
Mechanized undecidability
of subtyping in System F

Roberto Álvarez
Advisor: Yannick Forster

Saarland University
Programming Systems Lab

Final talk of Master’s seminar

30.09.2021

Recap: System F6:

Combines type polymorphism with subtyping.

Terms and types:

s, t ::= x | λx:τ. t | Λα6:τ. t | t s | t τ

σ, τ ::= α | σ→ τ | ∀α6:σ. τ | >

1 / 19

Recap: System F6:

Combines type polymorphism with subtyping.

Terms and types:

s, t ::= x | λx:τ. t | Λα6:τ . t | t s | t τ

σ, τ ::= α | σ→ τ | ∀α6:σ . τ | >

1 / 19

Recap: System F6:

Combines type polymorphism with subtyping.

Terms and types:

s, t ::= x | λx:τ. t | Λα6:τ . t | t s | t τ

σ, τ ::= α | σ→ τ | ∀α6:σ . τ | >

Unbounded quantification can be defined with >:

∀α. τ := ∀α6:>. τ

1 / 19

Recap: System F6:

1985 System F6: is first introduced by Cardelli and
Wegner. They show coherence of the typechecking
algorithm.

1990 Ghelli gives a proof of termination.
The proof turns out to be ”full of typos”1.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.
2021 Pierces’s proof is mechanized.

1Ghelli’s post
2 / 19

https://www.cis.upenn.edu/~bcpierce/types/archives/1993/msg00144.html

Recap: System F6:

1985 System F6: is first introduced by Cardelli and
Wegner. They show coherence of the typechecking
algorithm.

1990 Ghelli gives a proof of termination.
The proof turns out to be ”full of typos”1.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.
2021 Pierces’s proof is mechanized.

1Ghelli’s post
2 / 19

https://www.cis.upenn.edu/~bcpierce/types/archives/1993/msg00144.html

Recap: System F6:

1985 System F6: is first introduced by Cardelli and
Wegner. They show coherence of the typechecking
algorithm.

1990 Ghelli gives a proof of termination.
The proof turns out to be ”full of typos”1.

1992 Ghelli gives a counterexample.

1994 Pierce gives a proof of undecidability.
2021 Pierces’s proof is mechanized.

1Ghelli’s post
2 / 19

https://www.cis.upenn.edu/~bcpierce/types/archives/1993/msg00144.html

Recap: System F6:

1985 System F6: is first introduced by Cardelli and
Wegner. They show coherence of the typechecking
algorithm.

1990 Ghelli gives a proof of termination.
The proof turns out to be ”full of typos”1.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.

2021 Pierces’s proof is mechanized.

1Ghelli’s post
2 / 19

https://www.cis.upenn.edu/~bcpierce/types/archives/1993/msg00144.html

Recap: System F6:

1985 System F6: is first introduced by Cardelli and
Wegner. They show coherence of the typechecking
algorithm.

1990 Ghelli gives a proof of termination.
The proof turns out to be ”full of typos”1.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.
2021 Pierces’s proof is mechanized.

1Ghelli’s post
2 / 19

https://www.cis.upenn.edu/~bcpierce/types/archives/1993/msg00144.html

Recap: System F6:

Γ ` τ16:σ1 Γ, α6:τ1 ` σ26:τ2
All

Γ ` ∀α6:σ1 . σ2 6: ∀α6:τ1 . τ2

we say that σ2 gets rebounded.

3 / 19

Recap: System F6:

Γ ` τ16:σ1 Γ, α6:τ1 ` σ26:τ2
All

Γ ` ∀α6:σ1 . σ2 6: ∀α6:τ1 . τ2

Refl
Γ ` τ6:τ

Γ ` σ6:φ Γ ` φ6:τ
Trans

Γ ` σ6:τ

Top
Γ ` τ6:>

Var
Γ ` α6:Γ(α)

3 / 19

Recap: System F6:

Γ ` τ16:σ1 Γ, α6:τ1 ` σ26:τ2
All

Γ ` ∀α6:σ1 . σ2 6: ∀α6:τ1 . τ2

Refl
Γ ` τ6:τ

Γ ` σ6:φ Γ ` φ6:τ
Trans

Γ ` σ6:τ

Top
Γ ` τ6:>

Var
Γ ` α6:Γ(α)

F6: subtyping:
Given arbitrary Γ, σ and τ, is there a derivation of Γ ` σ6:τ?

