= ⊤ | ∀α0⩽:τ−
0 ,...,αw⩽:τ−

w
. τ−

τ− ::= α | ∀α0,...,αw . τ+

The w-fold polyadic binders are the syntactic invariant required:
machines have a constant number of registers that are updated
simultaneously.

New quantifier rule:

Γ, α0⩽:ϕ−
0 , . . . αw⩽:ϕ−

w ⊢i
D τ−⩽:σ+

DAllFlip
Γ ⊢Si

D ∀α0,...,αw . σ+⩽:∀α0⩽:ϕ−
0 ,...,αw⩽:ϕ−

w
. τ−

11 / 20

System FD
⩽: (deterministic)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

We need a translation J−K from well-scoped w-fold polyadic
syntax to unscoped syntax:

JvarD i jK = varN (̂i + w ∗ ĵ)

where i : Iw and j : In for some n.

Lemma 3
For all τ and polyadic substitution θ:

Jτ[θ]K = JτK[JθK]
Proof.
By extensionality up to a bound.

12 / 20

System FD
⩽: (deterministic)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

We need a translation J−K from well-scoped w-fold polyadic
syntax to unscoped syntax:

JvarD i jK = varN (̂i + w ∗ ĵ)

where i : Iw and j : In for some n.

Lemma 3
For all τ and polyadic substitution θ:

Jτ[θ]K = JτK[JθK]

Proof.
By extensionality up to a bound.

12 / 20

System FD
⩽: (deterministic)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

We need a translation J−K from well-scoped w-fold polyadic
syntax to unscoped syntax:

JvarD i jK = varN (̂i + w ∗ ĵ)

where i : Iw and j : In for some n.

Lemma 3
For all τ and polyadic substitution θ:

Jτ[θ]K = JτK[JθK]
Proof.
By extensionality up to a bound.

12 / 20

System FD
⩽: (deterministic)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Theorem
(∃i. Γ ⊢i

D σ⩽:τ) ⇐⇒ (∃j. JΓK ⊢j
N JσK⩽:JτK)

Proof.
(⇒) By induction on the derivation.

13 / 20

System FD
⩽: (deterministic)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Theorem
(∃i. Γ ⊢i

D σ⩽:τ) ⇐⇒ (∃j. JΓK ⊢j
N JσK⩽:JτK)

Proof.
(⇒) By induction on the derivation.
(⇐) The new quantifier rule corresponds to w + 1 uses of the
old rule, therefore we use complete induction on the height of
the derivation.

DAllFlip NAll

NAll

..
.

...

⊢j−w−1
N

...

⊢Si
D

⊢i
D

⊢j
N

13 / 20

System FD
⩽: (deterministic)

We can already show a generalization of eager substitution:

Lemma 4
For all i there is a j such that j ≤ i and:

α0⩽:ϕ0, . . . , αw⩽:ϕw, Γ ⊢i
D σ⩽:τ

⇐⇒

Γ[ϕ0/α0, . . . , ϕw/αw] ⊢j
D σ[ϕ0/α0, . . . , ϕw/αw]⩽:τ[ϕ0/α0, . . . , ϕw/αw]

Proof.
Both directions follow by induction.
The proof involves substituting the closed types that were first
introduced in a context, this motivates the use of well-scoped
syntax.

14 / 20

System FD
⩽: (deterministic)

We can already show a generalization of eager substitution:

Lemma 4
For all i there is a j such that j ≤ i and:

α0⩽:ϕ0, . . . , αw⩽:ϕw, Γ ⊢i
D σ⩽:τ

⇐⇒

Γ[ϕ0/α0, . . . , ϕw/αw] ⊢j
D σ[ϕ0/α0, . . . , ϕw/αw]⩽:τ[ϕ0/α0, . . . , ϕw/αw]

Proof.
Both directions follow by induction.
The proof involves substituting the closed types that were first
introduced in a context, this motivates the use of well-scoped
syntax.

14 / 20

System FF
⩽: (flattened)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

The final variant incorporates eager substitution in the
quantifier rule:

⊢i
F τ[ϕ0/α0, . . . , ϕw/αw]⩽:σ[ϕ0/α0, . . . , ϕw/αw]

FAllFlip
⊢Si

F ∀α0⩽:⊤,...,αw⩽:⊤. σ⩽:∀α0⩽:ϕ0,...,αw⩽:ϕw . τ

Theorem 5
(∃i. ⊢i

F σ⩽:τ) ⇐⇒ (∃j. ⊢j
D σ⩽:τ)

Proof.
(⇒) By induction on the derivation.
(⇐) The new quantifier rule skips all the instances of the
variable rule, we use complete induction on the height of the
derivation again.

