
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelor’s Thesis

Proof Automation for Typed
Finite Sets

submitted by
Alexander Anisimov

submitted on
August 27, 2015

Supervisor
Prof. Dr. Gert Smolka

Advisor
Christian Doczkal, M.Sc.

Reviewers
Prof. Dr. Gert Smolka

Prof. Bernd Finkbeiner, Ph.D.

1

Declarations

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwen-
det habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Ver-
sionen in die Bibliothek der Informatik aufgenommen und damit veröffentlicht
wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Saarbrücken,
Datum/Date Unterschrift/Signature

2

Abstract

In this thesis we aim to provide proof automation for typed finite sets. To this
intent, we consider three tableau calculi describing increasingly large fragments
of set theory. The first one allows for reasoning about the basic set structures
(∪, \, {·}, ∅) and relations. We prove total correctness for it. Our second calculus
extends the first one by a powerset operator. It is still terminating, but we are
not able to prove completeness anymore. The third calculus is even stronger and
can express not only powersets but also separations. This system is no longer
terminating. The decidability of the corresponding fragment of ZF set theory
with untyped and possibly infinite sets is an open problem. So, it is likely that
the decidability of our fragment is open, too.

For the full system we provide an implementation in Coq/Ssreflect. We
consider the alternatives of a direct implementation in Ltac and a proof by
computational reflection. The latter is appealing as it is often very efficient in
practice. Studying it, we implement a naive decider for boolean tautologies and
compare it with the standard automation tactics. But, as reflection requires
at least termination, we stick to a direct implementation in Ltac for our set
automation.

3

Acknowledgements

I would like to thank my advisor Christian Doczkal who invested an incredible
amount of time and effort guiding me through the process of writing my thesis.
I am grateful for his support, his helpful advice and the fruitful discussions that
made a remarkable contribution to the competition of this work.

Moreover, I would like to thank my supervisor Prof. Gert Smolka for the
two intriguing lectures ’Introduction to Computational Logic’ and ’Semantics’
that awakened my interest in the topic of computational logic. I am thankful for
the possibility to write this thesis and for his support in the course this project.

I would like express my gratitude to Prof. Gert Smolka and Prof. Bernd
Finkbeiner for reviewing this thesis.

Lastly, I would like to thank my family for their great support and uncon-
ditional understanding during the last year.

4

Contents

1 Introduction 7
1.1 About this thesis . 7
1.2 Related Work . 8

2 Automated Proof Search in Coq 10
2.1 The Coq Basics . 10

2.1.1 Gallina . 10
2.1.2 Ltac . 11

2.2 Ltac vs. Reflection . 11
2.3 The Structure of a Proof by Reflection 12

3 shandec: Reflective Proof Automation for Boolean Logic 14
3.1 Boolean Logic in Ssreflect . 14
3.2 Implementation of shandec . 14

3.2.1 Step 1: Preparing the goal 15
3.2.2 Step 2: Reification . 15
3.2.3 Step 3: Decision Procedure 16
3.2.4 Step 4: Reflection . 17
3.2.5 Final Tactic . 17

3.3 Comparison of shandec with Standard Automation Tactics . . . 18
3.3.1 Proof Terms . 18
3.3.2 Runtime . 19

4 Analytic Tableaux for Typed Finite Sets 21
4.1 Set Representation and Interpretation 21
4.2 Basic System . 22

4.2.1 Ruleset . 23
4.2.2 Termination . 25
4.2.3 Completeness . 28

4.3 Powerset Extension . 33
4.3.1 Differences in Language and Ruleset 33
4.3.2 Termination . 34
4.3.3 Possible Incompleteness 35

4.4 Separation Extension . 35
4.4.1 Differences in Language and Ruleset 35
4.4.2 Divergence . 36

4.5 Downwards Compatibility of the Systems 36

5

5 Implementation 38
5.1 Why Ltac? . 38
5.2 Structure . 38
5.3 Examples . 40

6

Chapter 1

Introduction

1.1 About this thesis

The goal of the present thesis is to provide proof automation for set-theoretical
reasoning. We will base our development on an fset library [3] which imple-
ments typed finite sets. It is formalized in Coq/Ssreflect. All concepts of Coq,
Ssreflect and fset required to understand the presented ideas will be explained
upfront. For the moment it suffices to know that Coq is a higher-order logic
proof assistant and bases on constructive type theory. The language used to
define objects inside its logic is called Gallina. In this language one can only
express terminating functions. In order to reason about its logic from outside,
Coq uses an untyped functional language called Ltac. In contract to Gallina,
in Ltac one can also write nonterminating programs. Ssreflect is a plug-in for
Coq and comes with an amount of useful libraries. In the last few years it has
become increasingly prominent. Although it makes extensive use of boolean
properties, to the best of our knowledge, there is very little proof automation
for it.

Therefore, we decided to investigate this area before starting the set-theoretical
part. After all, the fset library is formalized in Ssreflect and hence, requires
propositional reasoning, too. Moreover, this investigation gives us the possibil-
ity to study a technique called proof by computational reflection based on an
example relevant for our purposes. The basic idea, as it is described by Chli-
pala [1] and Boutin [2], is to take as proof the decision of a certified Gallina
procedure. Due to the constant size proof terms it produces, this technique is
often highly efficient in practice. It is hence a natural thing to ask, whether it
can be applied to the set-theoretical part, too, and what we would need to do
so.

Our approach for the set-theoretical part is to design a hierarchy of three
tableau systems for finite typed sets. The first system treats the empty set,
a denumerable set of variables, singletons, unions and intersections. For this
tableau we prove termination and completeness implying that every saturation
strategy on it is a decision procedure. Up to this point, a reflective proof ap-
proach would be perfectly fine. Our second tableau subsumes the first one and
extends it by the powerset operator. The resulting system is strictly stronger.
With some minor changes we can carry over the proof of termination but the

7

proof of completeness breaks. In a setting with untyped and infinite sets, there
are still complete and terminating tableau systems for this fragment of set the-
ory. However, the proof of completeness is then highly involved. Still, for our
fragment we could use proof by reflection as it only requires termination. But,
the fragment we are interested in is even larger. The third tableau extends the
second one by the separation operator i.e. we can reason about sets of the form
{x ∈ A | px} for some set A and some predicate p. We will show that this allows
for diverging saturation strategies. Making use of such constructs, the language
of the third system is able to express typed universal quantifiers. According
to [7] the decidability of an untyped fragment of set theory with infinite sets,
capable of expressing universal quantification is an open problem. It is not com-
pletely clear whether the typed finite setting is really easier than this. In fact,
our setting may even turn out to be harder than the one with the untyped and
infinite sets. A prominent example for such a case is the validity of first order
logic. While the general setting is semi-decidable its restriction to finite models
is not.

Based on these three tableaux we develop a proof search algorithm and
implement it in Ltac. Our goal in doing so is to provide an elegant and easy
to use solution for set theoretical reasoning. Most of the work currently done
considers general sets, i.e. untyped and possibly infinite. But as typing plays
an important role in automated provers and proof assistants, it is worthwhile
considering this special case. The fset library of Christian Doczkal [3] aims to
provide a toolkit for this kind of reasoning and will serve for us as background
theory.

1.2 Related Work

The majority of the papers on proof automation in set theory use the language of
Multilevel Syllogistic introduced originally by Ferro et al. [4] or some extension
of it. The most prominent extension is the so called Multilevel Syllogistic with
Singletons (MLSS) which was already suggested in the original paper. The
Syllogistic treats untyped sets and admits infinite ones. The terms that can
be expressed by MLSS consist of the empty set, a denumerable set of variables
and constructors for singletons, unions and set differences. The set of formulas
expressible by MLSS is the propositionally complete closure of the membership
and equality relation. The underlaying semantics is (in all of the cited papers)
Zermelo-Fraenkel set theory. Especially, to the best of our knowledge, proof
automation in set theory, so far, has been studied in the untyped setting only.
It is therefore non-obvious whether and how the results made in this area can
be adapted to our setting.

Cantone and Zarba [5] present a tableau based decision procedure for ex-
pressions stated in MLSS. Their focus is on efficient saturation and avoiding the
interleaving of model checking steps.

Beckert and Hartmer [6] provide another tableau decision procedure for
MLSS. The given system is very similar to the one of those we will present
in this thesis. Apart from the fact that we are in a typed, finite setting, the
fragment of set theory considered by [6] coincides with the one we treat in our
first system.

Cantone and Ruggeri Cannata [9] extend MLSS with an explicit finite pred-

8

icate capturing the resulting fragment of set theory in a set of tableau rules.
They prove their calculus decidable, sound and complete.

In 2005 Cantone et al. published a new paper [10] where they provide a
decidable, sound and complete tableau calculus for MLSS extended with an
iterated membership predicate denoting the transitive closure of the element
relation.

The probably closest work to ours is the work of Shults [11]. In his technical
report he presents a partial decision procedure for a fragment of set theory
larger than the one captured by MLSS and formalized in another language.
In contrast to all the other sources his focus lies not on completeness but on
expression strength and efficiency. In particular, his system is able to express
separations. These two facts constitute a strong overlap of the work done in [11]
and the current thesis. The author doesn’t fix any semantics emphasizing the
flexibility of his system to be able to deal with different semantics, leaving it up
to the user to ensure consistency. However there is a restriction in the form of
a stratification into pairs of levels which also has certain similarities to the type
induced restriction in our system. Another analogy between [11] our system
is the handling of set equality. In [11] equality is handled by the system with
the aid of extensionality rules and a restricted form of substitution whereas our
set representation is inherently extensional and substitution is used whenever a
variable can be completely eliminated.

9

Chapter 2

Automated Proof Search in
Coq

In this chapter we will outline the basic features and concepts we will require
to write automation tactics in Coq. To this intent we will take a brief look at
the languages Gallina and Ltac.

2.1 The Coq Basics

The proof assistant Coq implements the so called calculus of inductive construc-
tion and exploits the Curry-Howard-Correspondence. This allows for an associ-
ation of mathematical propositions with data types. In particular, a proposition
is represented as a type and every inhabitant of the type denotes a proof of the
proposition.

Let us take now a closer look at the languages that we will use in the fol-
lowing.