3 / 19

Recap: undecidability

Theorem
F6: subtyping is synthetically undecidable.

To show RM halting �m F6: subtyping Pierce shows:

R halts ⇐⇒ ` σ6:T (R)

for a concrete σ independent of R.

4 / 19

Recap: undecidability

Theorem
F6: subtyping is synthetically undecidable.

Proof.
By a chain of many-one reductions, Pierce [1994]:
2CM halting �m RM halting �m · · · �m F6: subtyping

To show RM halting �m F6: subtyping Pierce shows:

R halts ⇐⇒ ` σ6:T (R)

for a concrete σ independent of R.

4 / 19

Recap: undecidability

Theorem
F6: subtyping is synthetically undecidable.

Proof.
By a chain of many-one reductions, Pierce [1994]:
2CM halting �m RM halting︸ ︷︷ ︸

mechanized before first talk

�m · · · �m F6: subtyping︸ ︷︷ ︸
partially mechanized since

To show RM halting �m F6: subtyping Pierce shows:

R halts ⇐⇒ ` σ6:T (R)

for a concrete σ independent of R.

4 / 19

Recap: undecidability

Theorem
F6: subtyping is synthetically undecidable.

Proof.
By a chain of many-one reductions, Pierce [1994]:
2CM halting �m RM halting︸ ︷︷ ︸

mechanized before first talk

�m · · · �m F6: subtyping︸ ︷︷ ︸
partially mechanized since

To show RM halting �m F6: subtyping Pierce shows:

R halts ⇐⇒ ` σ6:T (R)

for a concrete σ independent of R.

4 / 19

Overview

R halts ⇐⇒ ` σ6:T (R)

(⇒) By induction on the trace, in order to encode the stepping
of the machine we need:

5 / 19

Overview

R halts ⇐⇒ ` σ6:T (R)

(⇒) By induction on the trace, in order to encode the stepping
of the machine we need:

I To rebound the right hand side with an operator that flips
inequalities using contravariance:

τ := ∀α6:τ.α

Γ ` σ6:τ ⇐⇒ Γ ` τ6:σ (1)

I To substitute variables eagerly, as the machine does:

α6:φ ` σ6:τ ⇐⇒ ` σ[φ/α]6:τ[φ/α] (2)

Does not hold in general, e.g. with φ = σ = > and τ = α.

5 / 19

Overview

R halts ⇐⇒ ` σ6:T (R)

(⇒) By induction on the trace, in order to encode the stepping
of the machine we need:

I To rebound the right hand side with an operator that flips
inequalities using contravariance:

τ := ∀α6:τ.α

Γ ` σ6:τ ⇐⇒ Γ ` τ6:σ (1)

I To substitute variables eagerly, as the machine does:

α6:φ ` σ6:τ ⇐⇒ ` σ[φ/α]6:τ[φ/α] (2)

Does not hold in general, e.g. with φ = σ = > and τ = α.

5 / 19

Overview

R halts ⇐⇒ ` σ6:T (R)

(⇒) By induction on the trace, in order to encode the stepping
of the machine we need:

I Flip property:

Γ ` σ6:τ ⇐⇒ Γ ` τ6:σ (1)

I Eager substitution:

α6:φ ` σ6:τ ⇐⇒ ` σ[φ/α]6:τ[φ/α] (2)

5 / 19

Overview

R halts ⇐⇒ ` σ6:T (R)

(⇐) We need to analyze the derivation, however:

I Transitivity is too general, there might be infinitely many
derivations.

I We need to obtain derivations deterministically, to match
the behaviour of the machine.

I The types are too general; we need an invariant on the
syntax. We only care about types of the form of translated
machines.

