
Towards mechanized undecidability of
subtyping in System F

Roberto Álvarez
Advisor: Yannick Forster

Saarland University
Programming Systems Lab

24.06.2021

System F

Terms, types and contexts:

t, u ::= x | λx : τ. t | t u | Λα. t | t τ

σ, τ ::= α | σ→ τ | ∀α. τ

Γ ::= [] | Γ, x : τ | Γ, α type

Typing rules:

x : τ ∈ Γ
Γ ` x : τ

Γ, x : σ ` t : τ

Γ ` λx : σ.t : σ→ τ

Γ ` t : σ→ τ Γ ` u : σ
Γ ` t u : τ

Γ, α type ` t : τ

Γ ` Λα.t : ∀α.τ
Γ ` t : ∀α.τ Γ ` σ type

Γ ` t σ : τ[σ/α]

1 / 10

Subtyping

Reflexive and transitive relation on types σ6:τ

Γ ` t : σ Γ ` σ6:τ
Γ ` t : τ

Any term of type σ may be used where a term of type τ is
expected:

N 6: R

{x : X, y : Y} 6: {x : X}
τ 6: >

2 / 10

System F6:

Contexts also contain type bounds: Γ ::= · · · | Γ, α6:τ

Bounded quantification replaces universal quantification

Γ, α6:σ ` t : τ

Γ ` Λα6:σ. t : ∀α6:σ. τ
∀α.τ := ∀α6:>.τ

Bounded quantification is contravariant in the bounds:

Γ ` τ16:σ1 Γ, α6:τ1 ` σ26:τ2

Γ ` ∀α6:σ1. σ2 6: ∀α6:τ1. τ2

σ2 gets rebounded with τ1, this allows to encode ”registers”
and numbers.

3 / 10

F6: subtyping

For arbitrary Γ, σ and τ, is there a derivation of Γ ` σ6:τ?

[Pierce, 1994] gives a proof of undecidability:

Theorem
F6: subtyping is undecidable

Proof.
By a chain of many-one reductions
2CM halting ≤m RM halting ≤m FF

6: subtyping
≤m FD

6: subtyping
≤m FN

6: subtyping
≤m F6: subtyping

4 / 10

Variants of System F6:

Each variant refines the rules further to simplify the translation
from rowing machines.

FN
6: Syntax directed subtyping

FD
6: Deterministic subtyping; polarized syntax

FF
6: Eager substitution; empty context

The full system is a conservative extension of each variant.

Lemma
If L1 is a conservative extension of L2 then there is a many-one
reduction

l ∈ L2 ≤m l ∈ L1

5 / 10

Rowing machines

A closed n-tuple of rows 〈ρ1 . . . ρn〉 each row is of the form

ρ ::= αi | 〈α1 . . . αn; ρ1 . . . ρn〉 | Halt i ∈ {1 . . . n}

The step function for ρ1 = 〈α1 . . . αn; ρ′1 . . . ρ′n〉

〈ρ1 . . . ρn〉 7→ 〈ρ′1[ρ1/α1 . . . ρn/αn] . . . ρ′1[ρ1/α1 . . . ρn/αn]〉

For example

〈〈α1, α2, α3; α1, α3, α2〉, A, B〉
7→〈〈α1, α2, α3; α1, α3, α2〉, B, A〉
7→〈〈α1, α2, α3; α1, α3, α2〉, A, B〉
7→ . . .

6 / 10

Rowing machines

F encodes rowing machines as FF
6: statements and rows as types.

The contents of the registers are stored as bounds and the next
instruction as the body:

F (〈ρ1 . . . ρn〉) := σ6: . . . ∀β16:F (ρ1) . . . ∀βn6:F (ρn). (. . .F (ρ1) . . .)

The type σ and the rest of the right hand side reorder the bounds to
yield a statement of the same form with the bounds substituted in the
body.

If R→R R′ and there is a derivation of F (R′) then there is a
derivation of F (R).

Lemma
The rowing machine R halts iff there is a derivation of F (R).

7 / 10

2-counter machines

[Pierce, 1994] defines 2-counter machines as a program counter
and two registers (PC, A, B), instructions are of the form:

instr ::=incAn | incBn
|decAn/m | decBn/m
|Halt

[Dudenhefner, 2021] gives a slightly different presentation of
counter machines, however Pierce’s machines are more easily
translated to rowing machines.

8 / 10

2-counter machines

R encodes 2-counter machines, instructions and natural
numbers as rowing machines.

When used as an instruction the encoding of a number loads
the next instruction and its predecessor (itself in case of 0) in
the appropriate registers.

The ability of rowing machines to encode numbers, successors
and predecessors motivates the use of counter machines.

Lemma
The 2-counter machine M halts iffR(M) halts.

9 / 10

Mechanized proofs

Completed:
I Undecidability of Pierce’s 2CM halting.
I Undecidability of RM halting.

In development:
I RM halting many-one reduces to FF

6: subtyping.
I The full system is indeed conservative extensions of the

variants.

10 / 10

Bibliography

Dudenhefner, A. (2021).
Constructive many-one reduction from the halting problem to
semi-unification.

Pierce, B. C. (1994).
Bounded quantification is undecidable.
Information and Computation, pages 131–165.

Pierce, B. C. (2002).
Types and programming languages.
MIT Press.

System F6:

Refl
Γ ` τ6:τ

Γ ` τ16:τ2 Γ ` τ26:τ3
Trans

Γ ` τ16:τ3

Top
Γ ` τ6:>

Var
Γ ` α6:Γ(α)

Γ ` τ16:σ1 Γ, α6:τ1 ` σ26:τ2
All

Γ ` ∀α6:σ1. σ2 6: ∀α6:τ1. τ2

System FN
6: (normal)

NRefl
Γ ` α6:α

NTop
Γ ` τ6:>

Γ ` Γ(α)6:τ
NVar

Γ ` α6:τ

Γ ` τ16:σ1 Γ, α6:τ1 ` σ26:τ2
NAll

Γ ` ∀α6:σ1. σ2 6: ∀α6:τ1. τ2

System FD
6: (deterministic)

DTop
Γ ` τ6:>

Γ ` Γ(α)6:∀α06:σ0 . . . αn6:σn. τ
DVar

Γ ` α6:∀α06:σ0 . . . αn6:σn. τ

Γ, α06:φ0, . . . , αn6:φn ` τ6:σ
DAllNeg

Γ ` ∀α0 . . . αn. σ 6: ∀α06:φ0 . . . αn6:φn. τ

System FF
6: (flattened)

FTop
` τ6:>

` τ[φ0/α0 . . . φn/αn]6:σ[φ0/α0 . . . φn/αn]
FAllNeg

` ∀α0 . . . αn. σ 6: ∀α06:φ0 . . . αn6:φn. τ

