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Recap: System F6:

Combines type polymorphism with subtyping.

Terms and types:

s, t ::= x | λx:τ. t | Λα6:τ. t | t s | t τ

σ, τ ::= α | σ→ τ | ∀α6:σ. τ | >
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Terms and types:

s, t ::= x | λx:τ. t | Λα6:τ . t | t s | t τ

σ, τ ::= α | σ→ τ | ∀α6:σ . τ | >

Unbounded quantification can be defined with >:

∀α. τ := ∀α6:>. τ
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Recap: System F6:

1985 System F6: is first introduced by Cardelli and
Wegner. They show coherence of the typechecking
algorithm.

1990 Ghelli gives a proof of termination.
The proof turns out to be ”full of typos”1.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.
2021 Pierces’s proof is mechanized.

1Ghelli’s post
2 / 19

https://www.cis.upenn.edu/~bcpierce/types/archives/1993/msg00144.html


Recap: System F6:

1985 System F6: is first introduced by Cardelli and
Wegner. They show coherence of the typechecking
algorithm.

1990 Ghelli gives a proof of termination.
The proof turns out to be ”full of typos”1.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.
2021 Pierces’s proof is mechanized.

1Ghelli’s post
2 / 19

https://www.cis.upenn.edu/~bcpierce/types/archives/1993/msg00144.html


Recap: System F6:

1985 System F6: is first introduced by Cardelli and
Wegner. They show coherence of the typechecking
algorithm.

1990 Ghelli gives a proof of termination.
The proof turns out to be ”full of typos”1.

1992 Ghelli gives a counterexample.

1994 Pierce gives a proof of undecidability.
2021 Pierces’s proof is mechanized.

1Ghelli’s post
2 / 19

https://www.cis.upenn.edu/~bcpierce/types/archives/1993/msg00144.html


Recap: System F6:

1985 System F6: is first introduced by Cardelli and
Wegner. They show coherence of the typechecking
algorithm.

1990 Ghelli gives a proof of termination.
The proof turns out to be ”full of typos”1.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.

2021 Pierces’s proof is mechanized.

1Ghelli’s post
2 / 19

https://www.cis.upenn.edu/~bcpierce/types/archives/1993/msg00144.html


Recap: System F6:

1985 System F6: is first introduced by Cardelli and
Wegner. They show coherence of the typechecking
algorithm.

1990 Ghelli gives a proof of termination.
The proof turns out to be ”full of typos”1.

1992 Ghelli gives a counterexample.
1994 Pierce gives a proof of undecidability.
2021 Pierces’s proof is mechanized.

1Ghelli’s post
2 / 19

https://www.cis.upenn.edu/~bcpierce/types/archives/1993/msg00144.html


Recap: System F6:

Γ ` τ16:σ1 Γ, α6:τ1 ` σ26:τ2
All

Γ ` ∀α6:σ1 . σ2 6: ∀α6:τ1 . τ2

we say that σ2 gets rebounded.
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Trans
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Var
Γ ` α6:Γ(α)
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Refl
Γ ` τ6:τ

Γ ` σ6:φ Γ ` φ6:τ
Trans

Γ ` σ6:τ

Top
Γ ` τ6:>

Var
Γ ` α6:Γ(α)

F6: subtyping:
Given arbitrary Γ, σ and τ, is there a derivation of Γ ` σ6:τ?
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Recap: undecidability

Theorem
F6: subtyping is synthetically undecidable.

To show RM halting �m F6: subtyping Pierce shows:

R halts ⇐⇒ ` σ6:T (R)

for a concrete σ independent of R.
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Overview

R halts ⇐⇒ ` σ6:T (R)

(⇒) By induction on the trace, in order to encode the stepping
of the machine we need:
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(⇒) By induction on the trace, in order to encode the stepping
of the machine we need:

I To rebound the right hand side with an operator that flips
inequalities using contravariance:

τ := ∀α6:τ.α

Γ ` σ6:τ ⇐⇒ Γ ` τ6:σ (1)

I To substitute variables eagerly, as the machine does:

α6:φ ` σ6:τ ⇐⇒ ` σ[φ/α]6:τ[φ/α] (2)

Does not hold in general, e.g. with φ = σ = > and τ = α.
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Overview

R halts ⇐⇒ ` σ6:T (R)

(⇒) By induction on the trace, in order to encode the stepping
of the machine we need:

I Flip property:

Γ ` σ6:τ ⇐⇒ Γ ` τ6:σ (1)

I Eager substitution:

α6:φ ` σ6:τ ⇐⇒ ` σ[φ/α]6:τ[φ/α] (2)
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Overview

R halts ⇐⇒ ` σ6:T (R)

(⇐) We need to analyze the derivation, however:

I Transitivity is too general, there might be infinitely many
derivations.

I We need to obtain derivations deterministically, to match
the behaviour of the machine.

I The types are too general; we need an invariant on the
syntax. We only care about types of the form of translated
machines.
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Overview

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Pierce defines the intermediate systems to address the
requirements:

FN
6: Restricted transitivity and flip property.

FD
6: Deterministic subtyping and syntactic invariants.

FF
6: Eager substitution.

The systems are implemented with deBrujin indices, however
are presented with named variables.
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System FN
6: (normal)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Makes subtyping syntax directed:

NRefl
Γ `N α6: α

Γ `N Γ α 6:τ
NVar

Γ `N α 6:τ
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System FN
6: (normal)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Makes subtyping syntax directed:

NRefl
Γ `0

N α6: α

Γ `i
N Γ α 6:τ

NVar
Γ `Si

N α 6:τ

Theorem 1
( ∃i. Γ `i

N σ6:τ) ⇐⇒ Γ ` σ6:τ

The flip property is now immediate.