15 / 20

System FF
⩽: (flattened)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

The final variant incorporates eager substitution in the
quantifier rule:

⊢i
F τ[ϕ0/α0, . . . , ϕw/αw]⩽:σ[ϕ0/α0, . . . , ϕw/αw]

FAllFlip
⊢Si

F ∀α0⩽:⊤,...,αw⩽:⊤. σ⩽:∀α0⩽:ϕ0,...,αw⩽:ϕw . τ

Theorem 5
(∃i. ⊢i

F σ⩽:τ) ⇐⇒ (∃j. ⊢j
D σ⩽:τ)

Proof.
(⇒) By induction on the derivation.
(⇐) The new quantifier rule skips all the instances of the
variable rule, we use complete induction on the height of the
derivation again.

15 / 20

System FF
⩽: (flattened)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

We can show the reduction from RM halting.

Theorem 6
R halts ⇐⇒ ∃i. ⊢i

F σ⩽:T (R)

Proof.
(⇒) By induction on the trace.
(⇐) One step of the machine corresponds to two applications
of the quantifier rule, once again we do complete induction on
the height of the derivation.

16 / 20

System FF
⩽: (flattened)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

We can show the reduction from RM halting.

Theorem 6
R halts ⇐⇒ ∃i. ⊢i

F σ⩽:T (R)

Proof.
(⇒) By induction on the trace.
(⇐) One step of the machine corresponds to two applications
of the quantifier rule, once again we do complete induction on
the height of the derivation.

16 / 20

Typechecking

To show that subtyping reduces to typechecking it is enough to
show:

Lemma 7
For all Γ, σ and τ:

Γ ⊢ σ⩽:τ ⇐⇒ Γ ⊢ (Λα⩽:τ.λx:α.x) σ : σ → σ

Proof.
(⇒) By type instantiation.

(⇐) By inversion on the rules with induction on the height of
the derivation in the subsumption case.

17 / 20

Typechecking

To show that subtyping reduces to typechecking it is enough to
show:

Lemma 7
For all Γ, σ and τ:

Γ ⊢ σ⩽:τ ⇐⇒ Γ ⊢ (Λα⩽:τ.λx:α.x) σ : σ → σ

Proof.
(⇒) By type instantiation.
(⇐) By inversion on the rules with induction on the height of
the derivation in the subsumption case.

17 / 20

Summary

2CM ⪯m RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

F⩽: subtyping ⪯m F⩽: typechecking

▶ Syntax directed subtyping is better suited to analyze
derivations.

▶ Polarized syntax enables eager substitution.
▶ Well-scoped polyadic syntax profiting from Autosubst2

features.
▶ Induction on height of derivations is required in most

proofs.
▶ Construction of subtyping judgements corresponds to a

deterministic state transformation.

18 / 20

Summary

2CM ⪯m RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

F⩽: subtyping ⪯m F⩽: typechecking

▶ Syntax directed subtyping is better suited to analyze
derivations.

▶ Polarized syntax enables eager substitution.
▶ Well-scoped polyadic syntax profiting from Autosubst2

features.
▶ Induction on height of derivations is required in most

proofs.
▶ Construction of subtyping judgements corresponds to a

deterministic state transformation.

18 / 20

Summary

2CM ⪯m RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

F⩽: subtyping ⪯m F⩽: typechecking

▶ Syntax directed subtyping is better suited to analyze
derivations.

▶ Polarized syntax enables eager substitution.

▶ Well-scoped polyadic syntax profiting from Autosubst2
features.

▶ Induction on height of derivations is required in most
proofs.

▶ Construction of subtyping judgements corresponds to a
deterministic state transformation.

18 / 20

Summary

2CM ⪯m RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

F⩽: subtyping ⪯m F⩽: typechecking

▶ Syntax directed subtyping is better suited to analyze
derivations.

▶ Polarized syntax enables eager substitution.
▶ Well-scoped polyadic syntax profiting from Autosubst2

features.

▶ Induction on height of derivations is required in most
proofs.

▶ Construction of subtyping judgements corresponds to a
deterministic state transformation.

18 / 20

Summary

2CM ⪯m RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

F⩽: subtyping ⪯m F⩽: typechecking

▶ Syntax directed subtyping is better suited to analyze
derivations.