2.1.1 Gallina

Gallina is a strictly typed language used to define objects inside the logic in
Coq. A Gallina term can be either a constant, a function or a type. Every
Gallina term has a type, even if it is one itself. Ill-typed expressions cannot
be stated in Gallina. As we shall see in Chapter 5, this property of the typing
mechanism will have a significant influence on which fragment of set theory our
systems describe.

Function and Dependant Types

Let us now take a closer look at two special kinds of Gallina types that will be of
major importance for the automation approaches presented later in this chapter.
Let t1 and t2 be Gallina types. A so called function type would combine them
in the following manner:

t1 → t2

Its members are functions that on input of an argument of type t1 return a term
of type t2. As mentioned earlier, Gallina functions are always total.

10

A dependant type is the generalization of a function type and has the fol-
lowing form:

∀x : t1. t2

Such a type is called dependant because t2 may depend on the bound variable
x. A member of this type would be a function that on input of some y : t1
returns a term of type t2

x
y . Note that the dependant type behaves exactly like

the function type if there is no free variable x in t2.

2.1.2 Ltac

We use Gallina to define and compute with terms of the logic underlying Coq.
All of these terms must be well-typed. However, we would like to be able to
reason about them, as well as about the logic itself, from outside. This is where
the language Ltac comes into play. In contrast to Gallina, Ltac is completely
untyped. The only distinction it makes is between Ltac and Gallina terms.

One useful feature of Ltac is the more fine grained match.

Example. Consider the environment (a b : bool).
While we can match a term like (a && b) in Gallina only against true and false,
Ltac allows us to match against the term structure itself. For example we could
handle conjunctions and disjunctions differently.

Another feature we will often make use of is the possibility to analyze the
goal and to extract subterms of it. Especially in combination with the strong
pattern matching it is a very powerful tool.

But the probably most important thing about Ltac is the fact that it allows
for general (non-structural) recursion. This gives us the possibility to express
diverging procedures.

2.2 Ltac vs. Reflection

Using these concepts and mechanisms, Coq allows for several approaches in
proof automation. The first one is is the direct implementation of a proof
search algorithm in Ltac. The second one is a technique called proof by com-
putational reflection [2]. The high-level idea is to provide a certified Gallina
decision procedure and to use the type of its correctness proof. In his Book
“Certified Programming with Dependent Types” Adam Chlipala ascribes great
importance to this technique. In fact it is one of the main reasons for him to
favour Coq over other systems.

The fact that the language Ltac is untyped makes it rather flexible and allows
for easy and quick implementation of simple proof search algorithms. Writing
such, one has neither to care about termination nor about correctness proofs.
However, this convenience comes at the cost of large proof terms and a possibly
bad performance. Careful design may solve the performance issue but doesn’t
help against the large proof terms. In addition, it is hard to implement more
involved algorithms in Ltac. Because of the absence of a typing mechanism,
debugging Ltac procedures makes a big effort.

Most of these problems don’t arise when using reflection. Here, the size of
the proof term is always constant in the size of the input. It does not depend on
the decision algorithm. These advantages are due to the fact that the algorithm

11

is implemented in Gallina. However, the technique is not applicable in any case.
In order to allow an implementation in Gallina, the decision algorithm has to
terminate. Remember that this was not required in Ltac. Furthermore, a proof
by reflection consists not only of the decision procedure but also of a reification
step and a proof of correctness. Especially the last-mentioned may require,
depending on the design of the decision algorithm, a considerable amount of
work.

2.3 The Structure of a Proof by Reflection

Let us now take a closer look on how a proof by reflection is constructed. As
mentioned earlier in this chapter, our main task in a proof by reflection is to
construct a certified decision procedure in Gallina. We can then use its decision
together with the proof of correctness to solve our original problem. In general
a proof by reflection consists of the following steps:

Syntax Fragment Selection In order to be able to reason in Gallina, we
have to provide an inner-logic representation of our problem. However, in
this representation we don’t necessarily have to be able to express every
instance of the problem we are interested in. Instead we can prepend
a normalization step ensuring the intermediate problem to fulfill certain
form constraints. So, the first thing we have to do is to select the syntactic
fragment we actually want to translate. A small fragment results in easier
decision procedures and correctness proofs. However, oversimplification
may cause considerable performance issues as it bypasses the techniques
of proof by reflection with all of their benefits.

Reification With our target fragment in mind, we can now start the trans-
lation. The inner-logic representation is provided by an inductive type
in Gallina. In the following we will call it the abstract syntax type. For
disambiguation we will refer to its members as abstract terms so as not to
confuse them with Gallina terms. Apart from a number of constructors
that allow us to represent instances of our intermediate problem uniquely
up to conversion, the abstract syntax type needs also a constructor for
variables. Gallina terms we want to abstract from or cannot interpret
can then be collected in a duplicate-free list and represented as abstract
variable terms using their positions.

Decision Procedure Next we design a decision procedure computing on in-
stances of the abstract syntax type in Gallina.

Reflection Lastly we have to prove a correctness lemma that, when applied
to an abstract term and a decision of our procedure, yields a proof of the
original problem.

Let us make it more precise by having a look at the generic types of the
objects described above. Let T be our abstract syntax type, dec our decision
procedure, denote a translation function mapping from abstract to Gallina terms

12

and refl their refection predicate. Consider the following environment:

decide : T → B (2.1)

denote : (N→ Prop)→ T → Prop (2.2)

dec correct : ∀(s : T)(φ : N→ Prop). (decide s = true)→ denote φ s (2.3)

The decision procedure has the type given in 2.1. It takes an abstract term
and returns true if the proposition it represents holds and false otherwise. More
interesting is the Type 2.2 of the denote function. It’s task to reconstruct a
logical proposition (a member of Prop) that is convertible to our normalized
problem. To make this possible we need to provide it not only the abstract
term but also a function able to recover the uninterpreted syntax from the
abstract variables. Such a function has the type N → Prop and would simply
return the list element at a given position. Recall that we store all of the
uninterpreted syntax in a duplicate-free list during the reification step. Lastly,
we have the type of the correctness lemma 2.3. It depends on the abstract
term and on a variable mapping. Provided the decision procedure evaluates
to true, Type 2.3 guarantees dec correct to return a proposition convertible to
our normalized problem. We have this assertion because the conclusion of the
correctness lemma is the fully applied denote function.

Proving the correctness lemma is the most important and usually also the
most difficult part of a proof by reflection. But, the size of a proof generated
via dec correct grows linearly with the size of the abstract term s.

In order to return a proof of denote φ s the dec correct needs a proof of
decide s = true as argument. It can be obtained with a simple Lemma stating
that true = true. To verify that this is indeed a proof for decide s = true, Coq
will check whether decide s reduces to true. If the decision procedure happens
to return true then dec correct has everything it needs to construct the wanted
proof term. Otherwise the reduction results in comparing false = true and can
not provide dec correct the necessary premise. This way our correctness lemma
returns a valid proof for a proposition accepted by the decision procedure and
fails on a proposition rejected by it.

Note that such a correctness lemma allows us to use for decide not only
decider functions but also incomplete proof procedures, as long as they ter-
minate. Termination is required since decide is a Gallina function. However
it is unproblematic to return false on the abstraction of a valid proposition.
Then, the proof would fail in comparing decide s = true which would evaluate
to false = true. Returning true on the abstraction of an invalid proposition, in
contrast, is not possible. In this case, there would be simply no way to prove
correctness.

13

Chapter 3

shandec: Reflective Proof
Automation for Boolean
Logic

In this chapter we will see an example for the application of a proof by reflection.
To this intent, we will elaborate a tactic detecting tautologies in propositional
logic. Although the approach of Shannon expansion is very naive, there is quite
a number of instances where the reflective procedure outruns the standard au-
tomation tactics like tauto and firstorder in terms of runtime and especially
in terms of proof term size.

3.1 Boolean Logic in Ssreflect

The fragment of Coq syntax we want do provide automation for is captured by
the following language.

Definition 3.1 (Target Fragment of Coq Syntax).

form ::= true | false | x | ∼∼ form
| form && form | form || form
| form → form | form == form

3.2 Implementation of shandec

Before starting the reification, we have to determine an appropriate candidate
for the abstract syntax type. On the one hand, it has to be strong enough
to express the language specified in Definition 3.1. On the other hand it has
to be reasonably simple, so that the computations of the decider function and
especially the correctness proof don’t get out of hand. To this intent, we perform
several normalization steps on the goal before applying the techniques of proof
by reflection.

14

3.2.1 Step 1: Preparing the goal

In this normalization step we pursue three main objectives: First, we want
to integrate as much information as possible into the formula on which our
reflective tactic will operate. Second, we want to decompose complex structures,
such that the abstract syntax type only has to cover the more basic cases. And
lastly, we want to isolate and neutralize all parts of the original goal that don’t
provide us any useful information.

We begin this transformation by moving all premisses into the assumptions.
Then we replace all Coq equalities on the type bool by boolean equivalences.
Afterwards every boolean assumption is reverted and the resulting Coq impli-
cation is immediately converted into a boolean one. Repeated rewriting of two
simple lemmas eliminates all boolean implications and equalities as described
above. Thus, we end up with a goal whose conclusion is a boolean formula
without implications and equivalences. The information of all former boolean
assumptions and premisses is contained in this formula.

3.2.2 Step 2: Reification

Having normalized the goal as described in the previous section, we can now
choose a rather simple abstract syntax type:

Listing 3.1: Abstract Syntax Type

1 Inductive term :=
2 | Var : nat → term

3 | TT : term

4 | FF : term

5 | And : term → term → term

6 | Or : term → term → term

7 | Not : term → term .

The choice of the abstract syntax type ultimately fixes the target space for
the reification process. Now that we have it, we can start reifying the goal by
collecting all uninterpretable subterms. As this collection will serve as mapping
between the variables and the terms they abstract from, it has to be duplicate
free. The induced mapping, will be the correspondence between a term and its
position in this collection. This way, syntactically equal terms will be mapped
to the same variable. Let us take a look at a simple example illustrating the
described scheme.

Example. Let b : bool and f : bool→ bool. Consider the following tautology:

(b || ∼∼ b) || f b

Constructing a collection using the above scheme would result in the list [b, f b].
Neither b nor f b consist of structures that can be modeled by any but the first
constructor of the abstract syntax type. Thus, both of them are added to the
collection. Although there are several occurrences of the variable b in the term,
due to the duplicate freeness constraint, it is added to the list exactly once.
Moreover, the third occurrence of b is “guarded” by an application of f . As f
itself already cannot be interpreted, f b is not even seen as an occurrence of b
by the algorithm.

