
Saarland University
Faculty of Mathematics and Computer Science

Master’s Thesis

Mechanized Undecidability of
Subtyping in System F

Author
Roberto Álvarez Castro

Advisor
Dr. Yannick Forster

Reviewers
Prof. Dr. Gert Smolka
Dr. Yannick Forster

ii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.
Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.
Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 1th April, 2022

Abstract

Subtyping anduniversal quantification are two orthogonal features often desired in
a type system, and ubiquitous among programming languages. The combination
of both these features gives rise to bounded quantification which restricts type ab-
straction so that only subtypes of a given bound can be used to instantiate. As Sys-
tem F formalizes universal quantification, the type system formalizing bounded
quantification is called System F6:.
Pierce [33] shows that bounded quantificationmakes subtyping and type checking
undecidable in System F6:. The proof consists of a series of refinements to System
F6: without arrow types, as they are not necessary to showundecidability. The sub-
typing relation on the refined system is shown to coincidewith the full systemwhile
being able to encode the transition function of an intermediate machine model; the
rowing machines. Finally the halting problem of rowing machines is shown to be
many-one reducible from the halting problem of two-counter machines, which is a
well-known undecidable problem.
In this work we give a machine-checked presentation of Pierce’s proof using the
synthetic approach of the Coq Library of Undecidability Proofs [22]. The mecha-
nization is built around syntax produced by Autosubst 2 [40] as the tool provides
several useful variants of syntax that significantly simplify the proof. In particular
we use unscoped and well-scoped syntax, alongside with polyadic binders, and show
how to encode them appropriately using bounded extensionality.
We formalize Pierce’s proof showing explicitly the necessary inductive arguments
in each step, for example complete induction on the height of derivations, the de-
tails of which are glossed over in the textbook presentation. Finally, we describe
several mechanization artifacts that are unrelated to the mathematical argument
but are nevertheless interesting as they simplify the machine-checked proof.

Acknowledgements

This thesis could not have been done without the support, encouragement, and
assistance of several people to whom I owe much and cannot offer more here than
my heartfelt gratitude.
I am extremely grateful to my advisor Yannick for his invaluable advice, guidance
and patience throughout this project. I would like to thank all the members in the
Programming Systems Lab, specially to Prof. Dr. Gert Smolka for fostering a wel-
coming community in which to learn and discuss topics related to type theory and
proof assistants. I am also thankful to the Max Planck Institute for Informatics and
all its member’s staff for its economic and academic support during my Master’s
study.
Ich möchte den Freunden danken, die ich während der Zeit in Deutschland ken-
nengelernt habe; Alexis, Anton, Gilbert, Hema, Ibung, Jannis, Jianlin, Lucia, Mar-
tin, Munem, Ricardo, Taqi, Viet, Zack. Vielen Dank an euch nicht nur für viele
Spiel- und Filmabende, indem wir mit Bier so gesoffen waren, sondern auch für
Kaffeepausen und Mittagessen in Mensa. Die waren richtig lustige Ablenkungen
gegen Stress für mich. Ich werde diese Zeit niemals vergessen.
Finalmente pero no menos importante, quiero agradecer a mi familia, que a pesar
de la distancia me han brindado su apoyo incondicional. A mis padres, Lorenza
y Roberto, si soy quién soy es gracias a ustedes. A mis hermanas, Alma y Araceli,
por el buen ánimo y apoyo. A las niñas, Tonche y Mina, por su ternura y alegría.
De ustedes he aprendido mucho, gracias por creer en mi.

A B R A H A D A B R A

93

Contents

1 Introduction 3
1.1 Subtyping Problem . 6
1.2 Synthetic Undecidability . 7
1.3 Related Work . 8

2 Preliminaries 11
2.1 Synthetic Undecidability . 13

3 Aspects of de Brujin Syntax 15
3.1 Well-scoped and Unscoped Syntaxes 16

3.1.1 Encoding . 18
3.2 Polyadic Binders . 19

3.2.1 Encoding . 20

4 Machine Models 23
4.1 Two-counter Machines . 23
4.2 Rowing Machines . 25
4.3 Undecidability . 25

5 Subtyping and Type checking 27
5.1 Variants of System F6: . 29

5.1.1 Syntax-directed Subtyping . 30
5.1.2 Polarized Syntax . 31
5.1.3 Eager Substitution . 32

5.2 Undecidability of Subtyping . 33
5.3 Undecidability of Type Checking . 35

6 Mechanization Artifacts 37
6.1 Custom Induction Principles . 37
6.2 Size Unfolding . 39
6.3 Modularized Syntax . 41

Contents 1

7 Conclusion 45
7.1 Future Work . 46

Bibliography 47

Chapter 1

Introduction

In this thesis we formalize and mechanize the proof of the undecidability of sub-
typing in System F by Pierce [33]. The proof is formalized in the Calculus of In-
ductive Constructions (CIC) [12, 31], which underlies the Coq proof assistant [42]
where the mechanization is done. The mechanization constitutes a contribution
to the Coq Library of Undecidability Proofs [22]. The browsable Coq code can be
found in www.ps.uni-saarland.de/~alvarez/coq/toc.html. The definitions and
theorems given in this work link to their mechanized counterpart. The Coq source
code can be found in github.com/uds-psl/coq-undecidability-subtyping.

The notion of bounded quantification was first introduced by Cardelli and Weg-
ner [9] in the system now called kernel System F6:. A more general variant of
the system was introduced by Curien and Ghelli [13], where they gave a type
checking algorithm by means of a normalizing rewriting system of derivations.
The algorithm is sound and complete by construction although it may loop. In
his PhD thesis Ghelli [24] gave a proof of termination of the type checking algo-
rithm, the proof was wrong and later Ghelli himself gave a counter example [25].
Based on Ghelli’s non-terminating example Pierce [33] encoded two-counter ma-
chines in subtyping statements which shows that subtyping is indeed undecidable.
The erroneous claim of termination illustrates how the subtleties in the proofs of
computability properties may be overlooked, which is a strong argument in favor
of machine-checked undecidability proofs and their ongoing development, for in-
stance in the Coq Library of Undecidability Proofs (from now on abbreviated as
the Undecidability Library).

Bounded quantification combines two orthogonal features ubiquitous amongmost
programming languages, namely parametric polymorphism which forms the the-
oretical basis of generic and functional programming, and subtyping which is par-
ticularly important in object-oriented programming where a behavioral notion of
subtyping [29] underlies the notion of inheritance.

www.ps.uni-saarland.de/~alvarez/coq/toc.html
https://github.com/uds-psl/coq-undecidability-subtyping

4 Introduction

Parametric polymorphism corresponds to the terms depending on types axis of the
lambda cube [2], which organizes the three kinds of dependencies between types
and terms that can extend the simply typed λ-calculus, meaning that polymor-
phism allows type abstractions at the term level. The other two axes are types de-
pending on types corresponding to type operators [32, Ch. 29], and types depending
on terms corresponding to dependent types [32, Sect. 30.5].

Parametric polymorphism is the core feature of System F , discovered indepen-
dently by Girard [26] and Reynolds [35]. In System F there are type variables
with type binders and type applications in addition to term variables with their
binders and applications. This permits to write terms and types uniformly over
arbitrary types. For example the polymorphic identity function can be written as
Λα.λx : α. x where Λ is a type binder and α a type variable, the function can be
given the polymorphic type ∀α.α→ α, where ∀ is a quantifier over types.

Meanwhile, subtyping is a relation of types written σ6:τ , informally it means that
a term of type σ can be used wherever a term of type τ is expected, σ is called
a subtype and τ a supertype. Therefore well-typed terms have multiple types,
namely all the supertypes of its given type, this is established by the rule called
subsumption. A formal treatment of subtyping was given first by Reynolds [36],
and later by Cardelli [8].

As a simple example consider the naturals and integers, in many programming
languages N6:Z reflecting the mathematical intuition that every natural number is
also an integer. More interestingly, consider the following record types {α : τ, β :

σ}6:{α : τ}; the record type with two fields is a subtype of the record type with a
single field, and not the other way around. To see why consider how one may use
the terms of record types; we can always forget a field of the record, but we cannot
give a value to an arbitrary field. Therefore the supertypes of records have a subset
of the original fields and the subtypes have a superset.

As a further example consider arrow types, to check that Z→ N6:N→ Z we have
to show how a given function of the type on the left can be used as a function of
the type on the right. To apply the function of type Z→ N to the argument of type
N we need to be able to use it in place of the argument of type Z, that is N6:Z.
Additionally, once we have the result of type N we need to use it in place of the
final result of type Z, which again follows from N6:Z. In summary to check that
Z → N6:N → Z it is enough to check that N6:Z. Note how the first arguments
of the arrow types are compared the other way around, therefore subtyping arrow
types is said to be contravariant on their first argument.

5

Bounded quantification allows type abstraction over subtypes of a given bound,
e.g. ∀α6:σ.τ denotes the family of polymorphic types τ that may be instantiated
with subtypes of σ. This implies that in order for type instantiation to type check
there is a subtype premise that needs to be fulfilled. For example, terms of type
∀α6:{β:σ}.τ may be instantiated with record types containing at least a field σ. Al-
though illustrating, record types are unnecessary to show the undecidability of the
subtype problem. In fact subtyping bounded quantifiers turns out to be compli-
cated enoughdue to the rebounding of types explained in the next section. Therefore
record subtyping is not discussed further.

On paper Pierce’s proof is presented with named variables such as x and xi, and
assumptions of freshness are left implicit. Substitutions, like [a/x] are also assumed
to be capture-avoiding. Formalizing the proof in the named presentation is tedious,
as such assumptions have to be explicitly verified. Mechanizing such proof is even
harder, as for example, terms are considered identical up to α-equivalence.

The mechanization given in the present work is built around the syntax provided
by the Autosubst 2 tool [40], as it provides a number of very useful Coq tactics and
lemmas simplifying significantly the development. As a consequence the formal-
ization is made with de Brujin indices and parallel substitutions [14].

Outline
The rest of this chapter elaborates on the subtyping problem and gives an introduc-
tion to synthetic undecidability which is the approach of the formalized proof, addi-
tionally we give an overview of related work and the relevant state of the art. In
Chapter 2 we give some basic definitions of functions and data types used through-
out the rest of the thesis. In Chapter 3 we give examples of unscoped,well-scoped and
polyadic variants of syntax and show how to encode them appropriately, this illus-
trates one of the main sources of difficulties that arise in the mechanization due
to the choice of deBrujin indices. In Chapter 4 we introduce the machine models
relevant to the proof; two-counter machines and rowing machines, and show that
the halting problem of rowing machines is undecidable. In Chapter 5 we give the
formalization of the proof by Pierce [33] of the undecidability of the subtyping
problem by introducing a series of refinements to the subtyping system, addition-
ally we show that type checking is also undecidable which Pierce only mentions
without much detail. In Chapter 6 we review some techniques used in the mech-
anization that, although unrelated to the mathematical argument, might be of in-
terest to further developments and showcase some limitations in the inductive and
recursive principles generated automatically by the Coq proof assistant, as well as
a technique to consider syntax without specific constructs, specifically the syntax
of types without arrows.

6 Introduction

1.1 Subtyping Problem
Bounded quantification incorporates subtyping into the universal quantifier of Sys-
tem F . The type ∀α6:σ.τ contains terms of type τ abstracted over a type variable
α, however unlike the regular type abstraction this terms can only be instantiated
with subtypes of the provided upper bound σ. It is easy to see how we can recover
unbounded quantification by introducing a new type > that is a trivial supertype
of all types and using it as the upper bound.

Γ ` τ16:σ1 Γ, α6:τ1 ` σ26:τ2
Γ ` ∀α6:σ1 .σ26:∀α6:τ1 .τ2

Figure 1.1: Subtyping rule of the bounded quantifier

In a similar manner to arrow types, subtyping of bounded quantifiers is contravari-
ant in the bounds; in order to checkwhether ∀α6:σ1 .σ26:∀α6:τ1 .τ2 we have to be able
to instantiate terms of the type on the left with types that can be used to instantiate
terms with the type on the right, that is subtypes of τ1, therefore τ16:σ1.

