Lob’s Theorem and Provability Predicates in Coq
Final Bachelor Talk

Janis Bailitis

Saarland University
Advisors: Dr. Yannick Forster, Dr. Dominik Kirst
Supervisor: Prof. Dr. Gert Smolka
Programming Systems Lab

August 23, 2024



Introduction

e Sufficiently strong formal systems S have provability predicates Pr(x) : F

» Pr(x) asserts provability of other formulas (S F ¢ iff S - Pr(p))
» Many different of various strengths, even for same formal system

Theorem (Gadel, 1931)
If Pr(x) and S are sufficiently strong, and S = ¢ <> =Pr(®), then ¢ is independent.

Problem (Henkin, 1952)
What happens if S+ ¢ < Pr(p)?

Theorem (Lob, 1955)

If Pr(x) and S are sufficiently strong, then Henkin's formulas are provable.



Lob’s Theorem and Motivation

Theorem (Lob’s theorem, 1955)

Let Pr(x) and S be sufficiently strong. For all sentences ¢,
(S F Pr(p) — @) implies (S F ).

e |Implies Godel’s second incompleteness theorem

» Mechanised only once: Paulson (2015) in Isabelle. Tedious task
» Paulson’s proof easily extends to Lob’s theorem

e Godel’s first incompleteness theorem mechanised often?
e Kirst and Peters: Computational proof of Godel's first incompleteness theorem

e | eave Godel's second incompleteness theorem as future work

This thesis: Is there a proof of Lob’s theorem a la Kirst and Peters?

!Shankar (1986); O'Connor (2005); Harrison (2009); Paulson (2015); Popescu and Traytel (2019); 3
Kirst and Peters (2023)



‘Sufficiently Strong’ in View of Lob’s Theorem

‘Sufficiently strong’ provability predicates satisfy the HBL conditions:
Hilbert-Bernays-Lob (HBL) Conditions (Hilbert-Bernays (1939), Lob (1955))

Pr(x) : IF satisfies
e necessitation if S ¢ implies S - Pr(p)

e internal necessitation if S+ Pr(p) — Pr(Pr(p))
e the distributivity law if S - Pr(¢ — ) — Pr(p) — Pr(¥)

‘Sufficiently strong’ theories S have the diagonalisation property:

Diagonalisation Property (Carnap (1934))

S has the diagonalisation property if for all ¢(x) : F there is G : F s.t.

SF G (G).

HBL + Diagonalisation property = Lob's theorem (20 lines Coq, 60 lines Isabelle)



Church’s Thesis (CT)

e This thesis: Formal systems of first-order arithmetic

e CT: ‘Every function is computable in a concrete model of computation.’?

e Results based on a variant of CT for arithmetic (CTpa / CTq):?

Axiom (CTpa, Hermes and Kirst (2022))

For all f: N — N there is @¢(x1, x2) : F such that for all n: N,
PAVy.pf(n,y) <y =fn.

Lemma (Representability, cf. Hermes and Kirst (2022))

If P: N — P is enumerable, there is pp(x) : F such that P n iff PA + @p(n).

'Kreisel (1965) as well as Troelstra and van Dalen (1988).
2The thesis uses EPF, (Richman (1983), Forster (2021)) implying CTpa (Kirst and Peters (2023)).



Exploiting Church’s Thesis

Ap. PA I ¢ is enumerable (mechanised by Forster, Kirst, and Smolka (2019))

Corollary

There is Prct(x) : F such that PA & @ iff PA F Prer(@).

CTpa easily shows that PA has the diagonalisation property.

Lemma (Diagonal Lemma, Carnap (1934))

For all o(x) : F thereis G : F s.t. PAF G < ¢(G).

e Godel's first incompleteness theorem (1931), with Rosser’s strengthening!
e Tarski's theorem (1935)
e Essential undecidability of PA

'Needs slight strengthening of CTpa which also follows from EPF, (Kirst and Peters (2023)).