15

Having such a collection, we can now construct an instance of the abstract
syntax type that models the formula. Every construct can either be interpreted
and expressed by one of the constructors or is contained in the list. Let us
illustrate this, again, with an example.

Example. Consider the same setting as in the previous example. Recall the
formula (b || ∼∼ b) || f b and the list [b, f b]. The instance of the abstract
syntax type for this formula would be:

Or (Or (Var 0) (Not (Var 0))) (Var 1)

The indices of the list still can be used to recover the syntax we abstracted
from and the numbers below the Var-constructors indicate their position in the
abstract term. Moreover, as the list is duplicate free, we represent the same
fragment with the same variable.

Note that omitting the duplicate freeness constraint would result in a severe
loss of expressive power. In fact not even this simple example could be proven
to be a tautology anymore.

3.2.3 Step 3: Decision Procedure

The base for our decision procedure is the so called Shannon expansion. It states
the following equivalence:

tautology(s)⇔ ∀x ∈ vars(s). tautology(sxtrue) ∧ tautology(sxfalse)

where tautology(·) denotes that a formula is a tautology, vars(·) is the set of all
free variables in a formula and sxy is the formula s where every occurrence of x
is substituted by y.

Iterating this statement over all variables we can reduce the initial formula
to a conjunction of closed formulas. For these we can easily decide whether they
are valid or not. Apparently the size of the conjunction grows exponential in the
number of variables. This fact by itself is not yet surprising as SAT is reducible
to our problem, i.e. (satisfiable(s) ⇔ ¬tautology(∼∼ s)). Nevertheless we
would like to optimize it in a way, such that we have at least in some cases a
polynomial runtime. Our first step in this direction is to invoke a simplification
function reducing formulas in the canonical way. E.g. The disjunction of a
subformula with the constant true is equivalent to true. In such a case the
subformula needn’t to be evaluated in order to decide whether the formula is a
tautology.

As mentioned before such a simplification function as well as the rest of the
decision procedure is written in Gallina. At this point we benefit from working in
Coq as it provides rather strong tools for computation and especially we benefit
from the reflective proof technique since we simply perform computations on an
inductive type and have no need to push around lengthy proof terms.

In order to speed up the procedure even more we might consider the order
in which we want to branch on the variables. The benefits we get from invoking
a simplification function can be significantly increased, if we choose those vari-
ables for branching that would lead to a better result of the simplification. A
reasonable heuristic for this, is the number of occurrences. We will branch on
the variables that occur the most often first. This way we prune more branches,

16

increasing the probability to prune a bigger subtree. To this intent we can col-
lect the abstracted syntax fragments during the reification step not only in an
ordered and duplicate-free list but also ensure that it is sorted. This can be
achieved by storing the numbers of occurrences together with the syntax and
reordering the list when it is required.

Having started a this approach in our implementation we had to realize
that the computational costs coming with the outlined list operations have a
significant part in the overall runtime of the tactic. Although there are problem
instances where the tactic terminates in a reasonable time only if we optimize the
branching order, they seem rather artificial. In all other cases considering the
branching order leads to a notable slow down. In the final version we therefore
refrained from optimizing the branching order.

Summing up, our decision procedure performs alternating Shannon expan-
sion and simplification.

3.2.4 Step 4: Reflection

The two main constructs we use for our reflection are the denote function and
the lemma taut denote.

denote : (N→ B)→ term→ B
taut denote : ∀(s : term) (phi : nat→ bool). taut s→ denote φ s

The function constructs a proposition in our target syntax, i.e. a boolean
proposition, out of an abstract term. Such a translation has to invert the steps
performed in the reification phase. So, it reconstructs the term structure, plugs
back the uninterpreted syntax and yields a proposition convertible to the inter-
mediate problem.

The lemma taut denote proves the correctness of the decision procedure and
the mutual correction of the reification and the denote function. Finally, it
yields a proof for denote φ s. If φ is the variable mapping and s the abstract
term representation of a proposition P , denote φ s is convertible to P . Thus,
every proof for denote φ s is also a valid proof for P .

3.2.5 Final Tactic

The four steps described above are everything we need to construct reflective
proofs for boolean tautologies. We now plug them together to construct the
final automation tactic.

Listing 3.2: shandec

1 Ltac shandec :=
2 preproc ; (∗ norma l i za t ion ∗)
3 match goal with [|− ?G = true] =>
4 let xs := allVars (@nil bool) G in
5 let s := translate xs G in
6 exact (taut_denote
7 s (∗ a b s t r a c t term ∗)
8 (fun n => nth false xs n) (∗ v a r i a b l e maping ∗)
9 (eq_refl true) (∗ t au t s n = true ∗)

10)
11 end .

17

We start by moving all the relevant information into the conclusion, as de-
scribed in Section 3.2.1. This is done by the tactic preproc in line 2. The
reification is performed in lines 4 and 5. The tactic allVars collects all of the
uninterpreted boolean terms descending recursively in the interpreted structure
of the goal. As it is written in Ltac we can easily match on the boolean con-
nectives in G. In the same manner the tactic translate constructs the abstract
term s. It is passed the list of uninterpreted syntax as argument, so it can
construct the abstract variables with the correct indices. The rest of the proof
is the result of the lemma taut denote. It is applied to the abstract term, a
mapping that recovers uninterpreted syntax fragments and a proof of (true =
true) and returns a proof of denote phi s. Provided taut s returns true, the proof
can be finished by an exact as denote phi s is convertible to the current goal.

3.3 Comparison of shandec with Standard Au-
tomation Tactics

One of the reasons for us to consider automation for boolean logic was the fact
that the fset library [3] and Ssreflect make extensive use of boolean properties.
However, for this kind of reasoning there isn’t much automation in Coq available
yet.

A simple but notably suboptimal automation approach is to translate a
proposition from bool to Prop and solve it with one of the common tactics
tauto or firstorder.

This approach as well as the decision procedure for our proof by reflection are
quick and dirty implementations. To obtain an efficient reflective automation
tactic, one will need a smarter decision procedure. But also the direct Ltac
approach can become magnitudes faster if one works directly on bool and omits
the translations. After all the tactics tauto and firstorder are designed for
intuitionistic reasoning. Although, there exists a possible work-around to use
them in described way, they won’t be able to exploit the most basic properties
in classical reasoning.

The mentioned work-around uses the fact that a proposition is classically
provable if and only if its double negation is intuitionistically provable. So, for
the translation from bool to Prop one can write the boolean proposition as
its double negation (to which it is equivalent) and then translate it. Thus, if
the initial proposition was provable classically, its translation is now provable
intuitionistically and we can use tauto and firstorder to reason about it.

To visualize the conceptional advantages of proof by reflection, let us now
compare the proof terms we obtain from either of these automation approaches.

3.3.1 Proof Terms

Let us for now forget about the overhead resulting from the translation and only
compare the proof terms that result from shandec and firstorder.

Listing 3.3: firstorder Proof Term

1 Example E00 a b : ∼ ∼ ((a ∨ ∼ a) ∧ (b ∨ ∼ b)) .
2 firstorder . Show Proof . Qed .
3

18

4 (fun (a b : Prop) (H : ∼ ((a ∨ ∼ a) ∧ (b ∨ ∼ b))) ⇒
5 (fun H0 : a ∨ ∼ a → b ∨ ∼ b → False ⇒
6 (fun (H1 : a → b ∨ ∼ b → False)
7 (H2 : ∼ a → b ∨ ∼ b → False) ⇒
8 (fun H3 : b ∨ ∼ b → False ⇒
9 (fun H4 : b ∨ ∼ b → False ⇒

10 (fun (H5 : b → False) (H6 : ∼ b → False) ⇒
11 (fun H7 : False ⇒ H7) (H6 H5))
12 (fun H5 : b ⇒ H4 (or_introl H5))
13 (fun H5 : ∼ b ⇒ H4 (or_intror H5))) H3)
14 ((fun H3 : a → False ⇒ H2 H3)
15 ((fun (_ : False → b ∨ ∼ b → False) (H4 : a) ⇒
16 (fun H5 : b ∨ ∼ b → False ⇒
17 (fun (H6 : b → False) (H7 : ∼ b → False) ⇒
18 (fun H8 : False ⇒ H8) (H7 H6))
19 (fun H6 : b ⇒ H5 (or_introl H6))
20 (fun H6 : ∼ b ⇒ H5 (or_intror H6))) (H1 H4))
21 (fun H3 : False ⇒ H2 (fun _ : a ⇒ H3)))))
22 (fun H1 : a ⇒ H0 (or_introl H1))
23 (fun H1 : ∼ a ⇒ H0 (or_intror H1)))
24 (fun (H0 : a ∨ ∼ a) (H1 : b ∨ ∼ b) ⇒ H (conj H0 H1)))

Listing 3.4: shandec Proof Term

1 Example E01 a b : ((a | | ∼∼ a) && (b | | ∼∼ b)) .
2 shandec . Show Proof . Qed .
3

4 (fun a b : bool ⇒
5 shandec_denote

6 (fun n : nat ⇒ nth false [: : b ; a] n)
7 (And (Or (Var 1) (Not (Var 1))) (Or (Var 0) (Not (Var 0))))
8 (eqxx (T :=bool_eqType) true))

The main difference between these two terms is not their size but the way it
depends on the size of the problem. While the proof term of firstorder grows
exponentially with the size of the proposition it is applied to, the size overhead
of shandec is constant beyond the size of its input! One can explain the growth
of the proof term of firstorder as follows. Every step of the proof search
is performed in Ltac. But, as the problem cannot be solved in a polynomial
number of steps, the proof term has to grow at least exponentially. Looking at
the proof term of shandec we see that the only subterms depending on the input
are (And(Or(Var1) (Not(Var1))) (Or(Var0) (Not(Var0)))) and [:: b; a]. The first
one is the reification of the proposition and grows linearly in the size of the
input. And so does the latter. All the rest stays the same for every possible
input.

3.3.2 Runtime

Let us now take a look at the runtime of shandec compared with firstorder

and tauto. The runtime of tauto and firstorder was measured on the already
translated goal.