However, unlike with arrow types, when checking the subtyping of the bodies in
the quantifierwe have to store the type variable in the context and this type variable
has to have the tighter bound τ1, as it corresponds to a type that can be used to
instantiate both sides (Fig. 1.1).

As the type σ2 gets a stricter constraint for its type variable α, it is said to be re-
boundedwith τ1. This allows transmission of data previously stored in the type on
the right to be accessed by the type on the left, and in fact this faculty is what makes
subtyping undecidable as it can be shown that the system without it (e.g. with the
rule in Fig. 1.2) has a decidable subtype relation.

Γ, α6:φ ` σ6:τ

Γ ` ∀α6:φ.σ6:∀α6:φ.τ

Figure 1.2: Restricted subtyping rule of the bounded quantifier

The restricted version of the rule forces the bound in the quantifiers to be identical,
so the body of the type on the left is no longer rebounded and no data gets trans-
mitted. The system with this restricted rule is called kernel System F6: [9][32,
Sect. 28.3]. This system was studied first however, being less expressive, it is not
discussed further in this work.

1.2. Synthetic Undecidability 7

1.2 Synthetic Undecidability
Mathematically, in a synthetic approach the objects of interest are taken as primi-
tives and are studied by formulating suitable axioms that capture their properties.
This contrasts with the analytic approach where the objects are constructed from
foundational primitives and their properties deduced.
Synthetic Computability theory was pioneered by Richman and Bridges [37, 7]
and later developed by Bauer [3, 4]. The relevant axiom regarding computable
functions is CT (from Church’s thesis [37]) stating that every total function is com-
putable. Saliently, every definable function in CIC is computable and total. For
a detailed study on Synthetic Computability in CIC read Forster’s discussion [22,
Pt. 1].
Having only computable functions in our setting informs the definition of synthetic
undecidability in several ways. Defining synthetic undecidability as the negation
of decidability does not work as any predicate may be consistently assumed to be
decidable. One may replace the falsity in that definition by the decidability or co-
enumerability of the halting problem Halt, as they are unprovable and such defi-
nitions would transport undecidability along many-one reductions. Furthermore,
replacing using co-enumerability instead of decidability yields a strictly weaker
definition as decidability implies it while the converse requires classical reasoning.
Hence synthetic undecidability relative to a problem Halt is defined for a problem P as:

decidable P → enumerable Halt

With this definition, the halting problem of Turing machines can be shown syn-
thetically undecidable relative to itself. From now on when we say that a problem
is undecidable we mean that it is synthetically undecidable relative to the halting
problem of Turing machines, as there are no other notions of undecidability used
in the present work.
Most undecidability results in the literature are shownby reduction instead; a prob-
lem already shown undecidable is reduced to the problem in question. This tech-
nique lends itself nicely to the synthetic approach [21]. Concretely, many-one re-
ductions transport decidability backwards. Therefore to show that a problem P is
undecidable, given that Q is already shown undecidable, it is sufficient to show:

Q �m P

Pierce reduces the halting problem of two-counter machines (2CM halting) as de-
fined in Chapter 4.1 to the subtyping problem (F6: subtyping). Dudenhefner [16]
presents a variant of 2CM halting that is already mechanized in the Undecidability
Library. Therefore to show that the subtyping problem is undecidable we just have
to show:

2CM halting �m F6: subtyping

8 Introduction

1.3 Related Work
The paper by Pierce [33] constitutes the main source of the present thesis and con-
tains the complete mathematical argument. However there are further published
works that are important to the development andunderstanding of the proof. Pierce’s
own book Types and programming languages [32] provides a very thorough analysis
of subtyping in System F in addition to the subtyping of existential, record, and
object types. Pierce’s proof uses the undecidability of the halting problem of two-
counter machines shown byMinsky in 1967 [30]. The undecidability of the halting
problem of a slightly different variant of two-counter machines is mechanized by
Dudenhefner [16] by a reduction from the halting problem of Turing machines via
Post’s correspondence problem [34, 20]. as part of the Undecidability Library [22].

With regards to related mechanized undecidability results present in the Undecid-
ability Library, Dudenhefner [17] also shows the undecidability of type checking
in System F , in addition to typability and type inhabitation. The undecidability of
higher-order unification on the simply typed λ-calculus [38], and the undecidability
of the halting problem of the untyped λ-calculus [18] are also already mechanized.
Additionally, the technique of modularized syntax used here (Sect. 6.3) is based on
the one used in themechanized proof of the undecidability of validity, satisfiability,
and provability in First Order Logic [21]. For a summary of undecidability results
present in the Library read Forster’s overview [22, Ch. 25].

The mechanization in the present work is based in part on the code of Chapter
10 of Stark’s work [39]. The code presented there is also a mechanization of Sys-
tem F6: using Autosubst 2 [40] to handle the underlying theory of variables and
substitutions. The Autosubst 2 tool is used prominently in this work as there are
several instances of syntax implemented with de Brujin indices and parallel substi-
tutions [14], and the tool provides some very useful equational laws and simplifi-
cation tactics.

The POPLmark (Principles of Programming Languages benchmark) challenge [1]
is a set of problems intended to demonstrate the effectiveness of proof assistants
in programming language theory. It concerns the so-called algorithmic subtyping
relation in System F, which Pierce calls Normal System F6: (See 5.2). The first
part of the challenge consist of showing that the system admits transitivity (which
we show here in Lemma 5.4) and showing that the system augmented with record
types is still transitive. Part 2 concerns type safety with andwithout patternmatch-
ing. Finally, Part 3 asks to develop the operational semantics of the previous sys-
tems. There are many submitted solutions to the challenge using a variety of proof
assistants and mechanization techniques, we mention here some of them classify-
ing them by how the syntax is formalized.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html

1.3. Related Work 9

Presentations of the systemusingdeBrujin indices, as it is here, are given by Stark [39]
aswell as Stump [41] andVouillon [43] using theCoq proof assistant, Berghofer [5]
using the Isabelle/HOL proof assistant, and Dicolla [15] using the VeriCode Proof
Tool. Locally nameless presentations are given byChargueraud [10] andLeroy [28]
using the Coq proof assistant. Lastly, Ciaffaglione [11] gives a presentation using
Higher-Order Abstract Syntax, also with the Coq proof assistant.
Finally, there are some results that are direct consequences of Pierce’s result. Wehr
andThiemann [44] show theundecidability of subtyping bounded existential types
from the the undecidability of subtyping in the deterministic system (See 5.7). The
bounded existential types serve as a formalization of interface types aswell aswild-
cards in the language JavaGI [45], where the existentially quantified variable has
either a lower or upper type bound. Hu and Lhotak [27] show the undecidabil-
ity of type checking and subtyping in the Dependant Object Types calculus, which
formalizes the Scala type system. They use a similar technique to Pierce defining a
normal variant of the type systemwhich is the target of a reduction from the normal
system defined by Pierce (See 5.2).

Chapter 2

Preliminaries

A number of notation for certain types is assumed throughout this thesis. The
Calculus of Inductive Constructions has a hierarchy of type universes, however as
they are not relevant to the present work, we consider a single type universe T.
Meanwhile P is the inpredicative universe of propositions. The trivial propositions
are True,False : P.
Analogous to propositions, the boolean type has two constructors true, false : B. For
the natural numbers Nwe use the standard notation for all numbers 1, 2, etc., func-
tions like addition +, multiplication×, modulo %, integer division /, and relations
like < and ≤.
We have a basic container data typewhich either stores a single value of an arbitrary
type or optionally no value at all. The type argument is omitted in the constructors
as it can be always inferred.

Definition 2.1 (Optional) O : T→ T with constructors:

None : ∀X : T. O X

Some : ∀X : T. X → O X

The following data type has a finite variable number of values. It is one of the most
important data types used as it serves as an implementation of scoped variables
(see 3.1).

Definition 2.2 (Finite) F : N → T with superscript notation Fn := F n has construc-
tors:

F0 : ∀n : N. FSn

FS : ∀n : N. Fn → FSn

12 Preliminaries

The natural number argument of the constructors is omitted. To reason about val-
ues of these we would like a bijection with the bounded naturals. The injection from
finite types into the naturals is obvious, it maps the constructors appropriately.
Definition 2.3 �n2nat : ∀n : N. Fn → N with notation x̂ := �n2nat _ x is defined as:

F̂0 := 0

F̂S x := S x̂

moreover if x : Fn then x̂ < n.

The inverse of the previous function has to be guarded, it sends natural numbers
to a finite type a larger size.
Definition 2.4 nat2�n : ∀n,m : N. n < m → Fm with notation n◦ := nat2�n n _ _ is
defined as:

0◦ := F0

(Sn)◦ := FS n
◦

We use the −◦ notation when the inequality hypothesis can be determined from context.
Moreover for allm,n : N if n < m then n̂◦ = n.

Finally, we also require a container data type of arbitrary size. As the size of the
container is part of the argument we opt to use vectors instead of another kind of
array.
Definition 2.5 (Vectors) V : T→ N→ T with superscript notationXn := VX n has
constructors:

Nil : ∀X : T.X0

Cons : ∀X : T, n : N. X → Xn → XSn

If ambiguity with other superscript notation arises extra parenthesis may be used.
For constructorswe omit the type argumentX and the length argument, we use the
standard notation [] := Nil _ _ and x :: V := Cons _ _x V . Vectors may be accessed
safely with an element of a finite type of the same size as the vector.
Definition 2.6 nth' : ∀X : T, n : N. Xn → Fn → X with notation
V [n] := nth' _ _ V n is defined as:

(x :: V) [F0] := x

(x :: V) [FSf] := V [f]

Note that to access [] we need an argument of type F0 which is empty, therefore we
cannot get an element from the empty vector, as expected.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.Various_utils.html#fin2nat
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.Various_utils.html#nat2fin
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.Various_utils.html#nth'

2.1. Synthetic Undecidability 13

2.1 Synthetic Undecidability
In this sectionwe give several basic definitions of synthetic computability [21]. The
starting point is a definition of decidability. Exploiting the fact that every function
definable in CIC is computable we may define decidability of a predicate as the
existence of a reflecting function.
Definition 2.7 (Decidability) For all X : T and predicate P : X → P:

decidable P := ∃f : X → B. ∀x : X. P x↔ f x = true

A type X is discrete if it has decidable equality, i.e. decidable (λx, y : X. x = y). A
predicate is called enumerable if the set of values that fulfills it is either empty or
the range of a total function from the naturals, this case distinction is established
using the optional type as all CIC functions are total.
Definition 2.8 (Enumerability) For all X : T and predicate P : X → P:

enumerable P := ∃f : N→ OX. ∀x : X. P x↔ ∃n. f n = Some x

A typeX is called enumerable if it has an enumerator, i.e. enumerable (λx : X.True).
From the previous definitions we arrive at the synthetic definition of undecidability
relative to the halting problem Halt.
Definition 2.9 (Synthetic Undecidability) For all X : T and predicate P : X → P:

undecidable P := decidable P → enumerable Halt

We will show undecidability by constructing a many-one reduction which converts
instances of a problem to instances of another problem in an appropriate manner.
Definition 2.10 (Many-one reduction) For all X,Y : T, and predicates P : X → P,
and Q : Y → P, P is many-one reducible to Q if:

P �m Q := ∃f : X → Y. ∀x : X. P (x)↔ Q(f(x))

It is easy to check that reductions transport decidability and enumerability back-
wards. From this fact it follows that, given the undecidability of a problem, we can
conclude undecidability from reducibility.
Fact 2.11 For all X,Y : T, and predicates P : X → P, Q : Y → P, such that P �m Q:

• decidable Q→ decidable P

• if X is enumerable and Y is discrete then enumerable Q→ enumerable P

Fact 2.12 (Undecidability from reducibility) Given predicates such that P �m Q:

undecidable P → undecidable Q

Chapter 3

Aspects of de Brujin Syntax

The formalizations of the syntax that use substitution are defined using de Brujin
indices [14], where a variable is identifiedwith the number of binders between that
occurrence and its corresponding binder. For example λx.(λy. yx) x is represented
by λ.(λ.0 1) 0. Substitutions are therefore functions from the naturals to terms, and
instantiation of variables is just function application.
The Autosubst 2 tool [40] produces the mechanization of de Brujin syntax; it gen-
erates an inductive type of terms, a number of primitive substitutions, and some
lemmas stating the laws of instantiation. Autosubst 2 is used extensively through-
out this thesis as it provides features necessary for some of the syntax used.
Autosubst 2 offers well-scoped [6] presentations of de Brujin syntax where terms
carry an upper bound to the free variables, called a scope. Consequently, a term
used in the wrong scope does not type check. Additionally, scoped syntax greatly
simplifies stating certain lemmas while maintaining technical details. In contrast
we call the presentation without bounds unscoped.
An additional feature of Autosubst 2 is polyadic binders [40], which bind an arbi-
trary number of variables simultaneously. Note that a polyadic binder is different
from a variadic binder as defined by Stark [39], which is an abbreviation of n unary
binders; in a polyadic binder the variables are introduced simultaneously with the
same scope. A well-scoped presentation shows explicitly how the variables have
the same scope and therefore cannot refer to each other.
In this chapter we show how translations of syntaxes using different features of
Autosubst 2 can be defined in a coherent manner. The mechanization in Chapter 5
involves a translation that requires careful thought; in particular when translating
a binder that is annotated with a term that has the same free variables.
Examples of syntax consisting only of binders and variables are presented to avoid
clutter, however the problem becomes trivial in some syntaxes. In particular if the

16 Aspects of de Brujin Syntax

binders are not annotated, or the term annotation does not include variables of the
same sort as the binder itself, then any variadic binder is trivially polyadic.
In general the binders of second order theories are not trivially polyadic, as long
as the term annotation is of the same syntactic sort as the binder. Consider the ∀
binder of System F6:; its term annotation is the upper bound of the type variable
which is also a type. Note that the Π and Σ binders of dependent type theories are
also not trivially polyadic by the same reason.
In the following sections we start by defining the terms and substitutions of the
syntax, in addition to renamingswhich are substitutions that replace variableswith
variables. Next we define the encodings of types and substitutions an show that
instantiation commutes with encoding.
3.1 Well-scoped and Unscoped Syntaxes
The syntax only includes type variables and type quantifiers as those are the rele-
vant syntactic constructs, therefore it is a subset of the syntax of System F6:.
Definition 3.1 The syntax of unscoped types is defined by the following grammar:

τ, σ : Type ::= x | ∀σ. τ x : N

The scope of a term of this syntax can be recovered by the following predicate:
Definition 3.2 The predicate closed : Type→ N→ P is defined inductively:

x < n
closed (x) n

closed σ n closed τ (Sn)

closed (∀σ.τ) n

Renamings are instances of substitutions, when instantiated a renaming replaces
variables with variables.
Definition 3.3 (Renamings) An unscoped renaming is a function ξ : N → N, the
primitive renamings are defined as follows:

• Shift: ↑ := S

• Extension: (y · ξ)(x) :=

{
y if x = 0

ξ(n) if x = S n

• Lift: ⇑ ξ := 0 · (ξ ◦ 〈↑〉)

Note that the lifting of a renaming is 0 exactly when the argument is 0, this has the
effect of leaving the variable 0 unchanged. Meanwhile the renaming is applied to
the preceding variable in the non-zero case, as it should ignore the new variable
over which the renaming is being lifted, and is shifted to the new scope.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.utype.html#type
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.ws2u.html#closed

3.1. Well-scoped and Unscoped Syntaxes 17

Definition 3.4 (Instantiation of renamings) For all t : Type and ξ : N → N the
instantiation is defined recursively:

(∀σ.τ)〈ξ〉 := ∀σ〈ξ〉.τ〈⇑ ξ〉
(x)〈ξ〉 := ξ(x)

When instantiated a substitution replaces variables with terms. A substitution can
be obtained from a renaming by composition with the variable constructor, there-
fore we consider it a primitive substitution.
Definition 3.5 (Substitutions) An unscoped substitution is a function θ : N→ Type,
the primitive substitutions are defined as follows:

• Var: the constructor for variables N→ Type.

• Extension: (t · θ)(x) :=

{
t if x = 0

θ(n) if x = S n

• Lift: ⇑ θ (x) := 0 · (θ ◦ [↑])

Again the lifting of a substitution has the effect of leaving the type variable 0 un-
changed and applying the substitution shifted once.
Definition 3.6 (Instantiation of substitutions) For all t : Type and θ : N → Type

the instantiation is defined recursively:

(∀σ.τ)[θ] := ∀σ[θ].τ [⇑ θ]
(x)[θ] := θ(x)

In addition to the syntax types Autosubst 2 provides a number of equations in-
volving the substitution primitives. We present here the subset of those equations
called the Interaction Lawswhich are the most general, although several other more
specific results are also given by the tool.
Lemma 3.7 Interaction Laws

• Identity: id ◦ f = f = f ◦ id

• Associativity: (f ◦g)◦h = f ◦ (g ◦h)

• Interaction: ↑ ◦(t · θ) = θ

• Distributivity: (t·θ)◦f = f(t)·(θ◦f)

• η-identity: 0· ↑= id

• η-law: θ(0) · (↑ ◦ θ) = θ

Note that some of them are trivial corollaries of the definition of the primitives.
Instances of these laws are given for well-scoped syntax however they are not dis-
cussed further.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.utype.html#ren_type
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.utype.html#subst_type
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.headers.unscoped.html#scons_comp
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.headers.unscoped.html#scons_eta_id
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.headers.unscoped.html#scons_eta

18 Aspects of de Brujin Syntax

We turn our attention to the well-scoped presentation of the same syntax. The
primitives of renamings and substitutions change definition, instantiation is iden-
tical with the new definitions so it is omitted.

Definition 3.8 The syntax of well-scoped types is defined by the following grammar:

τn, σn : Typen ::= x | ∀σn. τSn x : Fn

Definition 3.9 (Renamings) For all m,n : N a well-scoped renaming is a function
ξ : Fn → Fm, the primitive renamings are defined as follows:

• Shift: ↑ := FS

• Lift: ⇑ ξ (x) :=

{
F0 if x = F0

FS(ξ n) if x = FS n

Definition 3.10 (Substitutions) For all m,n : N a well-scoped substitution is a func-
tion θ : Fn → Typem, the primitive substitutions are defined as follows:

• Var: the constructor for variables Fn → Typen.

• Lift: ⇑ ξ (x) :=

{
F0 if x = F0

(θ n)〈↑〉 if x = FS n

3.1.1 Encoding
We define the encoding between the terms of the syntaxes. The encoding of vari-
ables is just the injection into the naturals.

Definition 3.11 For all n : N the encoding J−K : Typen → Type is defined as:

J∀σn.τSnK := ∀JσnK.JτSnK
JxK := x̂

Definition 3.12 For all n,m : N, and any well-scoped renaming ξ : Fn → Fm the
encoding is an unscoped renaming JξK : N→ N defined as:

JξK(x) :=

{
ξ̂(x◦) if x < n

x otherwise

In order to show that the encoding of renamings commutes with instantiation we
need the following bounded extensionality result.

Fact 3.13 For all n : N, t : Type and renamings ξ, ξ′ : N → N if closed t n and
ξ(x) = ξ′(x) for all x < n, then t〈ξ〉 = t〈ξ′〉.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.wstype.html#type
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.ws2u.html#encode
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.ws2u.html#encode_ren
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.ws2u.html#bext_ren

3.2. Polyadic Binders 19

Corollary 3.14 (Extensionality up to n) For any n : N, and unscoped renamings ξ, ξ′
if ξ(x) = ξ′(x) for all x < n then for any type t : Typen:

JtK〈ξ〉 = JtK〈ξ′〉

Proof. By fact 3.13 we just have to check that closed JtK nwhich is trivial.

Lemma 3.15 For all n,m, any well-scoped type t : Typen, and well-scoped renaming
ξ : Fn → Fm:

Jt〈ξ〉K = JtK〈JξK〉

Proof. By induction on twith extensionality up to n. �

We can encode substitutions using the same technique.
Definition 3.16 For allm,n, and well-scoped substitution θ : Fn → Typem the encoding
is an unscoped substitution defined as follows:

JθK(x) :=

{
Jθ(x◦)K if x < n

x otherwise

Fact 3.17 For alln : N, t : Type, and unscoped substitutions θ, θ′ : N→ Type if closed t n
and θ(x) = θ′(x) for all x < n then t[θ] = t[θ]

Corollary 3.18 (Extensionality up to n) For any n, and unscoped substitutions θ, θ′
if θ(x) = θ′(x) for all x < n then for any t : Typen:

JtK[θ] = JtK[θ′]

Lemma 3.19 For any type t : Typen, and well-scoped substitution θ : Fn → Typem:

Jt[θ]K = JtK [JθK]

Proof. By induction on twith extensionality up to n. �

3.2 Polyadic Binders
In this sectionwe consider aminimal syntaxwith only a polyadic binder. The goal is
to encode it as the well-scoped syntax of the previous section. We start by defining
the polyadic syntax which is a subset of the polarized syntax (Def. 5.6) of Systems
FD6: and FF6:. We say that a polyadic binder is w-fold if it binds w fresh variables.
Definition 3.20 For allw : N the syntax of well-scoped types withw-fold polyadic binders
is defined by the following grammar:

τn : pTypenw ::= (x, i) | ∀τn1 , . . . , τnw. τSn x : Fn, i : Fw

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.ws2u.html#ext_ren_upto
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.ws2u.html#encoding_ren
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.ws2u.html#encode_subst
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.ws2u.html#bext_subst
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.ws2u.html#ext_subst_upto
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.ws2u.html#encoding_subst
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.ptype.html#type

20 Aspects of de Brujin Syntax

The variables are now a pair of finite indices, one identifies the binder and the other
identifies the specific termwithin that binder. In a type variable of pTypenw we refer
to the index of type Fn as the inter-binder component of the variable, whilewe refer
to the index of type Fw as the intra-binder component. As renamings correspond to
changing the order of binders they ignore the intra-binder component of variables.

Definition 3.21 (Renamings) For allm,n,w : N aw-fold polyadic renaming is a func-
tion ξ : Fn → Fm, the primitive renamings are defined as follows:

• Shift: ↑ (x, i) := (FSx, i)

• Lift: ⇑ ξ (x, i) :=

{
(F0, i) if x = F0

(FS(ξ y), i) if x = FS y

To instantiate a renaming we apply it to the inter-binder component of variables.

Definition 3.22 (Instantiation of renamings) For all m,n,w : N, t : pTypenw, and
polyadic renaming ξ : Fn → Fm, the instantiation t〈ξ〉 : pTypemw is defined recursively:

(∀τ1, . . . , τw.τ)〈ξ〉 := ∀τ1〈ξ〉, . . . , τw〈ξ〉.τ〈⇑ ξ〉
(x, i)〈ξ〉 := (ξ x, i)

Polyadic substitution takes into account both components of the variables.

Definition 3.23 (Substitutions) For allm,n,w : N a w-fold polyadic substitution is a
function θ : Fn → Fw → pTypemw , the primitive substitutions are defined as follows:

• Var: the constructor for variables Fn → Fw → pTypenw.

• Lift: ⇑ θ (x, i) :=

{
(x, i) if x = F0

(θ y i)〈↑〉 if x = FS y

Definition 3.24 (Instantiation of substitutions) For allm,n,w : N, t : pTypenw and
θ : Fn → Fw → pTypemw the instantiation is defined recursively:

(∀τ1, . . . , τw.τ)[θ] := ∀τ1[θ], . . . , τw[θ]. τ [⇑ θ]
(x, i)[θ] := θ x i

3.2.1 Encoding
The encoding of the polyadic binders requires some consideration, after the encod-
ing the first bound in the polyadic binder theremust be a new bound variable so the
encoding of the next bound is shifted. The shiftings accumulate so the nth bound
is shifted n− 1 times.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.ptype.html#ren_type
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.ptype.html#subst_type

3.2. Polyadic Binders 21

Definition 3.25 For all n,w : N the encoding J−K : pTypenw → Typen×w is defined as:

J∀τ1, . . . , τw.τK := ∀Jτ1K.∀Jτ2K〈↑〉 . . . ∀JτwK〈↑w−1〉.JτK
J(x, i)K := (w × x̂+ î)◦

The encoding of variables combines both components as each inter-binder index
corresponds to w intra-binder ones. Because renamings only modify the inter-
binder component we need to split a combined variable, apply the renaming and
then combine the result. We achieve this using integer division and modulo.