External and Internal Provability

Is Prcr(x) sufficiently strong for Lob's theorem? Prcr(x) is external:

Definition (External Provability Predicates (Kreisel, 1953)!)

Pr(x) : F is external provability predicate for T if T I ¢ iff T F Pr(¢p).

Definition (Internal Provability Predicates)

Pr(x) : IF is internal provability predicate if it is both
e an external provability predicate, and
e satisfies the HBL conditions.

Does Prcr(x) satisfy the HBL conditions?

'Kreisel did not introduce the terminology external / internal. Feferman (1960) first used such terms 7
(extensional and intensional).



Church’s Thesis and Lob’s Theorem

Does Prcr(x) satisfy the HBL conditions? Not necessarily!

Definition (Mostowski’s Modification, 1965')

The Mostowski modification Pr"(x) : F of Pr(x) is
PrM(x) == Pr(x) A x # L.

PrM(x) does not satisfy distributivity law: PA & PrM(¢ — 1) — PrM(p) — PrM(1)

Lemma

Pr(x) is an external provability predicate, too.

Abstract perspective too weak!

'This particular formulation is from Bezboruah and Shepherdson (1976).



Defining an Internal Provability Predicate

Godel’s Approach (also widely used in literature)

o Prf(w, x) : F checking that w is a proof of x (w is seen as list of formulas)
o Pr(x):=3w.Prf(w, x)

Hilbert System (a la Rautenberg (2010), Troelstra and Schwichtenberg (2000))

Let H be a finite set of formulas. PA 4 ¢ is defined inductively.
PAFy 0 — PAFy @ peH p € PA

PA"H’(l) PA"HVXL...Xn.(p PAl—H(p

For right choice of ‘H: Have PA F ¢ iff PA 4 .



Defining an Internal Provability Predicate (Continued)

e Godel's provability predicate uses list functions
e List functions not native to PA — tedious to define (see Boolos (1993))

Definition (Extended Signature of Peano Arithmetic, simplified)

In addition to the symbols of PA, EPA contains the following function symbols:
[1 (nil) || (length) 24+ ¢ (append)
x::£ (cons) £[/] (indexed access) x ~> y (implication)
Based on such a definition, we

1. defined a candidate for an internal provability predicate, and

2. mechanised necessitation as well as the distributivity law for this candidate.

10



Contributions

Is there a proof of Lob’s theorem a la Kirst and Peters? No!

Mechanised proof of Lob's theorem

» For first-order arithmetic in Coq assuming HBL conditions and CTpa
» For HF set theory in Isabelle based on Paulson’s development

Mechanised diagonal lemma and important limitative theorems assuming CTpa

Analysed why CTpa is too weak for Lob’s theorem

Mechanised extension of PA easing definition of internal provability predicates

Gave candidate for internal provability predicate and parts of correctness proof

11



Mechanise internal necessitation

Decide whether to keep using extended PA

Contribute Isabelle development to Archive of Formal Proofs?
Contribute Coq development to Coq Library of First-Order Logic [Kir+22]
Mechanise axiom-free proof of diagonal lemma and limitative theorems

Discussion.

12
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Coq
e 2600 lines of code (600 specification, 1900 proof, 100 comment)
e Most intricate proof: Distributivity law in EHA (about 400 lines of code)
e Lots of code dealing with substitutions
Isabelle
e 100 lines of code (60 for L&b proof, 40 for lemmas)
e Can still be shortened
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Background: Used Hilbert System

Hip =P — @) Hp—=Y—=>T)=> W —=T) > 0—>T)
Hip =P = @ AYP) H(p A — )
Hp — o V) H(eAY = P)
H(Y = o V) HoVY = (p=7) = (Y= T) =)
H(L — @) H(p — Vx. @) x fresh for ¢
H((Vx. @) = p[x —t]) H({(Vx.¢ = 9P) = (Vx. @) = Vx. )
H(p[x = t] = Ix. @)  H((3Bx. ) = (Vx. 0 = Y) = ) x fresh for ¢
PAFy o — ¢ PA 4 @ pcH p e PA
PA by PA by Vx1. ... X @ PA b