As expected, tauto and firstorder have their difficulties with classical
reasoning. To prove a conjunction of ten excluded middle statements tauto

19

formula firstorder tauto shandec∧9
i=0 (ai ∨ ¬ai) 2.85s >60s 4.8s(

a0 ∧
∧60

i=0 (ai → ai+1)
)
→ a61 3.76s 5.93s 2.04s(

a0 ∧
∧40

i=0 (ai → ai+1)
)
→ b 6.44s 3.85s 0s(∧40

i=0

(
(ai → ai+1) ∧ (¬ai → ai+1)

))
→ a41 2.46s 8.99s 2.70s

The code of these and other examples can be found in tautest.v.

Table 3.1: Runtime Comparison firstorder - tauto - shandec

needs more than one minute while shandec takes only 4.8 seconds. Still, it is
outrun by firstorder which takes less than 3 seconds. Another interesting
point is the time the tactics need to fail on a non-tautology. The third example
is not a tautology. To detect this, firstorder needs 6.44 seconds and tauto

still 3.85. shandec does this instantaneously. Summarizing, we can say that
despite its naive implementation, shandec still can have a decent runtime and
in some cases even outruns tauto and firstorder.

20

Chapter 4

Analytic Tableaux for
Typed Finite Sets

We come now to the main objective of this thesis: the proof automation for
finite sets. But before we can start thinking about which technique to use and
how to implement it, we have to fix the systems we want to work in. We will
start with a simple system for a typed, stratified version of MLSS. Then we will
present two extensions to it obtaining strictly stronger systems. However, these
extensions will not come for free but each at the cost of a useful property. Let
us start with a formal characterization of our interpretation and representation
of a set.

4.1 Set Representation and Interpretation

The theory we develop our automation tactics for is the fset library [3] for typed
finite sets. So our interpretation of sets should coincide with the one in fset,
and so does the representation. Let us now briefly outline the toplevel ideas of
fset.

As mentioned before, sets as they are represented in [3] are typed and finite.
Every member of a set has to be of the same type and this type must have
a certain structure. This is due to the fact that sets are realized as lists over
choiceTypes. As explained in the Ssreflect documentation, choiceType is an
“interface for types with a choice operator.” The operator is required for the
theory behind fset. It is used to obtain an extensional set representation. For the
kind of automation we aim to provide, however, we need a type with decidable
equality (eqType in Ssreflect). Luckily every choiceType is also an eqType.

Definition 4.1 (fset). Let T be a choiceType. Then (fset T) is the type of finite
sets with elements of type T.

For any choiceType T, fset T is again a choiceType. This property allows us
to build stratified hierarchies of sets. In such a hierarchy sets of distinct levels
have distinct types. This implies that no set or urelement (i.e. a member of a
type without toplevel fset constructors) can be at two different levels. The level
of a set is determined by its type.

21

Definition 4.2 (Level). We call the number of fset constructors in the type of
a set its level. We write lv(s) to denote the level of s.

Example. Let T be a type without fset constructors. Consider the environment
x : T, A : {fset T}. Then lv(x) = 0 and lv(A) = 1.

4.2 Basic System

Our first system is a typed stratified version of MLSS. We can state exactly the
same propositions but interpret sets as fsets in the way explained above. The
following grammar describes, what we can state in our language:

Definition 4.3 (Basic Language).

set ::= ∅̇ | x | 〈set〉 | set∪̇set | set−̇set
rel ::= set∈̇set | set⊆̇set | set=̇set

form ::= ⊥̇ | rel | ¬̇form | form∧̇form | form∨̇form | form→̇form

We call terms of the form set set expressions, terms of the form rel or their
negations relation statements and terms of the form form formulas. A branch
is a finite set of well typed formulas.

Assumption. Every relation we will state in this theses is assumed to be well-
typed.

Definition 4.4. A branch is called closed if it contains ⊥̇ and open otherwise.

Remark. We can represent strict subsets intersections and explicitly given
finite sets as follows:

A⊂̇B :⇔ A⊆̇B ∧̇B*̇A
A∩̇B := A∪̇B−̇((A−̇B)∪̇(B−̇A))

〈x0, . . . , xn〉 := 〈x0〉∪̇ . . . ∪̇〈xn〉

The oversized representation of intersections is definitely nothing one would
want to use in an implementation. However, at this point it doesn’t cause any
trouble since the basic system is only for the theoretical treatment of the topic.
In our implementation we will stick to a stronger system which is capable to
express both intersections and set differences without any problem.

A branch may contain several formulas, a formula several relation state-
ments, a relation statement several set expressions and a set expression several
set literals (i.e. ∅̇, set variables and urelements). The two last mentioned layers
may represent sets of a multitude of distinct levels. Thus, when analyzing a
branch, we have to work with a number of objects of distinct types. Seeking
automation, we will not get round arranging them in some kind of structure.
Fortunately, their types are not completely independent. All of them have the
form fset* T, where a number of fset constructors, possibly 0, is applied to some
base type T. We can group such objects with respect to their levels.

Definition 4.5. Let Γ be a branch. We define Sl(Γ) to be the set of all level-l
set expressions occurring somewhere in the term structure of one of the formulas
of Γ.

22

Example. Let T be a type with no toplevel fset constructors in it and let
Γ := {x∈̇A∪̇B} for some (x : T) and some (AB : {fsetT}). Then

S0(Γ) = {x}
S1(Γ) = {A,B,A∪̇B}
S2(Γ) = S3(Γ) = . . . = ∅

Since a branch is always a finite set of finite formula terms, the set of its
subterms at every level is again finite. For the same reason every branch has
only finitely many populated levels.

Fact 4.6. Let Γ be a branch. Then, Sl(Γ) is finite for every l ∈ N. (Follows
from the finiteness of Γ)

Fact 4.7. Let Γ be a branch. Then, there exists some L ∈ N such that

∀l ≥ L. Sl(Γ) = ∅

Definition 4.8. We call the smallest L fulfilling fact above LΓ.

4.2.1 Ruleset

We will now provide a set of tableau rules which can be used to derive contra-
dictions stated in our language. To prove a proposition, we simply write it as
formula and find a contradiction to its negation. This suffices for a proof since
we all of the relations we can express are decidable.

We search for contradictions by applying the rules illustrated in Figures 4.1,
4.2, 4.3 and 4.4 and thereby extending stepwise our branch. A rule like (S1)
with one conclusion is applicable if its premisses are on the branch, but not
its conclusion. A rule like (S4) with several conclusions is applicable if at least
one of the conclusions isn’t on the branch yet. Disjunctive rules like (P2) can
be applied if the branch doesn’t contain any of their conclusions. Note, that
the premisses of the cut rules in Figure 4.3 have a different structure. A cut
rule is applicable if both propositions stated in the premisses hold and none of
the conclusions is on the branch yet. When applying a non-disjunctive rule, we
add its conclusions to the branch. Applying a disjunctive rule, we duplicate the
branch and add the conclusions of every side of the disjunction to one of the
new branches. No formula is ever removed from a branch.

Definition 4.9. A branch in which no rule is applicable is called saturated.

We will present four groups of saturation rules. The propositional rules given
in Figure 4.1 apply to complex formulas and deal with their logical connectives.
The basic saturation rules of Figure 4.2 are used to infer new relation statements
avoiding needless branching. Their main task is to exploit semantic properties of
the modeled relations. E.g. the first rule (S1) uses the fact that every member of
the subset of some set B is also a member of B itself. The cut rules presented in
Figure 4.3 establish new relation statements for existing set expressions. They
are capable of relating previously unrelated sets. Thereby, they can provide
intermediate steps to detect contradictions that otherwise could not be found.
Note that a cut rule can not be applied to a pair of sets that already is connected
via the corresponding relation or its negation. Figure 4.4 depicts the branch
closing rules. They are used to detect contradictions in a branch. Similar to the
basic saturation rules they make use of semantic properties.

23

Notation. For convenience we will use from now on the following abbreviations:

x/̇∈A :⇔ ¬̇x∈̇A

x*̇B :⇔ ¬̇A⊆̇B
x ˙6=y :⇔ ¬̇x=̇y

(P1)
s∧̇t

s t
(P2)

s∨̇t
s | t

(P3)
s→̇t

¬̇s | t

(P4)
¬̇(s∧̇t)
¬̇s | ¬̇t

(P5)
¬̇(s∨̇t)
¬̇s ¬̇t

(P6)
¬̇(s→̇t)

s ¬̇t
(P7)

¬̇¬̇s
s

Figure 4.1: Propositional Rules

(S1)
x∈̇A A⊆̇B

x∈̇B
(S2)

x/̇∈A B⊆̇A
x/̇∈B

(S3)
A*̇B

xAB∈̇A xAB /̇∈B

(S4)
A=̇B

A⊆̇B B⊆̇A

(S5)
A ˙6=B

xAB∈̇A xBA∈̇B
xAB /̇∈B xBA /̇∈A

(S6)
x=̇y y∈̇A

x∈̇A
(S7)

x=̇y y=̇z

x=̇z
(S8)

x=̇y

y=̇x

(S9)
x∈̇〈y〉
x=̇y

(S10)
x/̇∈〈y〉
x ˙6=y

(S11)
〈x〉⊆̇A
x∈̇A

(S12)
x∈̇A∪̇B

x∈̇A | x∈̇B
(S13)

x/̇∈A∪̇B
x/̇∈A x/̇∈B

(S14)
x∈̇A−̇B

x∈̇A x/̇∈B
(S15)

x/̇∈A−̇B
x/̇∈A | x∈̇B

Figure 4.2: Basic Saturation Rules

(C1)
X ∈ Sl(Γ) Y ∈ Sl(Γ)

X=̇Y | X ˙6=Y
(C2)

x ∈ Sl(Γ) A ∈ Sl+1(Γ)

x∈̇A | x/̇∈A

(C3)
A ∈ Sl(Γ) B ∈ Sl(Γ)

A⊆̇B | A*̇B

Figure 4.3: Cut Rules

24

(D1)
b ¬b
⊥

(D2)
x 6= x

⊥
(D3)

x ∈ ∅
⊥

(D4)
x /∈ {x}
⊥

Figure 4.4: Branch Closing Rules

The soundness of the given rules is obvious. In addition, for the implemen-
tation of our proof search procedure every rule is stated and proven as a lemma
in Coq.