6 / 19

Overview

R halts ⇐⇒ ` σ6:T (R)

(⇐) We need to analyze the derivation, however:

I Transitivity is too general, there might be infinitely many
derivations.

I We need to obtain derivations deterministically, to match
the behaviour of the machine.

I The types are too general; we need an invariant on the
syntax. We only care about types of the form of translated
machines.

6 / 19

Overview

R halts ⇐⇒ ` σ6:T (R)

(⇐) We need to analyze the derivation, however:

I Transitivity is too general, there might be infinitely many
derivations.

I We need to obtain derivations deterministically, to match
the behaviour of the machine.

I The types are too general; we need an invariant on the
syntax. We only care about types of the form of translated
machines.

6 / 19

Overview

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Pierce defines the intermediate systems to address the
requirements:

FN
6: Restricted transitivity and flip property.

FD
6: Deterministic subtyping and syntactic invariants.

FF
6: Eager substitution.

The systems are implemented with deBrujin indices, however
are presented with named variables.

7 / 19

Overview

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Pierce defines the intermediate systems to address the
requirements:

FN
6: Restricted transitivity and flip property.

FD
6: Deterministic subtyping and syntactic invariants.

FF
6: Eager substitution.

The systems are implemented with deBrujin indices, however
are presented with named variables.

7 / 19

Overview

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Pierce defines the intermediate systems to address the
requirements:

FN
6: Restricted transitivity and flip property.

FD
6: Deterministic subtyping and syntactic invariants.

FF
6: Eager substitution.

The systems are implemented with deBrujin indices, however
are presented with named variables.

7 / 19

Overview

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Pierce defines the intermediate systems to address the
requirements:

FN
6: Restricted transitivity and flip property.

FD
6: Deterministic subtyping and syntactic invariants.

FF
6: Eager substitution.

The systems are implemented with deBrujin indices, however
are presented with named variables.

7 / 19

Overview

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Pierce defines the intermediate systems to address the
requirements:

FN
6: Restricted transitivity and flip property.

FD
6: Deterministic subtyping and syntactic invariants.

FF
6: Eager substitution.

The systems are implemented with deBrujin indices, however
are presented with named variables.

7 / 19

System FN
6: (normal)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Makes subtyping syntax directed:

NRefl
Γ `N α6: α

Γ `N Γ α 6:τ
NVar

Γ `N α 6:τ

8 / 19

System FN
6: (normal)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Makes subtyping syntax directed:

NRefl
Γ `N α6: α

Γ `N Γ α 6:τ
NVar

Γ `N α 6:τ

Theorem 1
Γ `N σ6:τ ⇐⇒ Γ ` σ6:τ

8 / 19

System FN
6: (normal)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Makes subtyping syntax directed:

NRefl
Γ `N α6: α

Γ `N Γ α 6:τ
NVar

Γ `N α 6:τ

Theorem 1
Γ `N σ6:τ ⇐⇒ Γ ` σ6:τ

The flip property is now immediate.

Lemma 2
Γ `N σ6:τ ⇐⇒ Γ `N τ6:σ

8 / 19

System FN
6: (normal)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Makes subtyping syntax directed:

NRefl
Γ `0

N α6: α

Γ `i
N Γ α 6:τ

NVar
Γ `Si

N α 6:τ

Theorem 1
(∃i. Γ `i

N σ6:τ) ⇐⇒ Γ ` σ6:τ

The flip property is now immediate.

Lemma 2
Γ `Si

N σ6:τ ⇐⇒ Γ `i
N τ6:σ

Later we’ll need the height of the derivations.
8 / 19

System FD
6: (deterministic)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

The polarized syntax classifies positive and negative terms:

τ+ ::= > | ∀α06:τ−0 ,...,αw6:τ−w . τ−

τ− ::= α | ∀α0,...,αw . τ+

The polyadic binders are the syntactic invariant required:
machines have a constant number of registers that are updated
simultaneously.