▶ Polarized syntax enables eager substitution.
▶ Well-scoped polyadic syntax profiting from Autosubst2

features.
▶ Induction on height of derivations is required in most

proofs.

▶ Construction of subtyping judgements corresponds to a
deterministic state transformation.

18 / 20

Summary

2CM ⪯m RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

F⩽: subtyping ⪯m F⩽: typechecking

▶ Syntax directed subtyping is better suited to analyze
derivations.

▶ Polarized syntax enables eager substitution.
▶ Well-scoped polyadic syntax profiting from Autosubst2

features.
▶ Induction on height of derivations is required in most

proofs.
▶ Construction of subtyping judgements corresponds to a

deterministic state transformation.

18 / 20

Summary of mechanization

LOC
Spec. Proof

Shared facts 500 400
Autosubst2 syntax:

unscoped 130 20
well-scoped 200 150
Reductions:

Subtyping ⪯m Typechecking 30 160
FN
⩽: ⪯m F⩽: 30 60

FD
⩽: ⪯m FN

⩽: 150 250
FF
⩽: ⪯m FD

⩽: 50 100
RM ⪯m FF

⩽: 80 120
CM2 ⪯m RM 50 120

Total 2580

19 / 20

Future work

▶ Wehr and Thiemann [2009] reduce FD
⩽: subtyping to

subtyping existential types with upper (∃x⩽:τ. σ) and
lower (∃τ⩽:x. σ) bounds.

Incomplete mechanization; syntax has types and classes.

▶ Hu and Lhoták [2020] reduce FN
⩽: subtyping to subtyping

Dependent-Object types (the core calculus of Scala).
Not ported to Coq due to time constraints.

20 / 20

Future work

▶ Wehr and Thiemann [2009] reduce FD
⩽: subtyping to

subtyping existential types with upper (∃x⩽:τ. σ) and
lower (∃τ⩽:x. σ) bounds.
Incomplete mechanization; syntax has types and classes.

▶ Hu and Lhoták [2020] reduce FN
⩽: subtyping to subtyping

Dependent-Object types (the core calculus of Scala).
Not ported to Coq due to time constraints.

20 / 20

Future work

▶ Wehr and Thiemann [2009] reduce FD
⩽: subtyping to

subtyping existential types with upper (∃x⩽:τ. σ) and
lower (∃τ⩽:x. σ) bounds.
Incomplete mechanization; syntax has types and classes.

▶ Hu and Lhoták [2020] reduce FN
⩽: subtyping to subtyping

Dependent-Object types (the core calculus of Scala).
Not ported to Coq due to time constraints.

20 / 20

Bibliography

Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys (CSUR), 17(4):471–523, 1985. ISSN
15577341. doi: 10.1145/6041.6042. URL
https://dl.acm.org/doi/10.1145/6041.6042.

Giorgio Ghelli. Proof Theoretic Studies about a Minimal Type System Integrating Inclusion
and Parametric Polymorphism. PhD thesis, 1990.

Giorgio Ghelli. Divergence of F⩽: type checking. Theoretical Computer Science, 139(1-2):
131–162, 1995. ISSN 03043975. doi: 10.1016/0304-3975(94)00037-J. URL
https://linkinghub.elsevier.com/retrieve/pii/030439759400037J.

Benjamin Pierce. Bounded Quantification Is Undecidable. Information and Computation,
112(1):131–165, jul 1994. ISSN 08905401. doi: 10.1006/inco.1994.1055. URL https:
//linkinghub.elsevier.com/retrieve/pii/S0890540184710558.

Stefan Wehr and Peter Thiemann. On the decidability of subtyping with bounded
existential types. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 5904 LNCS,
pages 111–127, 2009. ISBN 3642106714. doi: 10.1007/978-3-642-10672-9 10. URL
http://link.springer.com/10.1007/978-3-642-10672-9_10.

Jason Hu and Ondrej Lhoták. Undecidability of D⩽: and Its Decidable Fragments.
Proceedings of the ACM on Programming Languages, 4(POPL), 2020. doi:
10.1145/3371077. URL https://doi.org/10.1145/3371077.

https://dl.acm.org/doi/10.1145/6041.6042
https://linkinghub.elsevier.com/retrieve/pii/030439759400037J
https://linkinghub.elsevier.com/retrieve/pii/S0890540184710558
https://linkinghub.elsevier.com/retrieve/pii/S0890540184710558
http://link.springer.com/10.1007/978-3-642-10672-9_10
https://doi.org/10.1145/3371077

	References