The cut rules in Figure 4.3 may cause severe performance issues. If used
incorrectly, they can lead to an exponential blow-up without yielding any new
information. It is therefore preferable to use them as late as possible. Avoiding
them completely, however, is not an option as there exist problems that cannot
be solved without them.

Example. Consider the branch

A−̇B⊆̇∅̇, x∈̇A, x/̇∈B.

There is a contradiction because x has to be a member of A−̇B but would
then be in ∅̇. However, none of the basic saturation or branch closing rules is
applicable. Somehow, we have to relate the x with A−̇B and the only way to
achieve this is via cut rules. Using (C2) we obtain the following tableau:

A−̇B⊆̇∅̇
x∈̇A
x/̇∈B

x∈̇A−̇B x/̇∈A−̇B
x∈̇∅̇ x/̇∈A x∈̇B
⊥̇ ⊥̇ ⊥̇

Every successor branch is closed, so we proved that there is a contradiction in
the initial one.

4.2.2 Termination

We will now show that in the basic system every saturation strategy terminates.
I.e. no matter in which order we apply the rules, after finitely many steps we
reach a point where no rule is applicable anymore.

Wlog, we can assume that we start with a branch without any logical oper-
ators except for ¬̇. This can be achieved by starting with an arbitrary branch
and applying the propositional rules of Figure 4.1 until we have eliminated every
logical operator. It is easy to see that every rule eliminates exactly one operator
and that for every operator or its negation we have exactly one rule. As soon
as all operators are eliminated, we can restrict ourselves to the basic saturation
rules in Figure 4.2, the cut rules in Figure 4.3 and the branch closing rules in
Figure 4.2. None of these rules would introduce a new logical operator or has
one in its premisses. At the same time, none of the propositional rules can be
applied anymore since for every instance of a logical connective the conclusion
of the corresponding rule is already on the branch. In other words, the sat-
uration can be divided into two independent parts. First is the propositional

25

saturation which only applies to formulas containing logical operators. Second
is the regular saturation that ignores all formulas containing logical operators.
The termination of the propositional saturation is rather obvious so we will now
concentrate us on the regular saturation.

Assumption. For the rest of this section, we fix Γ to be a branch without
binary logical connectives.

For such a branch, we will construct a closure of set expressions. Then, we
will prove that it is finite and can conclude that eventually every saturation
strategy must terminate.

Definition 4.10 (set expression closure).

S+
l (Γ) :=

{
∅ if l ≥ LΓ

Sl(Γ) ∪ fl(Γ) otherwise
(4.1)

fl(Γ) :=
{
xuv fresh variable at level l | (u, v) ∈

(
S+
l+1(Γ)

)2}
(4.2)

S(Γ) :=

LΓ⋃
l=0

S+
l (Γ) (4.3)

If we look at the rules that introduce new variables ((S3) and (S5)), we see
that for every ordered pair of set expressions (A,B) we introduce at most one
new variable xA,B . Besides, this new variable is exactly one level below the
set expressions that where used to generate it. Therefore, we can show that at
every power level we introduce finitely many fresh variables if and only if the
next higher level has finitely many set expressions.

Lemma 4.11. ∀l ∈ N. S+
l+1(Γ) finite ⇒ fl finite

Proof. Let S+
l+1(Γ) be finite. Then,

(
S+
l+1(Γ)

)2
is finite, too. By Definition 4.10

we have |fl(Γ)| = |
(
S+
l+1(Γ)

)2|. Thus, fl(Γ) is finite.

Let us summarize the facts we already know about the level hierarchy:

• By definition S+
LΓ

(Γ) is empty.

• At every level l, fl(Γ) is finite if S+
l+1(Γ) is.

• Since Sl(Γ) is finite in any case, S+
l (Γ) = Sl(Γ) ∪ fl(Γ) is finite at every

level l < LΓ where fl(Γ) is finite.

Combining all of these facts, it shouldn’t be too difficult to prove that S+
l (Γ) is

finite at every level. To this intent we will use the finiteness of the Sl(Γ) and
propagate inductively the finiteness of the fl(Γ) from level LΓ to level 0.

Lemma 4.12. ∀l ∈ N. S+
l (Γ) is finite.

Proof. By induction on n ∈ N in l = LΓ − n

I.B. Let l ≥ LΓ. By Definition 4.10, S+
l (Γ) is equal to ∅ and therefore finite.

I.H. S+
l+1(Γ) is finite for an l ∈ N.

26

I.S. (l + 1 → l) As stated in Fact 4.6, Sl(Γ) is finite for every l ∈ N. From
the induction hypothesis we obtain finiteness of S+

l+1(Γ) and can conclude
via Lemma 4.11 that fl(Γ) has to be finite, too. As a union of finite sets
S+
l (Γ) is also finite.

From the finiteness of S+
l (Γ) for every l ∈ N we can easily conclude the finite-

ness of S(Γ) since it is the union of finitely many S+
l (Γ). From Definition 4.10

it is clear that S(Γ) contains all set expressions occurring in Γ.

Fact 4.13. S(Γ) is finite as finite union of finite sets.

Next we will show that S(·) is closed under application of regular saturation
rules.

Lemma 4.14. Let ∆ be a successor branch of Γ after applying one of the
saturation rules. Then, S(∆) ⊆ S(Γ).

Proof. We distinguish 4 cases depending on the applied rule.

1. Let ∆ be the result of an application of (S3). Then, A⊆̇B ∈ Γ and

∆ = Γ ∪ {xAB∈̇A, xAB /̇∈B}. We have

S(∆) = S(Γ) ∪ {xAB , A,B} = S(Γ) ∪ {xAB}

So, we have to show that xAB ∈ S(Γ). It holds:

A,B ∈ Slv(A)(Γ)⇒ (A,B) ∈ (Slv(A)(Γ))2

⇒ xAB ∈
{
xuv | (u, v) ∈ (Slv(A)(Γ))2

}
= flv(A)−1(Γ)

⇒ xAB ∈ S(Γ)

Note, that in the second implication we use that lv(A) > 0. We can do
this because the relation A⊆̇B on the branch requires A and B to have at
least level 1.

2. Let ∆ be the result of an application of (S5). Then, A=̇B ∈ Γ and either

∆ = Γ∪ {xAB∈̇A, xAB /̇∈B} or ∆ = Γ∪ {xBA∈̇B, xBA /̇∈A}. We have then
either

S(∆) = S(Γ) ∪ {xAB} or S(∆) = S(Γ) ∪ {xBA}

Analogously to case 1. we can show that both xAB and xBA are elements
of S(Γ). Hence, S(∆) ⊆ S(Γ) holds in both cases.

3. Let ∆ be the result of an application of a cut rule. Then, ∆ = Γ ∪ {x◦̇y}
for some x, y ∈ S(Γ) and some relation ◦̇. Thus, S(∆) ⊆ S(Γ).

4. Let ∆ be the result of an application of any other rule. The rule must
then have one of the following forms:

a0◦̇a1 · · · an−1◦̇an
b0◦̇b1 · · · bm−1◦̇bm

a0◦̇a1 · · · an−1◦̇an
b0◦̇b1 | · · · | bm−1◦̇bm

.

We have ∆ ⊆ Γ ∪ {b0◦̇b1, . . . , bm−1◦̇bm} and hence,

S(∆) ⊆ S(Γ) ∪ {b0, . . . , bm}.

27

It is to show that {b0, . . . , bm} ⊆ S(Γ). By construction of the respective
rule we have in any case {b0, . . . , bm} ⊆ {a0, . . . , an}. For the rule to be
applicable it is required that

{a0◦̇a1 · · · an−1◦̇an} ∈ Γ.

Thus, we have

{b0, . . . , bm} ⊆ {a0, . . . , an} ⊆ S(Γ).

Using the finiteness and the closure property of S(·) we can easily proof the
termination of the tableau system.

Theorem 4.15. Every saturation strategy in the basic system terminates.

Proof. With S(Γ) we have a finite closure of set expressions that can be gener-
ated from the initial branch. It is easy to see that every relation statement gener-

ated from Γ is of the form A◦̇B where A,B ∈ S(Γ) and ◦̇ ∈ {∈̇, /̇∈, ⊆̇, *̇, =̇, ˙6=}.
Hence, there are six kinds of binary relations and |S(Γ)| possible arguments.
The upper bound for the number of relation statements that can be generated
from Γ is therefore 6 ∗ |S(Γ)|2. As explained at the beginning of Section 4.2.1
a relation statement is neither removed from the branch nor added to it twice.
The application of any rule adds at least one new relation statement preserving
the set expression closure property. Altogether the size of the branch grows
strictly monotone and is upper bounded by the number 6∗ |S(Γ)|2. Hence there
must be a point when we can’t add any new relation statements, so the system
has to terminate.

4.2.3 Completeness

In this section we will show that the basic system is complete. We will begin
with a formal definition of completeness and afterwards show that our calculus
fulfills it.

For the definition we first explain what we will consider a variable assign-
ment. Then we will lift it up to define a model and finally determine what it
means for a model to satisfy a branch. From this we will then construct the
definition of completeness.

Definition 4.16 (Variable Assignment). Let vars l(Γ) denote the set of all vari-
ables of Γ at level l. We call J a variable assignment if it has the type

J : ∀l. vars l(Γ)→ fset l(D),

where D is some domain type and fset l the l-times application of the fset type
constructor.

From the variable assignment, we can obtain a model via the following re-
cursive construction.

28

Definition 4.17 (Model). Let J be a variable assignment. We define the model
induced by J as follows:

J̄ ∅̇ := ∅
J̄A := JA if A ∈ vars l(Γ) for some l ∈ N
J̄〈x〉 := {J̄x}

J̄A∪̇B := J̄B ∪ J̄C
J̄A−̇B := J̄B\J̄C

Defining a model we fix the semantics for our set operations. We will use
alternative symbols like ∪̇ and ∈̇ to speak about the literals on the branch and
the regular symbols like ∪ and ∈ to refer to their semantic properties.