Definition 3.26 For allm,n,w : N, and any w-fold polyadic renaming ξ : Fn → Fm the
encoding is a well-scoped renaming JξK : Fw×n → Fw×m defined as:

JξK(x) := (̂ξ(x̂/w)◦ + x̂%w)◦

In the case of substitutions we just need to split the combined variable so we can
apply the substitution and encode the result.

Definition 3.27 For all m,n,w : N, and any w-fold polyadic substitution
θ : Fn → Fw → pTypemw the encoding is a well-scoped substitution JθK : Fn×w →
Typem×w defined as:

JθK(x) := Jθ (x̂/w)◦ (x̂%w)◦K

It is straightforward to show that this encoding commutes with instantiation, as
extensionality is always "up to a bound".

Fact 3.28 For all m,n : N, t : Typen and well-scoped renamings ξ, ξ′ : Fn → Fm, if
ξ(x) = ξ′(x) for all x : Fn then t〈ξ〉 = t〈ξ〉

Lemma 3.29 For allm,n,w : N, t : pTypenw andw-fold polyadic renaming ξ : Fn → Fm:

Jt〈ξ〉K = JtK〈JξK〉

Proof. By induction on t. �

Fact 3.30 For all m,n : N, t : Typen and well-scoped substitutions θ, θ′ : Fn → Typem,
if θ(x) = θ′(x) for all x : Fn then t[θ] = t[θ′]

Lemma 3.31 For all m,n,w : N, t : pTypenw and w-fold polyadic substitution
θ : Fw×n → pTypemw :

Jt[θ]K = JtK[JθK]

Proof. By induction on t. �

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.p2ws.html#encode
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.p2ws.html#encode_ren
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.p2ws.html#encode_subst
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.p2ws.html#ext_ren
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.p2ws.html#encoding_ren
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.p2ws.html#ext_subst
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.extras.p2ws.html#encoding_subst

Chapter 4

Machine Models

In this chapter we describe the machine models involved in the proof of undecid-
ability of subtyping. We introduce here two-countermachines, which is awell-known
model with halting problem already shown undecidable. We also introduce rowing
machines, which is a machine model intuitively closer to the subtyping systems de-
fined in Chapter 5. The halting problem of two-counter machines is reduced to the
halting problem of rowingmachines, withwhich it is shown to also be undecidable.

4.1 Two-counter Machines
Pierce defines two-counter machines as consisting of a configuration and a pro-
gram. The configuration is a triplet of natural numbers consisting of the program
counter and two registers (PC,A,B), meanwhile a program is a sequence (of length
w) of instructions.

Definition 4.1 The type of two-counter machines is defined as:

CM2w := Fw × N× N× (Instw)w

Where the type of instructions is defined by the following grammar:

ι : Instw ::= incAn | incBn | decAn/m | decBn/m | Halt n,m : Fw

We give an inductive definition of the step relation instead of the definition using
a function CM2w → OCM2w that is useful in the mechanized proof.

24 Machine Models

Definition 4.2 Using infix notation the step relation �C : CM2w → CM2w → P is
defined inductively:

P [n] = incAn
′

(n, a, b, P) �C (n′, Sa, b, P)

P [n] = decAn
′/m′

(n, 0, b, P) �C (n′, 0, b, P)

P [n] = decAn
′/m′

(n, Sa, b, P) �C (m′, a, b, P)

P [n] = incBn
′

(n, a, b, P) �C (n′, a, Sb, P)

P [n] = decBn
′/m′

(n, a, 0, P) �C (n′, a, 0, P)

P [n] = decBn
′/m′

(n, a, Sb, P) �C (m′, a, b, P)

Definition 4.3 (CM2 halting) A two-counter machine M halts if M �∗C (n, a, b, P)

and P [n] = Halt.

Pierce’s definition differs slightly from the one presented by Dudenhefner [16] in
the Undecidability Library, however it is easy to check that they are equivalent.
In the library the machines are lists of instructions and the step function maps a
machine and a configuration to a configuration. We use Pierce’s machines so the
reduction fromDudenhefner’s machines serves as a preliminary in the final reduc-
tion to switch from lists and natural number indices to vectors and finite types.
Definition 4.4 The type of Dudenhefner’s two-counter machines is defined as:

CM2′ := N× N× N× L(Inst′)

The instruction set is defined by the following grammar:

ι : Inst′ ::= incA | incB | decAn | decBn n : N

Definition 4.5 (CM2' halting) A Dudenhefner’s two-counter machine M halts if
M �∗C′ (n, a, b, P) and length P < n.

Theorem 4.6 CM2' halting is undecidable.

Instead of having a dedicated halting instruction, these machines halt when the
PC is larger than the length of the program. Additionally, when the values in the
registers are increased (or are 0 and the instruction is dec) the PC simply moves
to the next instruction. The translation of a instruction depends on its position in
the program in order to get the index of the next instruction.
Lemma 4.7 A Dudenhefner’s two-counter machine halts iff its translation as a Pierce’s
two-counter machine halts.

Theorem 4.8 CM2 halting is undecidable.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.CM2.html#step
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.CM2.html#CM2_HALT
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.uCM2_facts.html#CM2_HALT_undec
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.CM2_HALT_to_CM2_HALT.html#translate_inst
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.CM2_HALT_to_CM2_HALT.html#fwd_bwd
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.CM2_undec.html#CM2_HALT_undec

4.2. Rowing Machines 25

4.2 Rowing Machines
Pierce [33] defines the rowing machines as consisting of a non zero number of reg-
isters, the first one used as program counter by convention. The only machine of
zero registers is the empty vector, so we consider it as a separate trivial case.

Definition 4.9 For anyw : N such thatw > 0 a rowingmachine of widthw is a vector,
written 〈ρ1, . . . , ρw〉 : RMw

RMw := (Roww)w

Each ρ is a closed row of width w defined by the following grammar:

ρ : Roww ::= xi | λx1,...,xw .〈ρ1, . . . , ρw〉 | Halt i ≤ w

In the abstract row λx1,...,xw .〈ρ1, . . . , ρw〉 the variables xi are bounded in all of the
ρi. This w-fold binder is trivially polyadic as the variables are "untyped". When
instantiated with w closed rows, an abstract row yields a rowing machine. The
transition function of the rowing machine instantiates its program counter with
the contents of the w registers. However instead of defining the step relation in
terms of a function RMw → O RMw like in the code, we give an inductive definition
as the function is unnecessary in the high level argument.

Definition 4.10 Using infix notation the step relation�R: RMw → RMw → P is defined
inductively:

ρ1 = λx1,...,xw .〈ρ′1, . . . , ρ′w〉
〈ρ1, . . . , ρw〉 �R 〈ρ′1[ρ1/x1, . . . , ρw/xw], . . . , ρ′1[ρ1/x1, . . . , ρw/xw]〉

Definition 4.11 (RM halting) A rowing machineM halts if for some ρ2, . . . , ρw

M �∗R 〈Halt, ρ2 . . . ρw〉

4.3 Undecidability
Pierce shows the undecidability of the halting problem of rowing machines by re-
duction from the halting problem of two-counter machines. In order to encode
two-counter machines as rowing machines we need an encoding of instructions
and of natural numbers in each register; RA and RB . For a program of length w
the encoding is a rowing machine of width w + 5, the first 5 registers store PC, A,
B, and the branching addresses for the decreasing instruction, the last w registers
store the encoding of the program.
The encoding of instructions R : Instw → Roww+5 and the encodings of naturals
RA,RB: N→ Roww+5 are omitted here for brevity.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.row.html#row
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.RM.html#step
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.RM.html#RM_HALT
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.CM2_Halt_to_RM_Halt.html#translate_inst
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.CM2_Halt_to_RM_Halt.html#encode_A
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.CM2_Halt_to_RM_Halt.html#encode_B

26 Machine Models

Definition 4.12 The encoding of two-counter machinesR : CM2w → RMw+5 is defined
as:

R(n, a, b, (ι1, . . . , ιw)) := 〈R(ιn),RA(a),RB(b), Halt, Halt,R(ι1), . . . ,R(ιw)〉

Theorem 4.13 M halts iffR(M) halts.

Proof. (⇒) By induction on the given trace.
(⇐) Assuming R(M) �nR 〈Halt . . . 〉, by complete induction on n. We can as-
sume that M �C M ′ for a two-counter machine M ′, otherwise the goal is trivial.
By determinism of�C we can change the goal toM ′ halts, meanwhile by determin-
ism of �R we have R(M) �mR R(M ′) �n−mR 〈Halt . . . 〉, for somem > 0. The proof
is completed by the induction hypothesis withR(M ′) �n−mR 〈Halt . . . 〉. �

Theorem 4.14 RM halting is undecidable.

Proof. By Lemma 2.12 and Theorem 4.13. �

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.CM2_Halt_to_RM_Halt.html#translation
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.CM2_Halt_to_RM_Halt.html#fwd_bwd
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.RM_undec.html#RM_HALT_undec

Chapter 5

Subtyping and Type checking

In this chapter we give a reformulation of Pierce’s result [33], namely the undecid-
ability of the subtyping problem (Theorem 5.18), fromwhich the undecidability of
type checking follows (Theorem 5.21).

t, u : Term ::= x | λx:τ . t | t u | Λx6:τ . t | t τ
τ, σ : Type ::= α | σ → τ | ∀α6:σ. τ | >

Γ : Context ::= [] | Γ, α6:τ

∆ : TermContext ::= [] | ∆, x : τ

x : τ ∈ ∆ Var
∆; Γ ` x : τ

∆, x : σ; Γ ` t : τ
Term-Abst

∆; Γ ` λx:σ.t : σ → τ

∆; Γ, α6:σ ` t : τ Type-Abst
∆; Γ ` Λα6:σ.t : ∀α6:σ.τ

∆; Γ ` t : σ Γ ` σ6:τ Subsumption
∆; Γ ` t : τ

∆; Γ ` t : σ → τ ∆; Γ ` u : σ
Term-Inst

∆; Γ ` t u : τ

∆; Γ ` t : ∀α6:σ.τ Γ ` σ16:σ Type-Inst
∆; Γ ` t σ1 : τ [σ1/α]

Refl
Γ ` τ6:τ

Γ ` τ16:τ2 Γ ` τ26:τ3 Trans
Γ ` τ16:τ3

Top
Γ ` τ6:>

Var
Γ ` x6: Γ[x]

Γ ` τ16:σ1 Γ ` σ26:τ2 Arrow
Γ ` σ1 → σ26: τ1 → τ2

Γ ` τ16:σ1 Γ, x6:τ1 ` σ26:τ2 All
Γ ` ∀x6:σ1 .σ26: ∀x6:τ1 .τ2

Figure 5.1: Syntax, subtyping, and type checking in full System F6:

28 Subtyping and Type checking

In order to show the undecidability of subtyping only the rules of bounded quan-
tification are necessary, therefore we concern ourselves with a minimal subtyp-
ing system encapsulating it that has a maximal type but no arrow types (Defini-
tion 5.1). However terms on this system are not particularly interesting, in fact
without term variables and abstraction there are no terms at all, therefore we in-
clude the arrow types and their subtyping rule when discussing type checking in
Section 5.3. The technique that allows to split the syntax as with andwithout arrow
types is explained in Section 6.3.
The subtyping system defines the reflexive and transitive subtype relation, it is pre-
sented with named variables to improve readability.

