Proof by Reflection and Automation for Boolean Logic

Initial Bachelor Seminar Talk

Alexander Anisimov

Advisers: Christian Doczkal, Gert Smolka

Supervisor: Gert Smolka

Proof by reflection

- reification
- reflection
- decision procedure
- Analysis
 - proof terms
 - runtime

Proof by reflection¹

- translate propositions into terms of an inductive type
 - abstraction from the initial problem
 - so called reification
- run a certified decision procedure
- translate the term back
 - i.e. prove, that the abstraction was correctly chosen
 - so called reflection

¹ as explained by Adam Chlipala

Example: Boolean tautology solver

- why a tautology solver?
 - many boolean goals when working with Ssreflect
- why reflection?
 - constant overhead in proof terms
 - often faster in practice

- Proof by reflection
 - reification
 - reflection
 - decision procedure
- Analysis
 - proof terms
 - runtime

Reification

elimination of implication and equivalence (rewrite)

```
(a ==> b) = (~~ a || b)

(a == b) = (a && b) || (~~ a && ~~ b)
```

computational representation

```
Inductive term :=
    | Var of nat
    | TT
    | FF
    | And of term & term
    | Or of term & term
    | Not of term.
```

Reification

- atomic expressions
 - collected in a dupfree list
 - mapped to variables by their position

- addToList prevents duplicates
- handles everything, that can't be analized further

Reification

```
Ltac reify vars b :=
  match b with
    | true => constr:(TT)
    | ?A && ?B =>
        let s := reify vars A in
        let t := reify vars B in
        constr:(And s t)
    | ...
    | _ =>let n := lookup b vars in constr:(Var n)
    end.
```

- lookup maps a list element to its position by syntactic equality
 - unique mapping for a dupfree list

- Proof by reflection
 - reification
 - reflection
 - decision procedure
- Analysis
 - proof terms
 - runtime

Reflection

- restore the boolean term
 - structure as in the computational representation
 - variables are mapped back to the atomic terms via their positions

The connection between Reification and Reflection

Reification

- bool ~> term
- in Ltac
- no proofs
- Reflection
 - term ~> bool
 - in Gallina
 - proof, that the reification was correct

```
vars := allVars nil b
s := reify vars b
phi := nth false vars
```

denote phi s = b

- Proof by reflection
 - reification
 - reflection
 - decision procedure
- Analysis
 - proof terms
 - runtime

Decision procedure shandec

- Shannon Expansion:
 - s is a tautology iff.

```
tautology \ s_{true}^{x} \wedge tautology \ s_{false}^{x} for any variable x in s
```

- branching on variables instead of operators
- Approach
 - repeated Shannon expansion
 - simplify as far as possible before every branch

The final tactic

correctness proof of the decision procedure

```
Lemma shandec_denote s phi:
    shandec s = true -> denote phi s = true.
```

altogether

```
Ltac shannex :=
  match goal with
  | [ |- ?G = true] =>
    let vars := allVars nil G in
    let s := reify vars G in
    exact (shandec_denote
        s
        (fun n => nth false vars n)
        (eq_refl true) (* shandec s = true *)
    )
    end.
```

- Proof by reflection
 - reification
 - reflection
 - decision procedure
- Analysis
 - proof terms
 - runtime

firstorder Proof Term

Example E00 a b: $\sim \sim ((a \ \ \ \ \ \) \ \ \ \ \ \ \ \ \))$. firstorder. Show Proof. Qed. $(fun (a b : Prop) (H : ~ ((a \/ ~ a) /\ (b \/ ~ b))) =>$ (fun H0 : $a // \sim a \rightarrow b // \sim b \rightarrow False \Rightarrow$ (fun (H1 : a -> b) / ~ b -> False) (H2 : ~ a -> b) / ~ b -> False) =>(fun $H3 : b \ / \sim b \rightarrow False \Rightarrow$ (fun $H4 : b \ / \sim b \rightarrow False \Rightarrow$ (fun (H5 : b -> False) (H6 : ~ b -> False) => (fun H7 : False => H7) (H6 H5)) (fun H5 : b => H4 (or introl H5)) $(fun H5 : ~b \Rightarrow H4 (or intror H5))) H3)$ ((fun $H3 : a \rightarrow False \Rightarrow H2 H3)$ ((fun (: False \rightarrow b \/ \sim b \rightarrow False) (H4 : a) => (fun $H5 : b \ / \sim b \rightarrow False \Rightarrow$ (fun (H6 : b -> False) (H7 : ~ b -> False) => (fun H8 : False => H8) (H7 H6)) (fun H6 : b => H5 (or introl H6)) (fun H6 : ~ b => H5 (or_intror H6))) (H1 H4)) (fun H3 : False => H2 (fun _ : a => H3))))) (fun H1 : a => H0 (or_introl H1)) (fun H1 : ~ a => H0 (or_intror H1))) (fun (H0 : a // ~ a) (H1 : b // ~ b) => H (conj H0 H1)))

shandec Proof Terms

```
Example E01 a b: ((a || ~~ a) && (b || ~~ b)).
shannex. Show Proof. Qed.

(fun a b : bool =>
    shandec_denote
      (fun n : nat => nth false [:: b; a] n)
      (And (Or (Var 1) (Not (Var 1)))
            (Or (Var 0) (Not (Var 0))))
      (eqxx (T:=bool_eqType) true))
```

- Proof by reflection
 - reification
 - reflection
 - decision procedure
- Analysis
 - proof terms
 - runtime

Comparison with tauto & firstorder

<u>formula</u>		<u>shannex</u>	<u>tauto</u>	<u>firstorder</u>
$\bigwedge_{i=1}^{n} (a_i \vee \neg a_i)$	n = 40	0.5	2.4	1.9
	n = 60	0.7	8.4	3.3
	n = 90	2.1	36.2	10.7
$\left(\bigwedge_{i=0}^{n} \left(a_{i} \rightarrow a_{i+1}\right) \wedge \left(\neg a_{i} \rightarrow a_{i+1}\right)\right) \rightarrow a_{n+1}$	n = 30	3.4	3.6	1.4
	n = 45	10.1	13.6	4.9
	n = 60	23.7	36.1	10.2
$(a_0 \land \bigwedge_{i=1}^n a_{i-1} \rightarrow a_i) \rightarrow a_n$	n = 30	1.2	0.8	0.7
	n = 60	6.1	4.8	4.3
	n = 90	21.7	18.9	15.4
$(a_0 \land \bigwedge_{i=1}^n a_{i-1} \rightarrow a_i) \rightarrow b$	n = 30	1.5	0.9	1.6
	n = 60	8.0	4.7	9.8
	n = 90	27.9	19.4	38.1

Possible improvement

- branch on the variables that occur the most often
 - for each variable, track the number of its occurrences in a sorted dupfree list
 - in most cases this bookkeeping takes more time than one gains
- split conjunctions
 - faster recognition of non-tautologies
- alternative approach
 - exploit the fact that $tautology \ s \Leftrightarrow \neg sat(\neg s)$
 - use efficient satsolver techniques

Source

Adam Chlipala

Certified Programming with Dependent Types (2014)

chapter 15

http://adam.chlipala.net/cpdt/