Definition 4.18 (Satisfiability). Let J be a variable assignment and J̄ the
model induced by it. We say that an assignment/its model satisfies a relation
A◦̇B if we have:

J |= A◦̇B :⇔ J̄A ◦ J̄B

for ◦̇ ∈ {∈̇, /̇∈, ⊆̇, *̇, =̇, ˙6=} and ◦ the corresponding semantic relation. We define
satisfiability of formulas as follows:

J |= s∧̇t :⇔ J |= s ∧ J |= t

J |= s∨̇t :⇔ J |= s ∨ J |= t

J |= s→̇t :⇔ J |= s→ J |= t

Γ is called satisfiable, if there exists some J such that for all literals φ ∈ Γ we
have J |= φ.

Remark. If J |= Γ then we have for every subset ∆ ⊆ Γ, J |= ∆.

Definition 4.19 (Completeness). A tableau system is complete, if every branch
that remains open after a full saturation is satisfiable.

So, to show completeness we have to prove that every open saturated branch
has a model. In other words, if none of our rules is applicable and we still haven’t
found a contradiction, there is an assignment under which the conjunction of
the formulas in the branch holds. The fact, that our branches are finite at any
time allows us to do to do this proof constructively.

We will start by defining a domain for our variable assignment and then give
an interpretation function for set expressions. This interpretation function will
play the role of an assignment on the variables. From the assignment we will
lift a model as described in Definition 4.17. We will prove that the so obtained
model satisfies every formula on the branch it was defined for. This will yield
that every open and saturated branch has a model which is equivalent to the
fact that the considered system is complete.

Assumption. We fix Γ to be an open saturated branch.

Remark. The fact that Γ is open and saturated implies that it doesn’t contain
any contradictory formulas nor it contains pair of a formula and its negation. In
both of these cases, one of the branch closing rules would have to be applicable,
so Γ could not be saturated. Otherwise ⊥̇ would be already on the branch and
Γ could not be open.

29

We define an interpretation of the base type and call it domain. It contains
all terms at level 0 but doesn’t distinguish those which are equivalent to each
other.

Definition 4.20 (Domain). The domain of a branch is the set of equivalence
classes

DΓ := S+
0 (Γ)/=̇.

In order for DΓ to be well-defined, =̇ has to be an equivalence relation.

Lemma 4.21. In an open saturated branch Γ, =̇ is an equivalence relation.

Proof. Reflexivity:
For any x ∈ S(Γ), either x=̇x or x ˙6=x has to be on the branch due to (C1). If
it was x ˙6=x the branch would also contain ⊥̇ due to (D2). But then Γ wouldn’t
be open anymore. Hence, x=̇x ∈ Γ.
Symmetry:
Assume Γ contains x=̇y. By (S8) it must also contain y=̇x.
Transitivity:
Assume Γ contains x=̇y and y=̇z. By (S7) it must also contain x=̇z.

Starting with DΓ, we define a level-wise interpretation for sets.

Definition 4.22 (Interpretation). We define the interpretation function as fol-
lows:

I : ∀l ∈ N. S+
l (Γ)→ fset l(DΓ)

Il(X) =

{
[X]=̇ l = 0

{Il−1(x) | x∈̇X ∈ Γ} l > 0

Remark. a) The argument l of Il(X) can always be inferred from the type of
X. In the following, we will therefore suppress it: I(X) := Ilv(X)(X).

b) The definition of I depends on Γ.

Before we proceed, let us show a small but useful technical lemma. It states
that a well-typed relation between members of S(Γ) is on the branch if and only
if its negation is not.

Lemma 4.23. For all X,Y ∈ S(Γ) and ◦̇ ∈ {∈̇, /̇∈, ⊆̇, *̇, =̇, ˙6=},

X ◦̇Y ∈ Γ⇔ ¬̇X ◦̇Y /∈ Γ.

Proof. “⇒”Let X ◦̇Y ∈ Γ. Then, ¬̇X ◦̇Y can’t be an element of Γ since the
branch would have been closed by (D1).
“⇐”Let ¬̇X ◦̇Y /∈ Γ. Due to the cut rules of Figure 4.3, either X ◦̇Y has to be
an element of Γ or ¬̇X ◦̇Y . Since ¬̇X ◦̇Y is not an element, X ◦̇Y has to be.

We will now show a certain closure property of I. It is very similar to the
definition of a model satisfying a branch but should not be confused with it.
In particular, our interpretation function as a whole is neither a model nor a
variable assignment. So, at this point we cannot speak about satisfiability yet.
However, as soon as we have a model this lemma will become very useful. It
states, that the interpretations of two sets are in a certain relation to each other,
if and only if the corresponding relation statement between these sets is on the
branch.

30

Lemma 4.24. Let X,Y ∈ S(Γ) and ◦̇ ∈ {∈̇, /̇∈, ⊆̇, *̇, =̇, ˙6=}. Then

IX ◦ IY ⇔ X ◦̇Y ∈ Γ.

Proof. Induction on l = lv(Y).

I.B. Let l = 0. Then ◦̇ /∈ {∈̇, /̇∈, ⊆̇, *̇}.

(=̇) IX = IY ⇔ [X]=̇ = [Y]=̇ ⇔ X=̇Y ∈ Γ.

(˙6=) By Lemma 4.23 we have X ˙6=Y ∈ Γ ⇔ X=̇Y /∈ Γ. What is left to
show is that IX 6= IY ⇔ X=̇Y /∈ Γ. Negating both sides of the
equivalence we obtain IX = IY ⇔ X=̇T ∈ Γ. And this is exactly
what we have shown in case (=̇).

I.H. For a y at some level l ≥ 0 we have

∀x ∈ S(Γ), ◦̇ ∈ {∈̇, /̇∈, ⊆̇, *̇, =̇, ˙6=}. Ix ◦ Iy ⇔ x◦̇y ∈ Γ

I.S. l→ l + 1, (lv(Y) = l + 1):

(∈̇) “⇒”Let IX ∈ IY . Unfolding Definition 4.22 we obtain IX ∈
{Iy | y∈̇Y ∈ Γ}. Hence, there is a y ∈ S(Γ) such that y∈̇Y ∈ Γ
and IX = Iy. Since lv(X) = lv(y) < lv(Y), the lest equality yields
X=̇y ∈ Γ. But as both X=̇y and y∈̇Y are on the branch, so is X∈̇Y
due to (S6). And this is what we had to show.
“⇐”Let X∈̇Y ∈ Γ. Then, IX ∈ {Ix | x∈̇Y ∈ Γ} = IY

(/̇∈) IX /∈ IY (∈̇)⇐⇒ X∈̇Y /∈ Γ
4.23⇐=⇒ X /̇∈Y ∈ Γ

(⊆̇) “⇒”Let IX ⊆ IY . Since Γ is saturated, it must contain either X⊆̇Y
or X*̇Y due to (C3). Assume towards contradiction that X*̇Y ∈ Γ.

By (S3), xXY ∈̇X and xXY /̇∈Y must then be on the branch. As shown

in cases (∈̇) and (/̇∈) we then have I(xXY) ∈ IX and I(xXY) /∈ IY .
This contradicts IX ⊆ IY . Hence, X⊆̇Y must be on the branch.
“⇐”Let X⊆̇Y ∈ Γ. By (S1) we know that for every x ∈ S(Γ) with
x∈̇X ∈ Γ there is also x∈̇Y on the branch. Hence, {x | x∈̇X ∈
Γ} ⊆ {x | x∈̇Y ∈ Γ}. Therefore, we have IX = {Ix | x∈̇X ∈ Γ} ⊆
{Ix | x∈̇Y ∈ Γ} = IY .

(*̇) IX * IY (⊆̇)⇐⇒ X⊆̇Y /∈ Γ
4.23⇐=⇒ X*̇Y ∈ Γ

(=̇) IX = IY ⇔ IX ⊆ IY ∧ IY ⊆ IX (⊆̇)⇐⇒ X⊆̇Y, Y ⊆̇X ∈ Γ. So, what
is left to show is X⊆̇Y, Y ⊆̇X ∈ Γ⇔ X=̇Y ∈ Γ.
“⇒”Let X⊆̇Y, Y ⊆̇X ∈ Γ. Since Γ is saturated, due to (C1) there
must be eitherX=̇Y orX ˙6=Y on the branch. Assume towards contra-
diction that it is X ˙6=Y . Then, by (S5), there must be either xXY ∈̇X
and xXY /̇∈Y or xY X /̇∈X and xY X ∈̇Y on the branch. The first case
would imply IX 3 IxXY /∈ IY and contradict IX ⊆ IY . The sec-
ond case would imply IY 3 IxY X /∈ IX and contradict IY ⊆ IX.
Hence, X ˙6=Y cannot be on the branch, so we have X=̇Y ∈ Γ.
“⇐”Let X=̇Y ∈ Γ. By (S4), we then have X⊆̇Y and Y ⊆̇X on the
branch, which is exactly what we had to show.

31

(˙6=) IX 6= IY (=̇)⇐⇒ X=̇Y /∈ Γ
4.23⇐=⇒ X ˙6=Y ∈ Γ

Restricting our interpretation function I to variables we obtain an assign-
ment for Γ.

Definition 4.25. Let vars(Γ) be the set of variables of Γ. For our completeness
proof we will use the following variable assignment:

I = I|vars(Γ)

where I|vars(Γ) is the usual function restriction of I to the domain vars(Γ).

In the following Lemma we will show that the model Ī induced by I coincides
with I on sets that are in the closure of Γ.