Definition 5.1 (System F6:) The types and contexts are defined by the grammar

τ, σ, φ : Type ::= x | ∀x6:σ. τ | > Γ : Context ::= []| Γ, x6:τ

_ ` _6:_ : Context → Type → Type → P is the three place relation with constructors
corresponding to the following rules:

Refl
Γ ` τ6:τ

Γ ` τ16:τ2 Γ ` τ26:τ3 Trans
Γ ` τ16:τ3

Top
Γ ` τ6:>

Var
Γ ` x6: Γ[x]

Γ ` τ16:σ1 Γ, x6:τ1 ` σ26:τ2
All

Γ ` ∀x6:σ1 .σ26:∀x6:τ1 .τ2

where Γ[x] = τ ⇐⇒ x6:τ ∈ Γ.

Pierce shows the undecidability of subtyping in System F6: (Theorem 5.18) by re-
duction from the halting problem of two-countermachines. He defines an interme-
diate machine model, the rowing machines (Section 4.2), then gives a definition of
two-counter machines (Section 4.1) and shows that a two-counter machineM can
be encoded as a rowing machine R(M) so that M halts if and only if R(M) halts
(Theorem 4.13). In order to show that the halting problem of rowing machines
reduces to subtyping, Pierce shows that for any rowing machineM :

M halts⇐⇒ ` σ6:F(M)

where σ is a closed type independent of M and F(M) is the encoding of the ma-
chine as a type. Induction alone does not go through as a number of invariants are
required:

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Fsub_na.html#sub'

5.1. Variants of System F6: 29

(⇒) By induction on the trace ofM, in order to encode the stepping of themachine
we need:

• The flip property that allows us to flip inequalities, this enables the rebound-
ing of the body of a quantifier in the right hand side by exploiting contravari-
ance. The flip operator and its property are defined as follows:

τ := ∀x6:τ .x Γ ` σ6:τ ⇐⇒ Γ ` τ6:σ

The flip property already is a theorem in the system, however it is mentioned
here because it is one of the features that will be refinements.

• The eager substitution of variables, to match the handling of registers by the
rowing machine:

x6:φ ` σ6:τ ⇐⇒ ` σ[φ/x]6:τ [φ/x]

This property says that types may be overaproximated, that is, variables may
be replaced by their upper bounds. Of course this does not hold in general;
consider φ = σ = > and τ = x, then the right side is derivable but the left
side is not. The polarized syntax (See Def. 5.6) forbids such counterexamples.

(⇐) By induction on the derivation we require:
• Restricted transitivity, if the last rule of the derivation is Trans then the inter-

mediate type is arbitrary because it does not appear in the conclusion. This is
problematic because in order to apply the inductive hypothesis the interme-
diate type must have the form of a translated rowing machine.

• The registers of the rowing machine are encoded as quantifiers so ifM con-
sists of w registers then F(M) has a prefix of w quantifiers. Therefore if the
last rule of the derivation is All then the preceding w − 1 rules should also
be All. This is enforced by polyadic binders, that is, quantifiers that bind w
variables independent of each other.

5.1 Variants of System F6:

Pierce named the intermediate systems based on properties of the naive search al-
gorithm for derivations that recursively tries applicable rules and may loop. The
algorithm is only used informally to give an intuition on how similar the computa-
tional model of the system is to the rowingmachines, therefore it is not introduced.
The intermediate systems address the requirements and are defined incrementally
so that the first system is the most similar to System F6: and the last system has all
the required invariants so it is closer to the machine abstraction.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.FsubD_to_FsubN.html#neg

30 Subtyping and Type checking

FN6: Restricts transitivity. In this system the naive search algorithm can be thought
as producing, if any, the normal forms of derivations by choosing the rules
for > and reflexivity for variables whenever possible.

FD6: Introduces the syntaxwith polyadic binders and incorporates the flip property
into the rules. Additionally this system already has eager substitution as a
theorem. In this system the rules have at most one premise so the derivations
are linear and the naive search algorithm is a deterministic procedure.

FF6: Incorporates eager substitution into the rules, allowing a smooth transition to
the rowingmachines. The naive search algorithmof this systempreemptively
instantiates variables, so the derivations keep the context empty and may be
considered flattened.

5.1.1 Syntax-directed Subtyping

The first variant uses the same syntax as the full system, it restricts the rules that
have arbitrary types in the conclusion so that each subtyping statement is the result
of at most one rule.

Definition 5.2 (System FN
6:) The normal system is the three place relation

_ `N _6:_ : Context → Type → Type → P with constructors corresponding to the
following rules

NRefl
Γ `N x6:x

NTop
Γ `N τ6:>

Γ `N Γ x6: τ
NVar

Γ `N x6: τ

Γ `N τ16:σ1 Γ, x6:τ1 `N σ26:τ2
NAll

Γ `N ∀x6:σ1 .σ26: ∀x6:τ1 .τ2

The new variable rule has a general type as the right hand side of the conclusion
that is identical in the premise, this rule can also be read as an instance of tran-
sitivity between the variable, its bound in the context, and the general type. The
new reflexivity rule applies only to variables and the transitivity rule is dropped,
however the system is still reflexive and transitive in general so the reduction is
immediate.

Lemma 5.3 For all Γ and τ : Γ `N τ6:τ .

Lemma 5.4 For all Γ, σ, τ , and υ: if Γ `N σ6:τ and Γ `N τ6:υ then Γ `N σ6:υ.

Theorem 5.5 For all Γ, σ, and τ : Γ `N σ6:τ ⇐⇒ Γ ` σ6:τ

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.FsubN.html#subN
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.FsubN_to_Fsub.html#reflexivity
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.FsubN_to_Fsub.html#transitivity
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.FsubN_to_Fsub.html#subN_iff_sub_off

5.1. Variants of System F6: 31

5.1.2 Polarized Syntax
To define the next system we need a new syntax for types that classifies them by
whether they are allowed to be used to the left (negative) or right (positive) of the
subtyping relation. Additionally the syntax uses the polyadic binders for positive
quantifiers, and only unbounded negative quantifiers so one of the premises of the
quantifier rule is always trivial. The bodies of both positive and negative quanti-
fiers are flipped types, it is easy to check that the operator indeed flips the signs of
polarized types.

Definition 5.6 (Polarized syntax) For a natural number w, the positive and negative
types are defined by the following grammar:

τ+ : pType+w ::= > | ∀x16:τ−1 ,...,xw6:τ−w .τ
−

τ− : pType−w ::= xi | ∀x16:>,...,xw6:>. τ+ i ≤ w

The previous counter example for eager substitution is not well formed in the po-
larized syntax because variables are only allowed at the left hand side while > is
only allowed at the right, in fact eager substitution is a theorem in the following
system.
The deterministic system is defined with the height of the derivation as an index
so it is incremented appropriately. To avoid notational clutter the signs of types
and the bounds of negative quantifiers are omitted. The natural number w is also
omitted as it is a constant in this section and the next, it only becomes relevantwhen
encoding rowing machines in section 4.2.

Definition 5.7 (System FD
6:) The deterministic system is the four place relation

_ `−D _6:_ : L(pType−) → N → pType− → pType+ → P with constructors corre-
sponding to the following rules:

DTop
Γ `0D τ6:>

Γ `nD Γ xi6: ∀y16:φ1,...,yw6:φw . τ DVar
Γ `SnD xi6:∀y16:φ1,...,yw6:φw . τ

Γ, x16:φ1, . . . , xw6:φw `nD τ6:σ
DAllFlip

Γ `SnD ∀x1,...,xw .σ6: ∀x16:φ1,...,xw6:φw . τ

Reflexivity is no longer well formed so the rule is dropped. The new rule for vari-
ables is specialized so the right hand side is not>, this corresponds to the algorithm

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.psyntax.html#ptype
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.FsubD.html#subD

32 Subtyping and Type checking

that builds derivations choosing the rule for > whenever possible. The new quan-
tifier rule incorporates the flip property so it removes the flip operator of the bodies
in the conclusion by having the bodies switch side in the premise.
In order to show the reduction from this system, we need to define the encoding
of polarized types as regular types. The encoding is straightforward in the named
presentations, however the deBrujin indices complicate the formalization, the de-
tails are explained in Chapter 3.
Definition 5.8 Weuse the same notation for three functions; the encoding of positive types
J−K : pType+ → Type, of negative types J−K : pType− → Type, and of contexts:

J>K := >
J∀x16:φ1,...,xw6:φw .τK := ∀x16:Jφ1K . . . ∀x16:Jφ1K.JτK

JxiK := xi

J∀x1,...,xw .τK := ∀x16:> . . . ∀xw6:>.JτK
J[]K := []

JΓ, xi6:τK := JΓK, xi6:JτK

TheDAllFlip rule corresponds tow uses ofNAll andNTop followed by the flip prop-
erty, therefore when analyzing a derivation of the normal system it is not enough
to consider the premise of the last rule but of several rules before. At this point a
height-indexed reformulation of System FN6: is required. The height-indexed vari-
ant is not used as the original definition as it unnecessarily complicates previous
proofs.
Theorem 5.9 For all Γ, σ, and τ : (∃n. Γ `nD σ6:τ)⇐⇒ JΓK `N JσK6:JτK

Proof. (⇒) By induction on the derivation.
(⇐) By complete induction on the height of the derivation. �

5.1.3 Eager Substitution
We can show a generalization of eager substitution; instead of considering a sin-
gleton context the lemma applies to any nonempty context, and the variables to be
substituted are those that were first stored. Additionally the derivation produced
has smaller or equal height so it can be used when doing complete induction on
the height of derivations.
Lemma 5.10 For all closed φ1,..., φw, and n if x16:φ1, . . . , xw6:φw,Γ `nD σ6:τ

then there is anm such thatm ≤ n and
Γ[φ1/x1, . . . , φw/xw] `mD σ[φ1/x1, . . . , φw/xw]6:τ [φ1/x1, . . . , φw/xw]

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.FsubD_to_FsubN.html#ptranslation
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.FsubD_to_FsubN.html#iSub
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.FsubD_to_FsubN.html#d2n
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.FsubD_to_FsubN.html#n2d
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.FsubF_to_FsubD.html#toEager

5.2. Undecidability of Subtyping 33

Proof. By induction on the given derivation. �

To complete the proof of eager substitution we need the backwards implication,
however this lemma is used when doing induction on the derivation itself so the
height is left unspecified.

Lemma 5.11 For all closed φ1,..., φw
if (∃n. Γ[φ1/x1, . . . , φw/xw] `nD σ[φ1/x1, . . . , φw/xw]6:τ [φ1/x1, . . . , φw/xw])

then (∃n. x16:φ1, . . . , xw6:φw,Γ `nD σ6:τ)

Proof. By induction on the given derivation. �

The final refinement incorporates eager substitution on the quantifier rule.

Definition 5.12 (System F F
6:) The flattened system is the three place relation

`−F _6:_ : N → pType− → pType+ → P with constructors corresponding to the fol-
lowing rules.

FTop
`0F τ6:>

`nF τ [φ1/x1, . . . , φw/xw]6:σ[φ1/x1, . . . , φw/xw]
FAllFlip

`SnF ∀x1,...,xw .σ 6: ∀x16:φ1,...,xw6:φw . τ

The rule for variables is dropped and contexts are omitted, as variables are imme-
diately substituted by their bounds so they need not be stored and the context is
always empty. The new quantifier rule skips the instances of the old rule for vari-
ables so when analyzing a derivation of the deterministic system once again it is
not enough to consider the premise of the last rule so complete induction on the
height is necessary.

Theorem 5.13 For all closed σ and τ : (∃n. `nF σ6:τ)⇐⇒ (∃m. `mD σ6:τ)

Proof. (⇒) By induction on the derivation using Lemma 5.11 for the quantifier
case.
(⇐) By complete induction on the height of the given derivation and case analysis
of the last rule, using Lemma 5.10 for the quantifier case. �

5.2 Undecidability of Subtyping
We can encode rowing machines (Definition 4.9) as subtyping problems in an ap-
propriate way; if the rowingmachine has Halt as its first row then it it should be en-
coded as a statement that reaches a sub-problem with > on the right, alternatively

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.FsubF_to_FsubD.html#fromEager
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.FsubF.html#subF
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.FsubF_to_FsubD.html#flat_det
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.FsubF_to_FsubD.html#det_flat

34 Subtyping and Type checking

if the rowing machine steps into another then its encoding should be a judgment
that reaches the encoding of the the second machine.
We write F for both the encoding of rowing machines and rows, they are functions
between different types so there is no ambiguity. The encoding of a row of widthw
is a negative type of width w + 1, the first bound is reserved for a closed type that
encodes flipping and rebounding. Meanwhile the encoding of a rowing machine
of width w is a positive type of width w + 1.

