
Mechanized undecidability
of subtyping in System F

Roberto Álvarez
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Bounded quantification

Combines type polymorphism with subtyping.

Terms and types of System F⩽::

s, t ::= x | λx:τ. t | Λα⩽:τ. t | t s | t τ

σ, τ ::= α | σ → τ | ∀α⩽:σ. τ | ⊤
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Bounded quantification

Combines type polymorphism with subtyping.

Terms and types of System F⩽::

s, t ::= x | λx:τ. t | Λα⩽:τ . t | t s | t τ

σ, τ ::= α | σ → τ | ∀α⩽:σ . τ | ⊤

Unbounded quantification can be defined with ⊤:

∀α. τ := ∀α⩽:⊤. τ
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History

1985 System F⩽: is first introduced by Cardelli and
Wegner.

1990 Curien and Ghelli give a typechecking algorithm
by means of a term rewritting system.
The algorithm is sound and complete by
construction.

1990 Ghelli gives a proof of termination.
The proof turns out to be wrong.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.
2022 Pierces’s proof is mechanized.
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Subtyping bounded quantifiers

Γ ⊢ τ1⩽:σ1 Γ, α⩽:τ1 ⊢ σ2⩽:τ2
All

Γ ⊢ ∀α⩽:σ1 . σ2 ⩽: ∀α⩽:τ1 . τ2
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Subtyping bounded quantifiers

Γ ⊢ τ1⩽:σ1 Γ, α⩽:τ1 ⊢ σ2⩽:τ2
All

Γ ⊢ ∀α⩽:σ1 . σ2 ⩽: ∀α⩽:τ1 . τ2

we say that σ2 gets rebounded.
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F⩽: subtyping

Γ ⊢ τ1⩽:σ1 Γ, α⩽:τ1 ⊢ σ2⩽:τ2
All

Γ ⊢ ∀α⩽:σ1 . σ2 ⩽: ∀α⩽:τ1 . τ2

Γ ⊢ τ1⩽:σ1 Γ ⊢ σ2⩽:τ2
Arrow

Γ ⊢ σ1 → σ2 ⩽: τ1 → τ2

Refl
Γ ⊢ τ⩽:τ

Γ ⊢ σ⩽:ϕ Γ ⊢ ϕ⩽:τ
Trans

Γ ⊢ σ⩽:τ

Top
Γ ⊢ τ⩽:⊤

Var
Γ ⊢ α⩽:Γ(α)

F⩽: subtyping:
Given arbitrary Γ, σ and τ, is there a derivation of Γ ⊢ σ⩽:τ?
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F⩽: typechecking

Var
∆; Γ ⊢ x : ∆(x)

∆, x : σ; Γ ⊢ t : τ
Term-Abst

∆; Γ ⊢ λx:σ.t : σ → τ

∆; Γ, α⩽:σ ⊢ t : τ
Type-Abst

∆; Γ ⊢ Λα⩽:σ.t : ∀α⩽:σ.τ

∆; Γ ⊢ t : σ Γ ⊢ σ⩽:τ
Subsumption

∆; Γ ⊢ t : τ

∆; Γ ⊢ t : σ → τ ∆; Γ ⊢ u : σ
Term-Inst

∆; Γ ⊢ t u : τ

∆; Γ ⊢ t : ∀α⩽:σ.τ Γ ⊢ σ1⩽:σ
Type-Inst

∆; Γ ⊢ t σ1 : τ[σ1/α]

F⩽: typechecking:
Given arbitrary ∆,Γ, t and τ, is there a derivation of ∆; Γ ⊢ t : τ?
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Undecidability

Theorem
F⩽: subtyping is undecidable.

Theorem
F⩽: typechecking is undecidable.
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2CM halting ⪯m RM halting ⪯m · · · ⪯m F⩽: subtyping
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Undecidability
Theorem
F⩽: subtyping is undecidable.

Proof.
By a chain of many-one reductions, Pierce [1994]:
2CM halting ⪯m RM halting ⪯m · · · ⪯m F⩽: subtyping

Theorem
F⩽: typechecking is undecidable.