Lemma 4.26. In the environment (T : choiceType), (x : T), (A,B : fset T)
the following holds:

a) I∅̇ = ∅

b) 〈x〉 ∈ S(Γ)⇒ I〈x〉 = {Ix}

c) A∪̇B ∈ S(Γ)⇒ I(A∪̇B) = IA ∪ IB

d) A−̇B ∈ S(Γ)⇒ I(A−̇B) = IA\IB

Proof. a) I∅̇ = {Ix | x∈̇∅̇ ∈ Γ} = ∅ since any literal x∈̇∅̇ can be used to close
the branch.

b) Let 〈x〉 ∈ Γ. We show I〈x〉 = {Ix}.
For every literal y∈̇〈x〉 ∈ Γ we have also y=̇x ∈ Γ by (S9). There is at least
one literal of this form since we can infer x∈̇〈x〉 with (C2) as {x, 〈x〉} ⊆ S(Γ).
For every y with y=̇x ∈ Γ, Lemma 4.24 yields that Iy = Ix. Hence, I〈x〉 =
{Iy | y∈̇〈x〉 ∈ Γ} = {Ix} since all of the Iy are equal to Ix.

c) Let A∪̇B ∈ S(Γ). We show I(A∪̇B) = IA ∪ IB.
“⊆” Let s ∈ I(A∪̇B) = {Ix | x∈̇A∪̇B ∈ Γ}. Then, there exists some
x ∈ S(Γ) with x∈̇A∪̇B ∈ Γ such that s = Ix. By (S12) we know that either
x∈̇A or x∈̇B is on the branch. So, s is either in {Ix | x∈̇A ∈ Γ} or in
{Ix | x∈̇B ∈ Γ}. Hence, s ∈ IA ∪ IB.
“⊇” Let s ∈ IA ∪ IB. Then s is either a member of {Ix | x∈̇A ∈ Γ} or a
member of {Ix | x∈̇B ∈ Γ}. In the first case, there exists some a ∈ S(Γ) with
Ia = s such that a∈̇A is on the branch. In the second case, there exists some
b ∈ S(Γ) with Ib = s such that b∈̇B is on the branch. Since A⊆̇B ∈ S(Γ),
we know by (C2) that a∈̇A∪̇B ∈ Γ and b∈̇A∪̇B ∈ Γ. Otherwise we had

a/̇∈A∪̇B or b /̇∈A∪̇B on the branch and could infer either a/̇∈A or b /̇∈B with
(S13). Thus, Ia, Ib ∈ {Ix | x∈̇A∪̇B ∈ Γ} and s is in both cases in IA∪IB.

d) Let A−̇B ∈ S(Γ). We show I(A−̇B) = IA\IB
“⊆” Let s ∈ I(A−̇B) = {Ix | x∈̇A−̇B ∈ Γ}. Then, there exists some
x ∈ S(Γ) with s = Ix such that x∈̇A−̇B ∈ Γ. By (S14) we know that both

x∈̇A and x/̇∈B are on the branch. Lemma 4.24 yields that Ix ∈ IA and
Ix /∈ IB. Hence, s = Ix ∈ IA\IB.
“⊇” Let s ∈ IA\IB. Then, s ∈ IA and s /∈ IB. So there exists some

32

a ∈ S(Γ) with s = Ia such that a∈̇A ∈ Γ but no b with s = Ib such that
b∈̇B ∈ Γ. In other words, for every b ∈ S(Γ), if Ib = s then b∈̇B is not on
the branch. In particular, we have a∈̇B /∈ Γ. As A−̇B ∈ S(Γ), we can infer

via (C2) that either a∈̇A−̇B or a/̇∈A−̇B is on the branch. If it was a/̇∈A−̇B,

due to (S15) there would be either a/̇∈A or a∈̇B on the branch. Any of these
relations is contradictory. Hence, we have a∈̇A−̇B ∈ Γ and can conclude via
Lemma 4.24 that s = Ia ∈ I(A−̇B).

Summing up, we have shown in Lemma 4.26:

∀A ∈ S(Γ), IA = ĪA.

Having this correspondence, we can now exploit the properties we have shown
for I to prove Ī |= Γ

Theorem 4.27. The basic system is complete.

Proof. Let ∆ be an arbitrary initial branch. We distinguish two cases:

1. Every fully saturated successor branch we can obtain from ∆ using the
saturation rules of our basic system is closed. As our ruleset is sound, this
fact by itself is already a proof for the unsatisfiability of ∆.

2. There is an open saturated branch Γ with ∆ ⊆ Γ. In Definition 4.25 we
gave a variable assignment for Γ. We showed in Lemma 4.26 that the
model induced by the variable assignment coincides with I from Defini-
tion 4.22 on every set in S(Γ). But for I we already know that

∀A,B ∈ S(Γ). IA ◦ IB ⇔ A◦̇B ∈ Γ

from Lemma 4.24. Thus, for all sets in S(Γ) we have

ĪA ◦ ĪB ⇔ A◦̇B ∈ Γ

which is by definition equivalent to I |= Γ. Since ∆ ⊆ Γ, we have also
I |= ∆.

4.3 Powerset Extension

In the last section we presented the basic system. Its language can express the
common set operations and logical connectives as well as the relations mem-
bership, subset and equality. We provided a proof of total correctness ensuring
that every saturation strategy is a decision procedure. Now we will strengthen
this system by enriching it with the powerset operator Ṗ(·). We will investigate
how this affects the properties we have proven for the basic system.

4.3.1 Differences in Language and Ruleset

The language changes as follows:

set ::= . . . | Ṗ(set)

33

(Q1)
A∈̇Ṗ(B)

A⊆̇B
(Q2)

A/̇∈Ṗ(B)

xAB∈̇A xAB /̇∈B
Figure 4.5: Powerset Rules

We also need some new saturation rules to characterize the semantic properties
of powersets:

It is worth noting that the introduction of a powerset operator significantly
increases the importance of the cut rules. Although we had already in the basic
system problems that were not solvable without cut rules, they are now needed
much more frequently. Cut rules become a basic tool to establish relations
between different levels.

Example. The following branch has an obvious contradiction.

A*̇B, Ṗ(A)⊆̇Ṗ(B)

A is definitely a member of its own powerset. Since Ṗ(A)⊆̇Ṗ(B), A has also to
be a member of Ṗ(B). But then it must also be a subset of B, which it is not.

To find this contradiction we must use a cut rule. Otherwise we had no
chance to infer any relation that would connect the level of A with the level of
its powerset. The membership cut rule (C2) applied to A and Ṗ(A), would do
this job. Using it, we obtain the following tableau:

A*̇B
Ṗ(A)⊆̇Ṗ(B)

A∈̇Ṗ(A) A/̇∈Ṗ(A)

A∈̇Ṗ(B) xAA∈̇A
A⊆̇B xAA /̇∈A
⊥̇ ⊥̇

The contradiction could also be inferred with (C2) applied to A and Ṗ(B).

This example is not a rare margin case but representative of a large class of
problems. If we cannot infer a membership relation between two levels, there is
no way to exploit the subset relations on the higher one. However, in the case
of powersets this may still be necessary. It is not hard to construct a branch
where the subset relations between powersets contradict relations on the levels
below.

4.3.2 Termination

To verify that the so obtained system still terminates, we have to show that the
new rules preserve the closure property. It is easy to see that for (Q1) we have:

{A,B} ⊆ S({A∈̇Ṗ(B)}).

But also the freshly generated variable of (Q2) is still inside the closure:

{xAB , A,B} ⊆ S({A/̇∈Ṗ(B)})

One can show this analogously to the cases 1 and 2 of the proof of Lemma 4.14.

34

4.3.3 Possible Incompleteness

Consider the following branch:

Γ := {Ṗ(A)−̇〈A〉 ⊆̇ ∅̇, x∈̇A}

This is a contradiction because the only set whose powerset contains only itself
is the empty set. But then it could not contain any element. The only way to
bring x∈̇A to a contradiction is to show A⊆̇∅̇. But, as we are in a typed setting,
we must therefore have lv(∅̇) = lv(A). The ∅̇ that in the branch, in contrast, is

on the level of Ṗ(A) and thus, one level above A. So we have ∅̇ /∈ Slv(A)(Γ) and

can therefore can not apply (C3). If we replace the second literal with A ˙6=∅̇,
however, the branch can be closed without any problems.

4.4 Separation Extension

So far we have presented two tableau calculi for typed finite sets. The first
one is terminating and complete, but rather weak when it comes to expressive
power. It is only able to express the empty set, variables, singletons, unions,
and differences. The second calculus is stronger in the sense that it additionally
allows for the powerset operator. It is still terminating but may no longer be
complete.

Now we would like to strengthen our language even further. For this purpose
we introduce the separation constructor 〈x ∈ A | p〉. Apart from its frequent
usage, there is one more reason for us to consider this operator. As we will see
in the following section, it can be used to express intersections and differences.
In particular, this is how these operators are defined in the fset library. We will
also see, that this extension doesn’t come for free but at the cost of termination.
Although a terminating system would certainly desirable, to the best of our
knowledge, the decidability of the considered fragment of set theory is an open
question.

4.4.1 Differences in Language and Ruleset

We extend our language by the separation operator:

〈x∈̇set | form〉

This allows us to express intersection, set difference and even universal quan-
tification in terms of separations.

A∩̇B := 〈x∈̇A | x∈̇B〉
A−̇B := 〈x∈̇A | x∈̇B〉

∀̇x∈̇A. p :⇔ A⊆̇〈x∈̇A | p〉

A set in our new language after adding the separation and removing the differ-
ence operators may looks as follows:

set ::= ∅̇ | x | 〈set〉 | set∪̇set | Ṗ(set) | 〈x∈̇set | form〉

To be able to deal with this new operator we have to add two new saturation
rules (Figure 4.6).

35

(R1)
y∈̇〈x∈̇A | p〉
y∈̇A pxy

(R2)
y /̇∈〈x∈̇A | p〉
y /̇∈A | ¬̇pxy

Figure 4.6: Separation Rules

It is not only the syntactic representation of a separation that can express set
differences and intersections but also its semantics. Adding these rules we can
omit those for differences. This indicates that the two last-mentioned operators
are special cases of the first one.

Note the new structure of these rules. It is the first time that we make use
of substitution in a tableau rule. This is also the point where the termination
proof of the two previous systems breaks. The problem is that the substitution
is capable of generating new terms that weren’t initially contained in the closure.
In the next section we will see how this can lead to diverging saturation attempts.

4.4.2 Divergence

Consider the following branch:

F := 〈a∈̇A | B *̇ 〈a〉∪̇C〉
x∈̇F
B⊆̇F

Applying the some of the rules, we stepwise extend our branch as follows:

x∈̇A, B *̇ 〈x〉∪̇C (R1)

y∈̇B, y /̇∈ 〈x〉∪̇C (S3) (we write y to abbreviate xB 〈x〉∪̇C)
y∈̇F (S1)

y∈̇A, B *̇ 〈y〉∪̇C (R1)

The freshly generated y found its way, via the separation F , into a substitution
and produced thereby a negated subset relation with a new composite set vari-
able. From this relation we could generate a fresh z and apply the same rules
again. Thus, we never end up with a fully saturated branch.