Definition 5.14 For all w > 0 the encoding F : Roww → pType−w+1 is defined as:

F(xi) := xi

F(Halt) := ∀x0,...,xw . >

F(λx1,...,xw .〈ρ1, . . . , ρw〉) := ∀x0,...,xw .∀y06:x0,y16:F(ρ1),...,yw6:F(ρw).F(ρ1)

The encoding of a rowing machine F : RMw → pType+w+1 is defined as follows:

F(〈ρ1 . . . ρw〉) := ∀x06:σw,x16:F(ρ1),...,xw6:F(ρw).F(ρ1)

where σw:= ∀x0,...,xw .∀y06:x0,...,yw6:xw .x0.

The closed type σw (for the given w that is the number of registers) is the type
mentioned at the beginning of the chapter and serves as the left hand side of the
subtyping statements that check translations of rowing machines. In the following
lemma both implications are used in the proof of reduction.

Lemma 5.15 For all rowing machines of width w M,M ′, and n : N, ifM �R M ′ then
`n+2
F σw6:F(M)⇐⇒ `nF σw6:F(M ′)

Proof. AssumingM �R M ′.
(⇒) By induction on the given derivation.
(⇐) By two applications of the FAllFlip rule. �

Lemma 5.16 For all ρ2,..., ρw `2F σw6:F(〈Halt, ρ2 . . . ρw〉)

Theorem 5.17 A rowing machine of widthwM halts if and only if there is an n such that
`nF σw6:F(M).

Proof. (⇒) By induction on the reflexive transitive closure of the step relation.
(⇐) By complete induction on the height of the derivationwith the rowingmachine
quantified. �

Theorem 5.18 F6: subtyping is undecidable.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.RM_HALT_to_FsubF.html#row2ntype
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.RM_HALT_to_FsubF.html#sigma
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.RM_HALT_to_FsubF.html#step2flat
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.RM_HALT_to_FsubF.html#halt2flat
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.RM_HALT_to_FsubF.html#reduction
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.RM_HALT_to_FsubF.html#flat2RM_HALT
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Fsub_undec.html#Fsub_SUBTYPE_undec

5.3. Undecidability of Type Checking 35

Proof. From the undecidability of RM halting (Theorem 4.14), by a chain of many-
reductions:
RM halting �m FF6: subtyping by Theorem 5.17

�m FD6: subtyping by Theorem 5.13
�m FN6: subtyping by Theorem 5.9
�m F6: subtyping by Theorem 5.5

�

5.3 Undecidability of Type Checking
In order to show that type checking is undecidable Pierce constructs a term that is
well-typed if and only if a given subtyping statement holds. We define a different
term that simplifies the argument, however there are two complications. First, the
subsumption rule is always applicable and introduces an intermediate unknown
type so we need to argue about the height of such derivations as (non-reflexive)
subsumptions cannot continue forever. Second, the subtyping assumptions are
statements of the Full System F6: (Def. 5.1) and therefore might be the result of
the transitivity rule, which complicates the analysis as we discussed earlier on the
chapter. Therefore we need a variant of the type checking system that addresses
these difficulties.

Definition 5.19 (Height-indexed type checking)

x : τ ∈ ∆ Var
∆; Γ `0 x : τ

∆, x : σ; Γ `n t : τ
Term-Abst

∆; Γ `Sn λx:σ.t : σ → τ

∆; Γ, α6:σ `n t : τ
Type-Abst

∆; Γ `Sn Λα6:σ.t : ∀α6:σ.τ

∆; Γ `n t : σ Γ ` σ6:τ
Subsumption

∆; Γ `Sn t : τ

∆; Γ `n t : σ → τ ∆; Γ `m u : σ
Term-Inst

∆; Γ `S(max n m) t u : τ

∆; Γ `n t : ∀α6:σ.τ Γ ` σ16:σ
Type-Inst

∆; Γ `Sn t σ1 : τ [σ1/α]

We can show that a given subtyping statement holds if and only if a certain term
type checks.

Lemma 5.20 For all Γ and types σ and τ :

Γ ` σ6:τ ⇐⇒ ∃n. []; Γ `n (Λα6:τ .λx:α.x) σ : σ → σ

Proof. Throughout the proof we change each F6: subtyping statement with a FN6:
subtyping statement using Theorem 5.5.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.FsubN.html#chkN
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Reductions.FsubN_to_FsubNchk.html#reduction

36 Subtyping and Type checking

(⇒) By Type-Inst followed by Type-Abst and Term-Abst.
(⇐) Inverting the rules we have two cases, either the derivation comes from the
corresponding rule as in the forward case, or it comes from subsumption in which
case we do induction on the height of the derivation to arrive at the appropriate
rule. �

Theorem 5.21 F6: type checking is undecidable.

Proof. From the undecidability of F6: subtyping, by the previous lemma we have:

F6: subtyping �m F6: type checking

�

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Fsub_undec.html#Fsub_TYPECHK_undec

Chapter 6

Mechanization Artifacts

In this chapter we review some techniques used in the mechanized proof that are
unrelated to Pierce’s proof. We focus on design choices that might be interesting to
the reader, as there are plenty that were made out of convenience (like utility func-
tions) and can be changed without much deliberation. We also leave out the tech-
niques that are necessitated by the external tools used, for example those regarding
the de Brujin presentation given by Autosubst 2, and the synthetic undecidability
lemmas provided by the Undecidability Library.

Specifically, we study stronger induction principles than the ones generated au-
tomatically by Coq for certain data types. Additionally we give a technique that
enables to unfold instances of these induction principles applied to constructor-
headed terms. Finally, we present a technique for modular syntax by means of a
boolean flag that is passed implicitly most of the time and is only set to a specific
value when the relevant syntactic construct is allowed to appear or not.
6.1 Custom Induction Principles
The types corresponding to the polarized syntax of some variants of System F6:
(see 5.6) as well as the syntax of rows of the rowing machines (see 4.9) contain
a constructor which takes a fixed number of arguments of the same type, in fact
because this number is fixed throughout the proof it is natural to implement the
syntax with a vector container. As an example of this section we will use the polar-
ized syntax. Recall that the syntax is defined as follows.

Definition 6.1 (Polarized syntax) For a natural number w, the positive and negative
types are defined by the following grammar:

τ+ : pType+w ::= > | ∀x16:τ−1 ,...,xw6:τ−w .τ
−

τ− : pType−w ::= xi | ∀x16:>,...,xw6:>. τ+ i ≤ w

38 Mechanization Artifacts

Inductive ptype (n : nat) : Type :=
| top : ptype n

| bAllN : Vector.t (ntype n) w → ntype (S n) → ptype n

with ntype (n : nat) : Type :=
| var_ntype : fin w → fin n→ ntype n

| uAllN : ptyspe (S n) → ntype n.

Figure 6.1: Mutual inductive types implementing the polarized syntax. Note that
only the positive quantifier constructor uses vectors as negative quantifiers are al-
ways unbounded. The natural number w is a variable of the section.

In order to implement such syntax we need a pair of mutually inductive types; the
quantifiers of both positive and negative types have a body of the opposite sign.
Additionally the syntax is implemented as well-scoped (see Section 3.1) for rea-
sons discussed in Chapter 5. Therefore the types have a natural number index
that is incremented below quantifiers and variables consist of a pair of finite ele-
ments; one specifying the binder and the other the bound inside the vector in that
binder. However having a vector argument in one constructor makes the induction
principle generated automatically by Coq insufficient. In particular, the quantifier
hypothesis says nothing about the elements in the vector.

Fact ptype_ind : ∀ (n : nat) (P : ptype n → Prop),
P (top n) →
(∀ (t : Vector.t (ntype n) w) (n : ntype (S n)), P (bAllN n t n)) →
∀ p : ptype n, P p

Fact ntype_ind : ∀ (n : nat) (P : ntype n → Prop),
(∀ (f : fin w) (f0 : fin n), P (var_ntype n f f0)) →
(∀ p : ptype (S n), P (uAllN n p)) →
∀ n : ntype n, P n

Figure 6.2: Generated inductive principles.

We require an induction principle that combines both therefore it needs two pred-
icates, one for positive types P, and one for negative types Q. Additionally, the pos-
itive quantifier hypothesis of the new principle needs to traverse the vector con-
tainer. The mutual induction principle is given in Fig. 6.3. To show this stronger
induction principle we use a mutual size induction that can show the conjunction
of the two predicates. It needs to show P (respectively Q) by showing Q (resp. P)
for smaller types. See Fig. 6.4.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.psyntax.html#ptype

6.2. Size Unfolding 39

Fact ptype_ntype_mutind :
∀ (P : ∀ n : nat, ptype n → Prop) (Q : ∀ n : nat, ntype n → Prop),

(∀ (n : nat), P n (top n)) →
(∀ (n : nat) (t : Vector.t (ntype n) w) (s : ntype (S n)),
Q (S n) s → @Forall (ntype n) (Q n) _ t → P n (bAllN n t s)) →

(∀ (n : nat) (f : fin n) (f0 : fin w), Q n (var_ntype n f f0)) →
(∀ (n : nat) (p : ptype (S n)), P (S n) p → Q n (uAllN n p)) →
∀ n : nat, (∀ p : ptype n, P n p) ∧ (∀ n : ntype n, Q n n).

Figure 6.3: Custom mutually inductive principle. To give even more flexibility the
predicates are generalized to any scope.

Fact ptype_ntype_size_ind :
∀ (P : ∀ n, ptype n → Prop) (Q : ∀ n, ntype n → Prop),
(∀ n t, (∀ n’ s, nsize s < psize t → Q n’ s) → P n t) →
(∀ n t, (∀ n’ s, psize s < nsize t → P n’ s) → Q n t) →
∀ n : nat, (∀ t, P n t) ∧ (∀ s, Q n s).

Figure 6.4: Mutual size induction. It uses the size functions psize and nsize, which
count the number symbols.

However there is now a complication; applying the mutual inductive principle to a
constructor-headed term will not simplify to a useful term in general, because the
inductive principle is defined by size induction. Wewill explore how to handle this
issue in the next section.

6.2 Size Unfolding

In this sectionwewill studyhow to evaluate a recursion principle defined by size re-
cursion. The technique was suggested by Dominik Kirst for general size recursion,
however we present here a concrete example. Recall the definition of the syntax of
rows for rowing machines.

Definition 6.2 (Rows) For any w : N such that w > 0 the rows of width w are defined
by the following grammar:

ρ : Roww ::= xi | λx1,...,xw .〈ρ1, . . . , ρw〉 | Halt i ≤ w

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.psyntax.html#ptype_ntype_mutind
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.psyntax.html#ptype_ntype_size_ind
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.psyntax.html#psize
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.psyntax.html#nsize

40 Mechanization Artifacts

Once again the implementation uses a vector container for the body of the abstract
rows. The syntax is also well-scoped so the variables are again a pair of finite types.
The recursion principle generated automatically by Coq is again insufficient, it does
not traverse the vector argument.

Inductive row (n : nat) : Type :=
| var_row : fin w → fin n→ row n

| abst : Vector.t (row (S n)) w → row n

| halt : row n.

Figure 6.5: Implementation of the row syntax. The natural number w is a variable
of the section.

Fact row_rec : ∀ (n : nat) (P : row n → Type),
(∀ i j, P (var_row i j)) →
(∀ v, P (abst v)) →
P halt →
∀ r : row n, P r

Figure 6.6: Generated recursion principle.

Fact row_rec : ∀ (w : nat) (P : ∀ n, @row w n → Type),
(∀ n i j, P n (var_row i j)) →
(∀ n v, (∀ i, P (S n) v[i]) → P n (abst v)) →
(∀ n, P n halt) →
∀ n r, P n r.