New quantifier rule:

Γ, α06:φ−0 , . . . αw6:φ−w `i
D τ−6:σ+

DAllFlip
Γ `Si

D ∀α0,...,αw . σ+6:∀α06:φ−0 ,...,αw6:φ−w . τ−

9 / 19

System FD
6: (deterministic)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

The polarized syntax classifies positive and negative terms:

τ+ ::= > | ∀α06:τ−0 ,...,αw6:τ−w . τ−

τ− ::= α | ∀α0,...,αw . τ+

The polyadic binders are the syntactic invariant required:
machines have a constant number of registers that are updated
simultaneously.

New quantifier rule:

Γ, α06:φ−0 , . . . αw6:φ−w `i
D τ−6:σ+

DAllFlip
Γ `Si

D ∀α0,...,αw . σ+6:∀α06:φ−0 ,...,αw6:φ−w . τ−

9 / 19

System FD
6: (deterministic)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

The polarized syntax classifies positive and negative terms:

τ+ ::= > | ∀α06:τ−0 ,...,αw6:τ−w . τ−

τ− ::= α | ∀α0,...,αw . τ+

The polyadic binders are the syntactic invariant required:
machines have a constant number of registers that are updated
simultaneously.

New quantifier rule:

Γ, α06:φ−0 , . . . αw6:φ−w `i
D τ−6:σ+

DAllFlip
Γ `Si

D ∀α0,...,αw . σ+6:∀α06:φ−0 ,...,αw6:φ−w . τ−

9 / 19

System FD
6: (deterministic)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

We need a translation J−K from well-scoped polyadic syntax to
unscoped syntax:

JvarD i jK = varN (̂i + w ∗ ĵ)

where i : Iw and j : In for some n.

Translating renamings gets complicated, there are lemmas yet
to be completed!

10 / 19

System FD
6: (deterministic)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

We need a translation J−K from well-scoped polyadic syntax to
unscoped syntax:

JvarD i jK = varN (̂i + w ∗ ĵ)

where i : Iw and j : In for some n.

Translating renamings gets complicated, there are lemmas yet
to be completed!

10 / 19

System FD
6: (deterministic)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Theorem
(∃i. Γ `i

D σ6:τ) ⇐⇒ (∃j. JΓK `j
N JσK6:JτK)

Proof.
(⇒) By induction on the derivation.

11 / 19

System FD
6: (deterministic)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Theorem
(∃i. Γ `i

D σ6:τ) ⇐⇒ (∃j. JΓK `j
N JσK6:JτK)

Proof.
(⇒) By induction on the derivation.
(⇐) The new quantifier rule corresponds to w + 1 uses of the
old rule, therefore we use complete induction on the height of
the derivation.

DAllFlip NAll

NAll

..
.

...

`j−w−1
N

...

`Si
D

`i
D

`j
N

11 / 19

System FD
6: (deterministic)

One can already show a generalization of eager substitution:

Lemma 3
For all i there is a j such that

α06:φ0, . . . , αw6:φw, Γ `i
D σ6:τ

⇐⇒

Γ[φ0/α0, . . . , φw/αw] `j
D σ[φ0/α0, . . . , φw/αw]6:τ[φ0/α0, . . . , φw/αw]

and j ≤ i.

Proof.
Both directions follow by induction.
The proof involves substituting the closed types that were first
introduced in a context, this motivates the use of well-scoped
syntax.

12 / 19

System FD
6: (deterministic)

One can already show a generalization of eager substitution:

Lemma 3
For all i there is a j such that

α06:φ0, . . . , αw6:φw, Γ `i
D σ6:τ

⇐⇒

Γ[φ0/α0, . . . , φw/αw] `j
D σ[φ0/α0, . . . , φw/αw]6:τ[φ0/α0, . . . , φw/αw]

and j ≤ i.

Proof.
Both directions follow by induction.
The proof involves substituting the closed types that were first
introduced in a context, this motivates the use of well-scoped
syntax.

12 / 19

System FF
6: (flattened)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

The final variant incorporates eager substitution in the
quantifier rule:

`i
F τ[φ0/α0, . . . , φw/αw]6:σ[φ0/α0, . . . , φw/αw]

FAllFlip
`Si

F ∀α06:>,...,αw6:>. σ6:∀α06:φ0,...,αw6:φw . τ

Theorem 4
(∃i. `i

F σ6:τ) ⇐⇒ (∃j. `j
D σ6:τ)

Proof.
(⇒) By induction on the derivation.
(⇐) The new quantifier rule skips all the instances of the
variable rule, we use complete induction on the height of the
derivation again.