Proof.
By reduction from subtyping; we give a term that is well-typed
iff a subtyping statement holds:

Γ ⊢ σ⩽:τ ⇐⇒ Γ ⊢ (Λα⩽:τ.λx:α.x) σ : σ → σ

Note: arrow types are only required on the second proof.
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Overview

To show RM halting ⪯m F⩽: subtyping Pierce shows:

R halts ⇐⇒ ⊢ σ⩽:T (R)
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R halts ⇐⇒ ⊢ σ⩽:T (R)

(⇒) By induction on the trace, in order to encode the stepping
of the machine we need:
▶ To rebound the right hand side with an operator that flips

inequalities using contravariance:

τ := ∀α⩽:τ.α

Γ ⊢ σ⩽:τ ⇐⇒ Γ ⊢ τ⩽:σ (1)

▶ To substitute variables eagerly, as the machine does:

α⩽:ϕ ⊢ σ⩽:τ ⇐⇒ ⊢ σ[ϕ/α]⩽:τ[ϕ/α] (2)

Does not hold in general, e.g. with ϕ = σ = ⊤ and τ = α.
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To show RM halting ⪯m F⩽: subtyping Pierce shows:

R halts ⇐⇒ ⊢ σ⩽:T (R)

(⇒) By induction on the trace, in order to encode the stepping
of the machine we need:
▶ Flip property:

Γ ⊢ σ⩽:τ ⇐⇒ Γ ⊢ τ⩽:σ (1)

▶ Eager substitution:

α⩽:ϕ ⊢ σ⩽:τ ⇐⇒ ⊢ σ[ϕ/α]⩽:τ[ϕ/α] (2)
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Overview

R halts ⇐⇒ ⊢ σ⩽:T (R)

(⇐) We need to analyze the derivation, however:

▶ Transitivity is too general; the intermediate type is
arbitrary, there might be infinitely many derivations.

▶ We need to obtain derivations deterministically, to match
the behaviour of the machine.

▶ The types are too general; we need an invariant on the
syntax. We only care about types of the form of translated
machines.
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Overview

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Pierce defines the intermediate systems to address the
requirements:

FN
⩽: Restricted transitivity and flip property.

FD
⩽: Deterministic subtyping and syntactic invariants.

FF
⩽: Eager substitution.

The systems are implemented with deBrujin indices, however
are presented with named variables.
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System FN
⩽: (normal)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Makes subtyping syntax directed:

NRefl
Γ ⊢0

N α⩽: α

Γ ⊢i
N Γ(α)⩽:τ

NVar
Γ ⊢Si

N α ⩽:τ
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NRefl
Γ ⊢0

N α⩽: α

Γ ⊢i
N Γ(α)⩽:τ

NVar
Γ ⊢Si

N α ⩽:τ

Theorem 1
(∃i. Γ ⊢i

N σ⩽:τ) ⇐⇒ Γ ⊢ σ⩽:τ
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System FN
⩽: (normal)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Makes subtyping syntax directed:

NRefl
Γ ⊢0

N α⩽: α

Γ ⊢i
N Γ(α)⩽:τ

NVar
Γ ⊢Si

N α ⩽:τ

Theorem 1
(∃i. Γ ⊢i

N σ⩽:τ) ⇐⇒ Γ ⊢ σ⩽:τ

The flip property is now immediate.

Lemma 2
Γ ⊢Si

N σ⩽:τ ⇐⇒ Γ ⊢i
N τ⩽:σ
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System FD
⩽: (deterministic)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

The w-fold polarized syntax classifies positive and negative
types:

τ+ ::= ⊤ | ∀α0⩽:τ−
0 ,...,αw⩽:τ−

w
. τ−

τ− ::= α | ∀α0,...,αw . τ+

The w-fold polyadic binders are the syntactic invariant required:
machines have a constant number of registers that are updated
simultaneously.

New quantifier rule:

Γ, α0⩽:ϕ−
0 , . . . αw⩽:ϕ−

w ⊢i
D τ−⩽:σ+

DAllFlip
Γ ⊢Si

D ∀α0,...,αw . σ+⩽:∀α0⩽:ϕ−
0 ,...,αw⩽:ϕ−

w
. τ−
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System FD
⩽: (deterministic)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

We need a translation J−K from well-scoped w-fold polyadic
syntax to unscoped syntax:

JvarD i jK = varN (̂i + w ∗ ĵ)

where i : Iw and j : In for some n.

Lemma 3
For all τ and polyadic substitution θ:

Jτ[θ]K = JτK[JθK]
Proof.
By extensionality up to a bound.