Figure 6.7: Custom recursion principle.

The custom recursion principle is defined by straightforward size induction. There-
fore we have the issue that evaluating the principle will not produce useful terms
in general. We define the function in Fig. 6.8 to unfold the recursion and set the
recursion principle as opaque. To show the unfolding of the recursion principle we
need the general unfolding of size recursion which is given in Fig. 6.9.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.row.html#row
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.RM_facts.html#row_rec

6.3. Modularized Syntax 41

Fact row_rec_unfold {P w Hv Ha Hh n r} :
row_rec P w Hv Ha Hh n r = match r with

| var_row i j ⇒ Hv n i j

| abst v ⇒ Ha n v (fun i ⇒ row_rec P w Hv Ha Hh (S n) v[i])
| halt ⇒ Hh n end.

Figure 6.8: Unfolding of the recursion principle.

Fact row_size_rec (P : ∀ w m, @row w m → Type) : ∀ w m,
(∀ m x, (∀ m y, size y < size x → P w m y) → P w m x) →
∀ x, P w m x.

Fact row_size_rec_unfold {P w F m r} :
row_size_rec P w m F r = F m r (fun m s H ⇒ row_size_rec P w m F s).

Figure 6.9: General unfolding of size recursion. The proof of both of these facts is
by indution on size twith functional extensionality.

6.3 Modularized Syntax
There are several techniques for modular syntax supported by Coq, in particular
Coq à La Carte [19] offers a general purpose approach compatible with Autosubst
2. However, as the code was originally developed without modular syntax porting
it to the Coq à La Carte approach would involve rewriting most of it. We chose
a technique for modular syntax that allows to reuse as much code as possible, in-
spired by the technique used in the undecidability results of First Order Logic [23]
in the Undecidability Library, where formulas are considered with or without fal-
sity by means of a boolean flag.
Recall that in order to show that subtyping is undecidable the only constructions
needed are bounded quantification and the type> (See Fig. 6.10), howeverwithout
term abstraction such a type system has no terms at all. Therefore in order to show
the undecidability of type checking we have to consider arrow types as well (See
Fig. 6.11).
In order to give a single implementation for both syntax with and without arrow
typeswe give a definitionwith a boolean flag that the constructors pass accordingly
(See Fig. 6.12). The proofs about the systems with and without arrows are mostly
identical except for the extra case. Instead of duplicating proofs we define a gen-
eral system with the boolean flag as a variable and show the proofs in this system,
later instantiating the flag variable to obtain the specific results. We generalize the
Normal System (Definition 5.2) as it shares the same syntax (See Fig. 6.13).

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.RM_facts.html#row_rec_unfold

42 Mechanization Artifacts

Inductive type9 : Type :=
| var_type9 : N→ type9

| top : type9

| all : type9→ type9→ type9.

Inductive sub9 (Γ : list type9) : type9→ type9→ Prop :=
| Refl’ τ : Γ `9 τ <: τ
| Trans’ σ τ υ : Γ `9 σ <: τ → Γ `9 τ <: υ→ Γ `9 σ <: υ
| Top’ τ : Γ `9 τ <: top
| Var’ n : Γ `9 var_type9 n <: nth_default (var_type9 n) Γ n

| All’ σ1 σ2 τ1 τ2 : Γ `9 τ1 <: σ1→ map 〈↑〉 (τ1 :: Γ) `9 σ2 <: τ2 →
Γ `9 (all σ1 σ2) <: (all τ1 τ2)

where "Γ `9 σ <: τ " := (sub9 Γ σ τ).

Figure 6.10: Subtyping without arrows.

Inductive type→ : Type :=
| var_type→ : N→ type→

| top : type→

| arr : type→→ type→→ type→

| all : type→→ type→→ type→.

Inductive sub→ (Γ : list type→) : type→→ type→→ Prop :=
| Refl τ : Γ `→ τ <: τ
| Trans σ τ υ : Γ `→ σ <: τ → Γ `→ τ <: υ→ Γ `→ σ <: υ
| Top τ : Γ `→ τ <: top
| Var n : Γ `→ var_type→ n <: nth_default (var_type→ n) Γ n

| Arr σ1 σ2 τ1 τ2 : Γ `→ τ1 <: σ1→ Γ `→ σ2 <: τ2→ Γ `→ (arr σ1 σ2) <: (arr τ1 τ2)
| All σ1 σ2 τ1 τ2 : Γ `→ τ1 <: σ1→ map 〈↑〉 (τ1 :: Γ) `→ σ2 <: τ2→

Γ `→ (all σ1 σ2) <: (all τ1 τ2)
where "Γ `→ σ <: τ " := (sub→ Γ σ τ).

Figure 6.11: Subtyping with arrows.

Inductive arrow_flag := arrow_off | arrow_on.

Inductive type : arrow_flag→ Type :=
| var_type {b} : N→ type b

| top {b} : type b

| arr : type arrow_on → type arrow_on→ type arrow_on

| all {b} : type b → type b→ type b.

Figure 6.12: Unscoped syntax with boolean flag.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Fsub_na.html#sub'
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Fsub.html#sub
https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.Utils.syntax.html#type'

6.3. Modularized Syntax 43

Inductive subN : ∀ (b:arrow_flag), list (type b)→ type b→ type b→ Prop :=
| NRefl {b: arrow_flag} Γ n : Γ `N var_type n <: var_type n
| NVar {b: arrow_flag} Γ σ n : Γ `N nth_default (var_type n) Γ n <: σ→

Γ `N var_type n <: σ
| NTop {b: arrow_flag} Γ σ: Γ `N σ <: top
| NArr Γ σ1 σ2 τ1 τ2: Γ `N τ1 <: σ1→ Γ `N σ2 <: τ2→ Γ `N (arr σ1 σ2) <: (arr τ1 τ2)
| NAll {b: arrow_flag} Γ σ1 σ2 τ1 τ2: Γ `N τ1 <: σ1→ map 〈↑〉 (τ1 :: Γ) `N σ2 <: τ2→

Γ `N (all σ1 σ2) <: (all τ1 τ2)
where "Γ `N σ <: τ " := (subN _ Γ σ τ).

Figure 6.13: Normal subtyping with flag variable. Note how the arrow rule has no
boolean variable as it is automatically instantiated to arrow_on.

https://www.ps.uni-saarland.de/~alvarez/coq/FsubUndec.FsubN.html#subN

Chapter 7

Conclusion

Wegive amechanization of the proof of the undecidability of subtyping byPierce [33]
using the synthetic setting of the Coq Library of Undecidability Proofs [22]. The
machine-checked presentation differs in several aspects to the textbook presenta-
tion given by Pierce.
Instead of using named variables we use several implementations of de Brujin in-
dices [14] provided by the Autosubst 2 tool [40] for the different intermediate sys-
tems, as they have several useful properties that simplify the argument. Concretely,
well-scoped syntax (See Sect. 3.1) carry an upper bound to their type variables
which allows to efficiently reason about the construction that allows the substitu-
tion of the first bound introduced in a nonempty context along the rest of it (See
Sect. 5.1.3). Also, polyadic binders [40] (See Sect. 3.2) bind several type variables
at the same level, succinctly encoding the binders of the polarized syntax (See
Sect. 5.1.2) which classifies types by whether they are allowed to the left or to the
right of the subtyping relation. The combination of both these syntactic features
makes the encoding of the polarized syntax nontrivial, and in particular requires
the use of a bounded variant of extensionality in order to show that the encoding is
well behaved (See Ch. 3). Finally, we omit one of Pierce’s intermediate subtyping
systems namely the polarized system FP6: as the original system is not a conserva-
tive extension of it and it only serves to introduce the polarized syntax and the flip
operation into the subtyping rules. Instead we introduce these features in the next
system in the chain; the deterministic system FD6:.
Although not a goal of this work one of the presented mechanized results con-
stitutes half of the first part of the POPLmark challenge [1], that is, the proof of
transitivity of the algorithmic subtype relation given here as Lemma 5.4. The math-
ematical argument of our proof is largely inspired by the proof given by Stark [39],
who also gives the rest of Part 1 of the challenge, however we focus on how the
proof fits in the chain of reductions that comprises the main result of this thesis
and it is therefore slightly more convoluted.

46 Conclusion

Finally, we describe some techniques that allow towrite themachine-checked proof
in a succinct manner although unrelated to the mathematical argument. In partic-
ular we give some inductive and recursive principles stronger than the ones pro-
duced automatically by the Coq proof assistant, in addition to a result that unfolds
size recursion when applied to a constructor-headed term. Lastly, we give an im-
plementation of syntax that allows to turn off specific syntactic constructors via a
boolean flag.
7.1 Future Work
There are two results known to us that are consequences of Pierce’s proof and are
yet to be mechanized in Coq and can become future contributions to the Coq Li-
brary of Undecidability Proofs.
Wehr and Thiemann [44] use the undecidability of subtyping in the deterministic
system (See Def. 5.7) to show the undecidability of subtyping bounded existential
types, where the existentially quantified variable has either a lower or upper type
bound. Their proof encodes the contravariance of bounded quantification using
lower type bounds, however the proof relies on several syntactic invariants that
turned out difficult to mechanize.
Hu and Lhotak [27] use the undecidability of subtyping in the normal system (See
Def. 5.2) to show the undecidability of type checking and subtyping in the De-
pendant Object Types calculus. They use a similar technique to Pierce defining a
variant of the type system without the general transitivity rule. Their proof is al-
ready mechanized in Agda so the Coq port should not be too complicated, it was
not included in the present work due to time limitations.

Bibliography

[1] Brian Aydemir, Aaron Bohannon, Matthew Fairbairn, Nathan Foster,
Benjamin Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn,
Stephanie Weirich, and Steve Zdancewic. Mechanized metatheory for the
masses: The PoplMark challenge. In Lecture Notes in Computer Science, vol-
ume 3603, pages 50–65, 2005. doi: 10.1007/11541868_4.

[2] Henk Barendregt. Introduction to generalized type systems. Journal of
Functional Programming, 1(2):125–154, apr 1991. ISSN 0956-7968. doi:
10.1017/S0956796800020025.

[3] Andrej Bauer. First Steps in Synthetic Computability Theory. Electronic
Notes in Theoretical Computer Science, 155(1 SPEC. ISS.):5–31, may 2006. ISSN
15710661. doi: 10.1016/j.entcs.2005.11.049.

[4] Andrej Bauer. On fixed-point theorems in synthetic computability. Tbil-
isi Mathematical Journal, 10(3):167–181, jun 2017. ISSN 1875-158X. doi:
10.1515/tmj-2017-0107.

[5] Stefan Berghofer. A Solution to the PoplMark Challenge Using de Bruijn In-
dices in Isabelle/HOL. Journal of Automated Reasoning 2011 49:3, 49(3):303–
326, jun 2011. ISSN 1573-0670. doi: 10.1007/S10817-011-9231-4.

[6] Richard Bird and Ross Paterson. De Bruijn notation as a nested datatype.
Journal of Functional Programming, 9(1):77–91, 1999. ISSN 09567968. doi:
10.1017/S0956796899003366.

[7] Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics.
In Varieties of Constructive Mathematics. Cambridge University Press, apr 1987.
ISBN 9780521318020. doi: 10.1017/CBO9780511565663.

[8] Luca Cardelli. A semantics of multiple inheritance. Information and Computa-
tion, 76(2-3), 1988. ISSN 10902651. doi: 10.1016/0890-5401(88)90007-7.

[9] Luca Cardelli and Peter Wegner. On understanding types, data abstraction,

https://doi.org/10.1007/11541868_4
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.1016/j.entcs.2005.11.049
https://doi.org/10.1515/tmj-2017-0107
https://doi.org/10.1515/tmj-2017-0107
https://doi.org/10.1007/S10817-011-9231-4
https://doi.org/10.1017/S0956796899003366
https://doi.org/10.1017/S0956796899003366
https://doi.org/10.1017/CBO9780511565663
https://doi.org/10.1016/0890-5401(88)90007-7

48 Bibliography

and polymorphism. ACM Computing Surveys (CSUR), 17(4):471–523, 1985.
ISSN 15577341. doi: 10.1145/6041.6042.