13 / 19

System FF
6: (flattened)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

The final variant incorporates eager substitution in the
quantifier rule:

`i
F τ[φ0/α0, . . . , φw/αw]6:σ[φ0/α0, . . . , φw/αw]

FAllFlip
`Si

F ∀α06:>,...,αw6:>. σ6:∀α06:φ0,...,αw6:φw . τ

Theorem 4
(∃i. `i

F σ6:τ) ⇐⇒ (∃j. `j
D σ6:τ)

Proof.
(⇒) By induction on the derivation.
(⇐) The new quantifier rule skips all the instances of the
variable rule, we use complete induction on the height of the
derivation again.

13 / 19

System FF
6: (flattened)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Finally, we can show the reduction from RM halting.

Theorem 5
R halts ⇐⇒ ∃i. `i

F σ6:T (R)

Proof.
(⇒) By induction on the trace.
(⇐) One step of the machine corresponds to two applications
of the quantifier rule, once again we do complete induction on
the height of the derivation.

14 / 19

System FF
6: (flattened)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Finally, we can show the reduction from RM halting.

Theorem 5
R halts ⇐⇒ ∃i. `i

F σ6:T (R)

Proof.
(⇒) By induction on the trace.
(⇐) One step of the machine corresponds to two applications
of the quantifier rule, once again we do complete induction on
the height of the derivation.

14 / 19

Summary

2CM �m RM︸ ︷︷ ︸
mechanized by first talk

�m FF
6: �m FD

6: �m FN
6: �m F6:

I Syntax directed subtyping, better suited to analyze
derivations.

I Polarized syntax enables eager substitution.
I Well-scoped polyadic syntax profiting from Autosubst2

features.
I Induction on height of derivations is required in most

proofs.
I Construction of derivations corresponds to a deterministic

state transformation.

15 / 19

Summary

2CM �m RM︸ ︷︷ ︸
mechanized by first talk

�m FF
6: �m FD

6: �m FN
6: �m F6:

I Syntax directed subtyping, better suited to analyze
derivations.

I Polarized syntax enables eager substitution.
I Well-scoped polyadic syntax profiting from Autosubst2

features.
I Induction on height of derivations is required in most

proofs.
I Construction of derivations corresponds to a deterministic

state transformation.

15 / 19

Summary

2CM �m RM︸ ︷︷ ︸
mechanized by first talk

�m FF
6: �m FD

6: �m FN
6: �m F6:

I Syntax directed subtyping, better suited to analyze
derivations.

I Polarized syntax enables eager substitution.

I Well-scoped polyadic syntax profiting from Autosubst2
features.

I Induction on height of derivations is required in most
proofs.

I Construction of derivations corresponds to a deterministic
state transformation.

15 / 19

Summary

2CM �m RM︸ ︷︷ ︸
mechanized by first talk

�m FF
6: �m FD

6: �m FN
6: �m F6:

I Syntax directed subtyping, better suited to analyze
derivations.

I Polarized syntax enables eager substitution.
I Well-scoped polyadic syntax profiting from Autosubst2

features.

I Induction on height of derivations is required in most
proofs.

I Construction of derivations corresponds to a deterministic
state transformation.

15 / 19

Summary

2CM �m RM︸ ︷︷ ︸
mechanized by first talk

�m FF
6: �m FD

6: �m FN
6: �m F6:

I Syntax directed subtyping, better suited to analyze
derivations.

I Polarized syntax enables eager substitution.
I Well-scoped polyadic syntax profiting from Autosubst2

features.
I Induction on height of derivations is required in most

proofs.

I Construction of derivations corresponds to a deterministic
state transformation.

15 / 19

Summary

2CM �m RM︸ ︷︷ ︸
mechanized by first talk

�m FF
6: �m FD

6: �m FN
6: �m F6:

I Syntax directed subtyping, better suited to analyze
derivations.