Nevertheless there are still a lot of cases where a branch containing separa-
tions still can be saturated in a finite number of steps. We also tried to find
some requirements for the branch to allow a finite saturation. A rather restric-
tive approach would be to allow the predicate to hold only formulas one level
below the level of the separation. But, this would basically restrict separation to
differences and intersections. Although we didn’t find any interesting require-
ments of this kind, there has been done some work in this area. The authors
of [7], for example, were confronted with a similar problem for their restricted
universal quantifier in the untyped setting.

4.5 Downwards Compatibility of the Systems

Note that the rules in Figures 4.1, 4.2, 4.3, 4.4 and 4.5 don’t introduce any new
operators that weren’t already in their premises. So, during the saturation pro-
cess, every successor branch has exactly the same operations as the initial one.

36

Hence, the full system started on a branch without separations behaves exactly
like the calculus with powersets and started on a branch without separations
and powersets exactly like the basic system. Moreover, the separation rules
applied to differences and intersections in their representations as separations
behave exactly like the particular rules for these operators. Thus, if we restrict
our separations to these two forms, we won’t have any issues with termination.

For this reason it suffices to provide an implementation for the full system.
The above argumentation allows us to use the proven properties of the smaller
systems when we run the implementation on them.

37

Chapter 5

Implementation

In this chapter we will explain the ideas and design decisions behind the im-
plementation of our calculi. We provide a saturation strategy in Ltac for the
full system (i.e. the basic calculus with powerset and separation extensions).
As we discussed in Section 4.5, this strategy also applies directly to the smaller
fragments and inherits the properties we have proven for them.

5.1 Why Ltac?

We want to be able to deal with separations and implement therefore the full
system. For this calculus, however, we have seen in Section 4.4.2 that it is not
always possible to saturate a branch in finitely many steps. Since the decider
function in a proof by reflection is formulated in Gallina, it must terminate
on every input. The only way to bring a saturation procedure into this form,
is to limit the expansion depth. We decided against this approach. Instead,
we implement the proof search directly in Ltac. This way, we don’t have to
guarantee termination. Another advantage is that in pure Ltac we can use the
goal management system to keep track of the branches. We can match on goals
to look for the premisses of our saturation rules. This is likely to be faster than
searching a branch representation for literals of a given form in Gallina.

5.2 Structure

The development is divided into four parts: The saturation rules as lemmas, an
Ltac pattern matching on the goal, a number of preprocessing and optimization
steps and several variants of the final automation tactic.

First we have the saturation rules of the Figures 4.1–4.6 (except for the
difference rules as they can be expressed as separations) as lemmas in Coq. In
the following we will refer to them as saturation lemmas. The fact that they
are provable assures the soundness of our ruleset.

Next are the saturation patterns. Written in Ltac, their task is to find an
applicable saturation rule, to pose its conclusion as an assertion and to prove
it using the corresponding saturation lemma. Altogether, there are four satu-
ration patterns. They are grouped by the structure of their conclusions. This
enables a certain control over the saturation flow. The first group contains the

38

three branch closing rules. They are cheap in application and used to close the
subgoals representing our branches. The second group is responsible for the sat-
uration of the non-branching rules. Lastly we have the groups for the branching
and the cut rules. Although cut rules have also disjunctive conclusions, for effi-
ciency reasons we don’t count them as branching rules but as a group on their
own.

The next step of our development are the auxiliary tactics for normalizing
the goal and for optimization. In the preprocessing, we introduce all premises.
Then we negate the conclusion twice and introduce it, too. The resulting goal
has then a number of literals in the assumptions and a False in the claim. Such
a goal is provable if and only if there is a contradiction in the assumptions. As

we have defined several structures via others (e.g. A⊂̇B ⇔ A⊆̇B∧̇B*̇A), now
is the time to rewrite these definitions. After these steps we are in a setting
where we can apply our tableau-based reasoning.

As our tactic is meant to finish a goal, we can thin out the assumptions by
clearing all those that we cannot use for saturation. This step helps keeping
the search space small. We can further optimize the proof search procedure by
calling the subst-tactic periodically. It has not only a positive effect on the
search space but may also replace the application of one ore more saturation
rules like (S6) or (S7).

Plugging together the steps described above we obtain the following tactics:

• fset nocut:

1. Introduce all of the premises and the negated conclusion.

2. Remove all assumptions that cannot be used for saturation.

3. Rewrite the composite set operations and relations.

4. Check the branch for contradictions. If they exist, close the branch
and you are done. Otherwise, saturate it with the non-branching
rules.

5. Add a Coq-equality for every set equivalence (as explained earlier,
fsets are extensional) and invoke subst.

6. Check again for contradictions. If there are none, apply exactly one
branching rule and proceed with step 4 in every subbranch.

The tactic terminates if it has closed all branches or if none of the branch-
ing and non-branching rules is applicable anymore.

• fset dec performs the same steps as fset nocut but doesn’t terminate
if none of the branching and non-branching rules is applicable. Instead, it
applies a cut rule then and proceeds with step 4.

• fset decu takes the name of a definition or a tuple of such as argument
and unfolds all of them before invoking fset dec. It is defined as follows.

Listing 5.1: fset decu Pseudocode

1 fset_decu def :=
2 unfold def in ∗ ; fset_dec .
3 fset_decu (def_1 , . . . , def_n) :=
4 unfold def_1 in ∗ ; . . . ; unfold def_n in ∗ ;
5 fset dec .

39

• fset nocutu does the same as fset decu but applies fset nocut at the
end instead of fset dec.

Remark. The above is an informal description of the ideas implemented in our
automation tactics. For simplicity some of the steps of the submitted imple-
mentation where omitted in this description.

5.3 Examples

In this section we will show some interesting examples for propositions that can
be proven by one of the presented tactics. The code of these and other examples
can be found in the file tabtest.v.

Example. a) In the environment

C := 〈X∈̇Ṗ(B) | X⊆̇〈y∈̇X | py〉〉

the proposition
A⊆̇B → 〈x∈̇A | px〉∈̇C

is proven instantaneously.

b) The propositions

A⊆̇C → B⊆̇C → ((C−̇A)∪̇(C−̇B))=̇(C−̇(A∩̇B))

A⊆̇C → B⊆̇C → ((C−̇A)∩̇(C−̇B))=̇(C−̇(A∪̇B))

are proved either in less than half a second.

c) The proposition

Ṗ(A∪̇B)⊆̇Ṗ(A)∪̇Ṗ(B)→ A⊆̇B∨̇B⊆̇A

which requires application of cut rules is solved in about 7 seconds.

d) The example for the necessity of cuts in the basic ruleset in Section 4.2.1

A−̇B⊆̇∅̇ → x∈̇A→ x∈̇B

is solved instantaneously.

e) The example for the importance of cut rules in the powerset extension

Ṗ(A)⊆̇Ṗ(B)→ A⊆̇B

is solved in 2.73 seconds.

f) We had in Section 4.3.3 the branch

Γ := {Ṗ(A)−̇〈A〉 ⊆̇ ∅̇, x∈̇A}

as an example for the possible incompleteness of the calculus since we were
not able to close it. However, if we replace the literal x∈̇A by A ˙6=∅̇, i.e. we
prove

Ṗ(A)−̇〈A〉 ⊆̇ ∅̇ → A=̇∅̇
the tactic succeeds after less than one second.

40

g) The following goal is representative for a class of problems that is trivial but
tedious to prove by hand. In this or a similar form it could emerge in the
area of metatheory of model logic [13]. fset decu solves it instantaneously.

1 Variables (T : choiceType)
2 (p q r : pred {fset T})
3 (F : {fset T }) .
4 Definition U := powerset F .
5 Definition S0 := [fset D in U | p D && q D] .
6 Definition A := [fset D in S0 | r D] .
7

8 Lemma test1 s C : s \ in C −> C \ in A −> s \ in F .
9 Proof . fset_decu (A , S0 , U) . Qed .

41

Bibliography

[1] Adam Chlipala: Certified Programming with Dependent Types (2014).
http://adam.chlipala.net/cpdt/

[2] Samuel Boutin: Using Reflection to Build Efficient and Certified Decision
Procedures. TACS 1997: 515-529, Springer 1997

[3] Christian Doczkal: Finite Sets over Countalbe Types in Ssreflect
http://www.ps.uni-saarland.de/formalizations/fset.php

[4] Alfredo Ferro, Eugenio G. Omodeo, Jacob T. Schwartz: Decision procedures
for some fragments of set theory. CADE 1980: 88-96, Springer 1980

[5] Domenico Cantone, Calogero G. Zarba: A New Fast Tableau-Based Deci-
sion Procedure for an Unquantified Fragment of Set Theory. FTP (LNCS
Selection) 1998: 126-136, Springer 2000

[6] Bernhard Beckert, Ulrike Hartmer: A Tableau Calculus for Quantifier-Free
Set Theoretic Formulae. TABLEAUX 1998: 93-107, Springer 1998

[7] Domenico Cantone, Calogero G. Zarba: A Tableau-Based Decision Proce-
dure for a Fragment of Set Theory Involving a Restricted Form of Quantifi-
cation. TABLEAUX 1999: 97-112, Springer 1999

[8] Domenico Cantone: Decision procedures for elementary sublanguages of
set theory: X. Multilevel syllogistic extended by the singleton and powerset
operators. J. Autom. Reasoning 7:193-230, 1991, Springer 1991

[9] Domenico Cantone, Rosa Ruggeri Cannata: Deciding set-theoretic formulae
with the predicate ’finite’ by a tableau calculus. Le Matematiche Vol 50, No
1 (1995)

[10] Domenico Cantone, Calogero G. Zarba, Rosa Ruggeri Cannata: A Tableau-
Based Decision Procedure for a Fragment of Set Theory with Iterated Mem-
bership. J. Autom. Reasoning 34(1): 49-72 (2005), Springer 2005

[11] Benjamin Shults: Comprehension and Description in Tableaux. 1997

[12] Coq Development Team: Coq Documentation
https://coq.inria.fr/documentation

[13] Christian Doczkal, Gert Smolka Completeness and Decidability Results for
CTL in Coq Interactive Theorem Proving (ITP 2014), Vol. 8558 of LNAI,
pp. 226-241, Springer, 2014

42