[10] Arthur Charguéraud. A Solution to part 1A of the POPLmark Chal-
lenge. 2006. URL: http://www.chargueraud.org/research/2006/poplmark/
solution_2/documentation.pdf.

[11] Alberto Ciaffaglione and Ivan Scagnetto. A weak HOAS approach to the
POPLmark Challenge. Electronic Proceedings in Theoretical Computer Science,
113:109–124, mar 2013. doi: 10.4204/EPTCS.113.11.

[12] Thierry Coquand and Christine Paulin. Inductively defined types. In Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), volume 417 LNCS, pages 50–66.
Springer, Berlin, Heidelberg, dec 1990. ISBN 9783540523352. doi: 10.1007/3-
540-52335-9_47.

[13] Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption, mini-
mum typing and type-checking in F <:. Mathematical Structures in Computer
Science, 2(1):55–91, 1992. ISSN 0960-1295. doi: 10.1017/S0960129500001134.

[14] Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dum-
mies, a tool for automatic formula manipulation, with application to the
Church-Rosser theorem. Indagationes Mathematicae (Proceedings), 75(5):381–
392, 1972. ISSN 13857258. doi: 10.1016/1385-7258(72)90034-0.

[15] Marco Dicolla. A solution of POPLMark Challenge with VCPT. 2009. URL:
https://www.politesi.polimi.it/bitstream/10589/2228/3/Master_

thesis.pdf.
[16] Andrej Dudenhefner. Constructive Many-One Reduction from the Halt-

ing Problem to Semi-Unification. In Leibniz International Proceedings
in Informatics, LIPIcs, volume 216, 2022. ISBN 9783959772181. doi:
10.4230/LIPIcs.CSL.2022.18.

[17] Andrej Dudenhefner and Jakob Rehof. A simpler undecidability proof for
system F inhabitation. Leibniz International Proceedings in Informatics, LIPIcs,
130, nov 2019. ISSN 18688969. doi: 10.4230/LIPICS.TYPES.2018.2.

[18] Yannick Forster and Fabian Kunze. A Certifying Extraction with Time
Bounds from Coq to Call-By-Value Lambda Calculus. In 10th International
Conference on Interactive Theorem Proving (ITP 2019), volume 141 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 17:1—-17:19. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. ISBN 978-3-95977-122-1.
doi: 10.4230/LIPIcs.ITP.2019.17.

https://doi.org/10.1145/6041.6042
http://www.chargueraud.org/research/2006/poplmark/solution_2/documentation.pdf
http://www.chargueraud.org/research/2006/poplmark/solution_2/documentation.pdf
https://doi.org/10.4204/EPTCS.113.11
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1017/S0960129500001134
https://doi.org/10.1016/1385-7258(72)90034-0
https://www.politesi.polimi.it/bitstream/10589/2228/3/Master_thesis.pdf
https://www.politesi.polimi.it/bitstream/10589/2228/3/Master_thesis.pdf
https://doi.org/10.4230/LIPIcs.CSL.2022.18
https://doi.org/10.4230/LIPIcs.CSL.2022.18
https://doi.org/10.4230/LIPICS.TYPES.2018.2
https://doi.org/10.4230/LIPIcs.ITP.2019.17

Bibliography 49

[19] Yannick Forster and Kathrin Stark. Coq à La Carte: A Practical Approach
to Modular Syntax with Binders. In Proceedings of the 9th ACM SIGPLAN In-
ternational Conference on Certified Programs and Proofs, CPP 2020, pages 186–
200, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450370974. doi: 10.1145/3372885.3373817.

[20] Yannick Forster, Edith Heiter, and Gert Smolka. Verification of PCP-Related
Computational Reductions in Coq. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), 10895 LNCS:253–269, jul 2018. ISSN 16113349. doi: 10.1007/978-3-319-
94821-8_15.

[21] Yannick Forster, DominikKirst, andGert Smolka. On synthetic undecidability
in Coq, with an application to the Entscheidungsproblem. In Proceedings of
the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs
- CPP 2019, pages 38–51, New York, New York, USA, jan 2019. ACM Press.
ISBN 9781450362221. doi: 10.1145/3293880.3294091.

[22] Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith
Heiter, Dominik Kirst, Fabian Kunze, Gert Smolka, Simon Spies, Dominik
Wehr, MaximilianWuttke, and Dominique Larchey-wendling. A Coq Library
of Undecidable Problems. CoqPL 2020 The Sixth International Workshop on Coq
for Programming Languages, pages 1–23, 2020. URL: https://hal.inria.fr/
INRIA/hal-02944217v1.

[23] Yannick Forster, Dominik Kirst, and Dominik Wehr. Completeness theorems
for first-order logic analysed in constructive type theory: Extended version.
Journal of Logic and Computation, 31(1):112–151, 2021. ISSN 0955-792X. doi:
10.1093/logcom/exaa073.

[24] Giorgio Ghelli. Proof Theoretic Studies about a Minimal Type System Integrating
Inclusion and Parametric Polymorphism. PhD thesis, 1990.

[25] Giorgio Ghelli. Divergence of F<: type checking. Theoretical Computer Science,
139(1-2):131–162, 1995. ISSN 03043975. doi: 10.1016/0304-3975(94)00037-J.

[26] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Thèse d’état, Université Paris VII, 1972. URL:
https://www.cs.cmu.edu/\simkw/scans/girard72thesis.pdf.

[27] Jason Hu and Ondrej Lhoták. Undecidability of D <: and Its Decidable Frag-
ments. Proceedings of the ACM on Programming Languages, 4(POPL), 2020. doi:
10.1145/3371077.

https://doi.org/10.1145/3372885.3373817
https://doi.org/10.1007/978-3-319-94821-8_15
https://doi.org/10.1007/978-3-319-94821-8_15
https://doi.org/10.1145/3293880.3294091
https://hal.inria.fr/INRIA/hal-02944217v1
https://hal.inria.fr/INRIA/hal-02944217v1
https://doi.org/10.1093/logcom/exaa073
https://doi.org/10.1093/logcom/exaa073
https://doi.org/10.1016/0304-3975(94)00037-J
https://www.cs.cmu.edu/$\sim $kw/scans/girard72thesis.pdf
https://doi.org/10.1145/3371077
https://doi.org/10.1145/3371077

50 Bibliography

[28] Xavier Leroy. A locally nameless solution to the POPLmark challenge. Tech-
nical Report 6098, 2007. URL: https://hal.inria.fr/inria-00123945/.

[29] Barbara H. Liskov and Jeannette M.Wing. A Behavioral Notion of Subtyping.
ACM Transactions on Programming Languages and Systems (TOPLAS), 16(6):
1811–1841, 1994. ISSN 15584593. doi: 10.1145/197320.197383.

[30] Marvin Lee Minsky. Computation: Finite and Infinite Machines., volume 75.
apr 1968. ISBN 978-0-13-165563-8. URL: https://dl.acm.org/doi/book/10.
5555/1095587.

[31] Christine Paulin-Mohring. Introduction to the Calculus of Inductive Con-
structions. In All about Proofs, Proofs for All, volume 55. College Publications,
2015. ISBN 9781848901667. URL: https://hal.inria.fr/hal-01094195.

[32] Benjamin Pierce. Types and Programming Languages. MIT Press. ISBN 0-262-
16209-1.

[33] Benjamin Pierce. Bounded Quantification Is Undecidable. Informa-
tion and Computation, 112(1):131–165, jul 1994. ISSN 08905401. doi:
10.1006/inco.1994.1055.

[34] Emil Post. A variant of a recursively unsolvable problem. Bulletin of the
American Mathematical Society, 52(4):264–268, 1946. ISSN 0273-0979. doi:
10.1090/S0002-9904-1946-08555-9.

[35] John Reynolds. Towards a theory of type structure. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), volume 19 LNCS, pages 408–425. Springer, Berlin,
Heidelberg, 1974. ISBN 9783540068594. doi: 10.1007/3-540-06859-7_148.

[36] John Reynolds. Using category theory to design implicit conversions and
generic operators. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol-
ume 94 LNCS, pages 211–258. Springer, Berlin, Heidelberg, 1980. ISBN
9783540102502. doi: 10.1007/3-540-10250-7_24.

[37] Fred Richman. Church’s thesis without tears. Journal of Symbolic Logic, 48(3):
797–803, 1983. ISSN 0022-4812. doi: 10.2307/2273473.

[38] Simon Spies and Yannick Forster. Undecidability of higher-order unification
formalised in Coq. In Proceedings of the 9th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, pages 143–157, NewYork, NY, USA, jan
2020. ACM. ISBN 9781450370974. doi: 10.1145/3372885.3373832.

https://hal.inria.fr/inria-00123945/
https://doi.org/10.1145/197320.197383
https://dl.acm.org/doi/book/10.5555/1095587
https://dl.acm.org/doi/book/10.5555/1095587
https://hal.inria.fr/hal-01094195
https://doi.org/10.1006/inco.1994.1055
https://doi.org/10.1006/inco.1994.1055
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-10250-7_24
https://doi.org/10.2307/2273473
https://doi.org/10.1145/3372885.3373832

Bibliography 51

[39] Kathrin Stark. Mechanising Syntax with Binders in Coq. PhD thesis, 2019. doi:
10.22028/D291-30298.

[40] Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: Reasoning with
multi-sorted de Bruijn terms and vector substitutions. In CPP 2019 - Proceed-
ings of the 8th ACM SIGPLAN International Conference on Certified Programs and
Proofs, Co-located with POPL 2019, pages 166–180, New York, New York, USA,
2019. ACM Press. ISBN 9781450362221. doi: 10.1145/3293880.3294101.

[41] Aaron Stump. POPLmark 1a with Named Bound Variables. Technical report,
Washington University in St. Louis, 2005. URL: https://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.521.5740&rep=rep1&type=pdf.

[42] The Coq Development Team. The Coq Proof Assistant. 2022. doi:
10.5281/ZENODO.5846982.

[43] JérǒmeVouillon. A Solution to the PoplMarkChallenge Based on de Bruijn In-
dices. Journal of Automated Reasoning 2011 49:3, 49(3):327–362, jun 2011. ISSN
1573-0670. doi: 10.1007/S10817-011-9230-5.

[44] Stefan Wehr and Peter Thiemann. On the decidability of subtyping with
bounded existential types. In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 5904 LNCS, pages 111–127, 2009. ISBN 3642106714. doi: 10.1007/978-
3-642-10672-9_10.

[45] Stefan Wehr, Ralf Lämmel, and Peter Thiemann. JavaGI: Generalized inter-
faces for Java. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4609 LNCS:
347–372, 2007. ISSN 16113349. doi: 10.1007/978-3-540-73589-2_17.

https://doi.org/10.22028/D291-30298
https://doi.org/10.22028/D291-30298
https://doi.org/10.1145/3293880.3294101
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.521.5740&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.521.5740&rep=rep1&type=pdf
https://doi.org/10.5281/ZENODO.5846982
https://doi.org/10.5281/ZENODO.5846982
https://doi.org/10.1007/S10817-011-9230-5
https://doi.org/10.1007/978-3-642-10672-9_10
https://doi.org/10.1007/978-3-642-10672-9_10
https://doi.org/10.1007/978-3-540-73589-2_17

	Introduction
	Subtyping Problem
	Synthetic Undecidability
	Related Work

	Preliminaries
	Synthetic Undecidability

	Aspects of de Brujin Syntax
	Well-scoped and Unscoped Syntaxes
	Encoding

	Polyadic Binders
	Encoding

	Machine Models
	Two-counter Machines
	Rowing Machines
	Undecidability

	Subtyping and Type checking
	Variants of System F:
	Syntax-directed Subtyping
	Polarized Syntax
	Eager Substitution

	Undecidability of Subtyping
	Undecidability of Type Checking

	Mechanization Artifacts
	Custom Induction Principles
	Size Unfolding
	Modularized Syntax

	Conclusion
	Future Work

	Bibliography