I Polarized syntax enables eager substitution.
I Well-scoped polyadic syntax profiting from Autosubst2

features.
I Induction on height of derivations is required in most

proofs.
I Construction of derivations corresponds to a deterministic

state transformation.

15 / 19

Summary of mechanization

LOC
Spec. Proof

Shared facts 500 400
Autosubst2 syntax:

unscoped 130 20
well-scoped 200 150
Reductions:
FN
6: �m F6: 30 60

FD
6: �m FN

6: 150 200
FF
6: �m FD

6: 50 100
RM �m FF

6: 80 120
CM2 �m RM 100 50

Total 2340

16 / 19

Future work

After completing the missing lemma there are further
undecidability results that reuse parts of the proof:
I Wehr and Thiemann [2009] reduce FD

6: subtyping to
subtyping existential types with upper (∃x6:τ. σ) and
lower (∃τ6:x. σ) bounds.
Involves the polarized syntax, might be challenging to
mechanize.

Alternatively, the following can readily be mechanized:
I Hu and Lhoták [2020] reduce FN

6: subtyping to subtyping
Dependent-Object types (the core calculus of Scala).
Already mechanized in Agda, porting to Coq should be
straightforward.

17 / 19

Future work

After completing the missing lemma there are further
undecidability results that reuse parts of the proof:
I Wehr and Thiemann [2009] reduce FD

6: subtyping to
subtyping existential types with upper (∃x6:τ. σ) and
lower (∃τ6:x. σ) bounds.
Involves the polarized syntax, might be challenging to
mechanize.

Alternatively, the following can readily be mechanized:
I Hu and Lhoták [2020] reduce FN

6: subtyping to subtyping
Dependent-Object types (the core calculus of Scala).
Already mechanized in Agda, porting to Coq should be
straightforward.

17 / 19

Future work

Additionally, it would be nice to have the decidability of some
variants. There are two approaches:

I Restricting the All rule, e.g. kernel F6:, so the rules induce a
terminating algorithm.

I Generalizing bounded quantification, e.g. Maclean and
Luo [2021] use Subtype Universes.

18 / 19

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

FN
6: Syntax directed.

FD
6: Deterministic, polarized syntax.

FF
6: Eager substitution.

LOC
Autosubst2 syntax 500

Shared facts 900
Reductions 940

Total 2340

19 / 19

Bibliography

Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and
polymorphism, 1985.

Giorgio Ghelli. Proof Theoretic Studies about a minimal type system integrating inclusion
and parametric polymorphism. Università di Pisa. Dipartimento di Informatica, 1990.

Giorgio Ghelli. Divergence of fsub type checking, 1992.

Benjamin C. Pierce. Bounded quantification is undecidable. Information and
Computation, pages 131–165, 1994.

Stefan Wehr and Peter Thiemann. On the decidability of subtyping with bounded
existential types. Programming Languages and Systems, 2009.

Jason Z. S. Hu and Ondrej Lhoták. Undecidability of dsub and its decidable fragments.
Proceedings of the ACM on Programming Languages, 4, 2020. doi: 10.1145/3371077.
URL https://doi.org/10.1145/3371077.

Harry Maclean and Zhaohui Luo. Subtype universes. volume 188, page 1–16, 2021.
ISBN 978-3-95977-182-5. doi: 10.4230/LIPIcs.TYPES.2020.9. URL
https://drops.dagstuhl.de/opus/volltexte/2021/13888.

https://doi.org/10.1145/3371077
https://drops.dagstuhl.de/opus/volltexte/2021/13888

Apendix: missing lemma

A translation of renamings is needed, in particular we require:

Jτ〈↑〉K = JτK〈↑w〉

The quantifier case is problematic, as translating polyadic
binders to regular ones intruduces shiftings:

J∀α06:φ0,α16:φ1,...,αw6:φw . τK

= ∀Jα0K6:Jφ0K∀Jα1K6:Jφ1K〈↑〉. . . . ∀JαwK6:JφwK〈↑w〉. JτK

	References