Lemma 2
Γ `Si

N σ6:τ ⇐⇒ Γ `i
N τ6:σ

Later we’ll need the height of the derivations.
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System FD
6: (deterministic)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

The polarized syntax classifies positive and negative terms:

τ+ ::= > | ∀α06:τ−0 ,...,αw6:τ−w . τ−

τ− ::= α | ∀α0,...,αw . τ+

The polyadic binders are the syntactic invariant required:
machines have a constant number of registers that are updated
simultaneously.

New quantifier rule:

Γ, α06:φ−0 , . . . αw6:φ−w `i
D τ−6:σ+

DAllFlip
Γ `Si

D ∀α0,...,αw . σ+6:∀α06:φ−0 ,...,αw6:φ−w . τ−
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System FD
6: (deterministic)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

We need a translation J−K from well-scoped polyadic syntax to
unscoped syntax:

JvarD i jK = varN (̂i + w ∗ ĵ)

where i : Iw and j : In for some n.

Translating renamings gets complicated, there are lemmas yet
to be completed!
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System FD
6: (deterministic)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Theorem
(∃i. Γ `i

D σ6:τ) ⇐⇒ (∃j. JΓK `j
N JσK6:JτK)

Proof.
(⇒) By induction on the derivation.

11 / 19



System FD
6: (deterministic)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Theorem
(∃i. Γ `i

D σ6:τ) ⇐⇒ (∃j. JΓK `j
N JσK6:JτK)

Proof.
(⇒) By induction on the derivation.
(⇐) The new quantifier rule corresponds to w + 1 uses of the
old rule, therefore we use complete induction on the height of
the derivation.

DAllFlip NAll

NAll

..
.

...

`j−w−1
N

...

`Si
D

`i
D

`j
N
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System FD
6: (deterministic)

One can already show a generalization of eager substitution:

Lemma 3
For all i there is a j such that

α06:φ0, . . . , αw6:φw, Γ `i
D σ6:τ

⇐⇒

Γ[φ0/α0, . . . , φw/αw] `j
D σ[φ0/α0, . . . , φw/αw]6:τ[φ0/α0, . . . , φw/αw]

and j ≤ i.

Proof.
Both directions follow by induction.
The proof involves substituting the closed types that were first
introduced in a context, this motivates the use of well-scoped
syntax.
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System FF
6: (flattened)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

The final variant incorporates eager substitution in the
quantifier rule:

`i
F τ[φ0/α0, . . . , φw/αw]6:σ[φ0/α0, . . . , φw/αw]

FAllFlip
`Si

F ∀α06:>,...,αw6:>. σ6:∀α06:φ0,...,αw6:φw . τ

Theorem 4
(∃i. `i

F σ6:τ) ⇐⇒ (∃j. `j
D σ6:τ)

Proof.
(⇒) By induction on the derivation.
(⇐) The new quantifier rule skips all the instances of the
variable rule, we use complete induction on the height of the
derivation again.
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System FF
6: (flattened)

RM �m FF
6: �m FD

6: �m FN
6: �m F6:

Finally, we can show the reduction from RM halting.

Theorem 5
R halts ⇐⇒ ∃i. `i

F σ6:T (R)

Proof.
(⇒) By induction on the trace.
(⇐) One step of the machine corresponds to two applications
of the quantifier rule, once again we do complete induction on
the height of the derivation.
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Summary

2CM �m RM︸ ︷︷ ︸
mechanized by first talk

�m FF
6: �m FD

6: �m FN
6: �m F6:

I Syntax directed subtyping, better suited to analyze
derivations.

I Polarized syntax enables eager substitution.
I Well-scoped polyadic syntax profiting from Autosubst2

features.
I Induction on height of derivations is required in most

proofs.
I Construction of derivations corresponds to a deterministic

state transformation.
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Summary of mechanization

LOC
Spec. Proof

Shared facts 500 400
Autosubst2 syntax:

unscoped 130 20
well-scoped 200 150
Reductions:
FN
6: �m F6: 30 60

FD
6: �m FN

6: 150 200
FF
6: �m FD

6: 50 100
RM �m FF

6: 80 120
CM2 �m RM 100 50

Total 2340
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Future work

After completing the missing lemma there are further
undecidability results that reuse parts of the proof:
I Wehr and Thiemann [2009] reduce FD

6: subtyping to
subtyping existential types with upper (∃x6:τ. σ) and
lower (∃τ6:x. σ) bounds.
Involves the polarized syntax, might be challenging to
mechanize.

Alternatively, the following can readily be mechanized:
I Hu and Lhoták [2020] reduce FN

6: subtyping to subtyping
Dependent-Object types (the core calculus of Scala).
Already mechanized in Agda, porting to Coq should be
straightforward.
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Future work

Additionally, it would be nice to have the decidability of some
variants. There are two approaches:

I Restricting the All rule, e.g. kernel F6:, so the rules induce a
terminating algorithm.

I Generalizing bounded quantification, e.g. Maclean and
Luo [2021] use Subtype Universes.
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RM �m FF
6: �m FD

6: �m FN
6: �m F6:

FN
6: Syntax directed.

FD
6: Deterministic, polarized syntax.

FF
6: Eager substitution.

LOC
Autosubst2 syntax 500

Shared facts 900
Reductions 940

Total 2340
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Apendix: missing lemma

A translation of renamings is needed, in particular we require:

Jτ〈↑〉K = JτK〈↑w〉

The quantifier case is problematic, as translating polyadic
binders to regular ones intruduces shiftings:

J∀α06:φ0,α16:φ1,...,αw6:φw . τK

= ∀Jα0K6:Jφ0K∀Jα1K6:Jφ1K〈↑〉. . . . ∀JαwK6:JφwK〈↑w〉. JτK
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