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Proof by reflection?

 translate propositions into terms of an
Inductive type

- abstraction from the initial problem
- so called reification

* run a certified decision procedure

e translate the term back

- l.e. prove, that the abstraction was correctly chosen
- so called reflection

1 as explained by Adam Chlipala
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Example:
Boolean tautology solver

 why a tautology solver?

- many boolean goals when working with
Ssreflect

 why reflection?

- constant overhead in proof terms
- often faster in practice
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Reification

« elimination of implication and
equivalence (rewrite)

(a

==> b) = (~~ a || b)

(a

== Db) = (a && b) || (~~ a && ~~ b)

« computational representation

Inductive term :=

Var of nat

TT

FF

And of term & term
Or of term & term
Not of term.
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Reification
e atomic expressions

- collected in a dupfree list
- mapped to variables by their position

e [ Ltac allVars xs e :=
match e with

| true => xs

| ?el && ?e2 =>

let xs := allVars xs el in allVars xs e2

| ...
| _ => addToList e xs
end.

« addToList prevents duplicates

 handles everything, that can't be analized further
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Reification

e [Ltac reify vars b :=
match b with
| true => constr: (TT)
| ?A && ?B =>
let s := reify wvars A in
let t := reify vars B in
constr: (And s t)

end.

| _ =>let n := lookup b vars in constr: (Var n)

* lookup maps a list element to its position by
syntactic equality

- unigue mapping for a dupfree list

Feb. 20. 2015 Saarland University, Programming
Systems Lab



Outline

* Proof by reflection
- reification
- reflection
- decision procedure
« Analysis
- proof terms
- runtime

Feb. 20. 2015 Saarland University, Programming
Systems Lab



Reflection

e restore the boolean term

- structure as in the computational representation

- variables are mapped back to the atomic terms
via their positions

Definition denote (phi : nat -> bool) :=

fix denote s :=

match s with
| Var x => phi x

TT => true
FF => false
And s t => denote s && denote t
Or s £t => denote s || denote t
Not s => ~~ denote s

|

I

I

|

|
end.
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The connection between
Reification and Reflection

 Reification

vars := allVars nil b
- bool ~> term

s :=reify vars b

- in Ltac phi := nth false vars
- No proofs _
_ denote phis=b
« Reflection

- term ~> bool
- In Gallina

- proof, that the
reification was correct
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Decision procedure shandec

 Shannon Expansion:
- s Is a tautology iff.

X
true

tautology s,.. N tautology Si,.
for any variable x in s

- branching on variables instead of operators
« Approach

- repeated Shannon expansion
- simplify as far as possible before every branch
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The final tactic

e correctness proof of the decision procedure

Lemma shandec_denote s phi:
shandec s = true —> denote phi s = true.

e altogether

Ltac shannex :=
match goal with
| [ |- ?G = true] =>
let wvars := allVars nil G in
let s := reify wvars G in
exact (shandec_ denote
s
(fun n => nth false wvars n)
(eq _refl true) (* shandec s = true ¥*)

)

end.
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firstorder Proof Term

Example E00 a b: ~ ~ ((a \/ ~a) /\ (b \/ ~ Db)).
firstorder. Show Proof. Qed.

(fun (a b : Prop) (H : ~ ((a \/ ~a) /\ (b \/ ~Db))) =>
(fun HO : a \/ ~a -> b \/ ~ b -> False =>
(fun (H1 : a -=> b \/ ~ b —> False) (H2 : ~a -> b \/ ~ b -> False) =>
(fun H3 : b \/ ~ b -> False =>
(fun H4 : b \/ ~ b —> False =>
(fun (H5 : b —> False) (H6 : ~ b —> False) =>
(fun H7 : False => H7) (H6 H5)) (fun H5 : b => H4 (or_introl H5))

(fun H5 : ~ b => H4 (or_intror H5))) H3)
((fun H3 : a -> False => H2 H3)
((fun (_ : False -—> b \/ ~ b -> False) (H4 : a) =>

(fun H5 : b \/ ~ b -> False =>
(fun (H6 : b —> False) (H7 : ~ b —> False) =>

(fun H8 : False => H8) (H7 H6)) (fun H6 : b => H5 (or_introl H6))
(fun H6 : ~ b => H5 (or_intror H6))) (H1 H4))
(fun H3 : False => H2 (fun _ : a => H3)))))

(fun Hl1 : a => HO (or_introl Hl1l)) (fun H1l : ~ a => HO (or_intror H1l)))
(fun (HO : a \/ ~a) (H1 : b \/ ~b) => H (conj HO H1)))
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shandec Proof Terms

Example EOl1 a b: ((a || ~~ a) && (b || ~~ b)).

shannex. Show Proof. Qed.

(fun a b : bool =>
shandec_denote
(fun n : nat => nth false [:: b; a] n)
(And (Or (Var 1) (Not (Var 1)))
(Or (Var 0) (Not (Var 0))))
(egxx (T:=bool_eqType) true))
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Comparison with tauto &

firstorder
formula shannex tauto  firstorder
. n = 40 0.5 2.4 1.9
(a,v—a,) n = 60 0.7 8.4 3.3
(=1 n =90 2.1 36.2 10.7
) n =30 3.4 3.6 1.4
(A (a>a,,)A(-a>a,,))>a,,, n=4as 10.1 13.6 4.9
=0 n =60 23.7 36.1 10.2
) n = 30 1.2 0.8 0.7
(@agn A\ a;i_12a;)=a, n = 60 6.1 4.8 4.3
i=1 n = 90 21.7 18.9 15.4
n n =30 1.5 0.9 1.6
(agn N\ a;_12 ;)b n =60 8.0 4.7 9.8
=1 n =90 27.9 19.4 38.1
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Possible improvement

e branch on the variables that occur the most often

- for each variable, track the number of its occurrences in a
sorted dupfree list

- In most cases this bookkeeping takes more time than one
gains

 split conjunctions
- faster recognition of non-tautologies
 alternative approach

- exploit the fact that tautology s < -sat(-s)
- use efficient satsolver techniques
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Source

Adam Chlipala

Certified Programming with Dependent Types
(2014)

chapter 15
http://adam.chlipala.net/cpdt/
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