12 / 20



System FD
⩽: (deterministic)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

We need a translation J−K from well-scoped w-fold polyadic
syntax to unscoped syntax:

JvarD i jK = varN (̂i + w ∗ ĵ)
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System FD
⩽: (deterministic)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Theorem
(∃i. Γ ⊢i

D σ⩽:τ) ⇐⇒ (∃j. JΓK ⊢j
N JσK⩽:JτK)

Proof.
(⇒) By induction on the derivation.
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System FD
⩽: (deterministic)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

Theorem
(∃i. Γ ⊢i

D σ⩽:τ) ⇐⇒ (∃j. JΓK ⊢j
N JσK⩽:JτK)

Proof.
(⇒) By induction on the derivation.
(⇐) The new quantifier rule corresponds to w + 1 uses of the
old rule, therefore we use complete induction on the height of
the derivation.

DAllFlip NAll

NAll

..
.

...

⊢j−w−1
N

...

⊢Si
D

⊢i
D

⊢j
N
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System FD
⩽: (deterministic)

We can already show a generalization of eager substitution:

Lemma 4
For all i there is a j such that j ≤ i and:

α0⩽:ϕ0, . . . , αw⩽:ϕw, Γ ⊢i
D σ⩽:τ

⇐⇒

Γ[ϕ0/α0, . . . , ϕw/αw] ⊢j
D σ[ϕ0/α0, . . . , ϕw/αw]⩽:τ[ϕ0/α0, . . . , ϕw/αw]

Proof.
Both directions follow by induction.
The proof involves substituting the closed types that were first
introduced in a context, this motivates the use of well-scoped
syntax.
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System FF
⩽: (flattened)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

The final variant incorporates eager substitution in the
quantifier rule:

⊢i
F τ[ϕ0/α0, . . . , ϕw/αw]⩽:σ[ϕ0/α0, . . . , ϕw/αw]

FAllFlip
⊢Si

F ∀α0⩽:⊤,...,αw⩽:⊤. σ⩽:∀α0⩽:ϕ0,...,αw⩽:ϕw . τ

Theorem 5
(∃i. ⊢i

F σ⩽:τ) ⇐⇒ (∃j. ⊢j
D σ⩽:τ)

Proof.
(⇒) By induction on the derivation.
(⇐) The new quantifier rule skips all the instances of the
variable rule, we use complete induction on the height of the
derivation again.
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System FF
⩽: (flattened)

RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

We can show the reduction from RM halting.

Theorem 6
R halts ⇐⇒ ∃i. ⊢i

F σ⩽:T (R)

Proof.
(⇒) By induction on the trace.
(⇐) One step of the machine corresponds to two applications
of the quantifier rule, once again we do complete induction on
the height of the derivation.
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Typechecking

To show that subtyping reduces to typechecking it is enough to
show:

Lemma 7
For all Γ, σ and τ:

Γ ⊢ σ⩽:τ ⇐⇒ Γ ⊢ (Λα⩽:τ.λx:α.x) σ : σ → σ

Proof.
(⇒) By type instantiation.

(⇐) By inversion on the rules with induction on the height of
the derivation in the subsumption case.
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Summary

2CM ⪯m RM ⪯m FF
⩽: ⪯m FD

⩽: ⪯m FN
⩽: ⪯m F⩽:

F⩽: subtyping ⪯m F⩽: typechecking

▶ Syntax directed subtyping is better suited to analyze
derivations.

▶ Polarized syntax enables eager substitution.
▶ Well-scoped polyadic syntax profiting from Autosubst2

features.
▶ Induction on height of derivations is required in most

proofs.
▶ Construction of subtyping judgements corresponds to a

deterministic state transformation.
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Summary of mechanization

LOC
Spec. Proof

Shared facts 500 400
Autosubst2 syntax:

unscoped 130 20
well-scoped 200 150
Reductions:

Subtyping ⪯m Typechecking 30 160
FN
⩽: ⪯m F⩽: 30 60

FD
⩽: ⪯m FN

⩽: 150 250
FF
⩽: ⪯m FD

⩽: 50 100
RM ⪯m FF

⩽: 80 120
CM2 ⪯m RM 50 120

Total 2580
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Future work

▶ Wehr and Thiemann [2009] reduce FD
⩽: subtyping to

subtyping existential types with upper (∃x⩽:τ. σ) and
lower (∃τ⩽:x. σ) bounds.

Incomplete mechanization; syntax has types and classes.

▶ Hu and Lhoták [2020] reduce FN
⩽: subtyping to subtyping

Dependent-Object types (the core calculus of Scala).
Not ported to Coq due to time constraints.
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