Elements from Rautenberg, Troelstra and Schwichtenberg, as well as both.
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Extended PA

Definition (Extended Signature of Peano Arithmetic (EPA), simplified)

In addition to the symbols of PA, EPA contains the following function symbols:
[] (nil) || (length) 2+ ¢ (append)
x::4 (cons) £[i] (indexed access) x ~» y (implication)
Further, EPA adds the unary predicate symbol A to PA.

e EPAF ¢ — 1 =@ ~ 1 (object level implication function)
o If ¢ € H, then EPA - A(VX1. ... X5 @)
o If ¢ € PA, then EPAF Ay

25



Formal proofs: Spelling out (some of) the Details

Definition (Formal proofs)

A proof of ¢ is a nonempty list £ = [, ..., Yn] : L(F) with ¢ = 9, s.t. for each |
e 7; is an axiom of PA, a generalisation of a Hilbert axiom, or

e there are j, j/ < i such that %; follows from ;, 4 by modus ponens.

Definition (Provability predicate)

Pri(x,y) :=(3z. |x| = Sz A x[z] = y) AVi.i < |x] = WellFormed(x, /)
WellFormed(x, i) := A(x) vV 3/ . j < i AJ < inx]] = x[]=x][i]

26



Technical Background: Godel Numberings

Problem
Let o(x), 9 : F.

We used (1) for ‘substituting some encoding of ¢ for x in ¢'.
9 is not a number, but a formula.

Typical issue. Godel faced it himself.

Remark (Godelisation)

There are functions god : F — N, god~! : N — FF inverting each other.

() ~ ©(god(¥))

27



Technical Background: Mostowski’s Modification

There is Pr(x) such that PA F @ iff PA + Pr(p).

Definition (Mostowski’s Modification, 1965 (modified slightly))

PrM(x) ;== Pr(x) Ax # L.

Lemma

PA - ¢ iff PA - PrM(p).

e Suppose that PA ¢

1.

G

Observe that PA = Pr(p)

In the meta-level, we know that PA is consistent, so ¢ # L (and thus @ # 1)
PA decides equalities: PAF @ =1 or PAFp # L

By soundness and 2., PA/p = L

From 1.,3. and 4., conclude PA - Pr(p) Ap # L -



Technical Background: Mostowski’s Modification

There is Pr(x) such that PA F @ iff PA + Pr(p).
Definition (Mostowski’s modification, 1965 (modified slightly))

PrM(x) ;== Pr(x) Ax # L.

Lemma

PA - -PrM(1).

Argue inside PA.
e After introducing, have to show PA, Pr(L), L # L+ L
e By applying the assumption, left to show PA, Pr(L), L # L~ 1 =1
e This follows by reflexivity

29



Technical Background: CTpp is too Weak

Axiom (CTpa)

For every f : N = N, there is a formula ¢(x1, x2) such that for all n: N
PAFVYy. oA, y) < y="Ffn.

Example

Suppose the successor function S : N — N is represented by ps(x, y).
Question: Can we derive, for all n: N, that PA F ¢s(n, Sn)? Yes!

e Use property of ¢ws: PAFSh =Sn
e By definition of numerals, PAF Sn = Sn, easy to finish

Question: Can we derive PA - Vx. ps(x, S x)? No!
e Introduce x: PAF ps(x,Sx). No way to continue as x not a numeral

30



Technical Background: Diagonal Lemma

e Functions diag := Ap. (), and diagy := An. god(diag(god—1(n)))

e Suppose ¢(x). To find: G such that PAF G < ¢(G)

e Plug diagy into CTpa, get dg(x, y) with Vn : N. PA - Vx. dg(7, x) <> x = diagy n
e Define G’ :=Jy. dg(x,¥) Ap(y) and G := G'(G')

e Argue inside PA that

G=G'(G")=3y.dyg(G".y) Ao(y)
< Jy. y = diagy(98d(G")) A p(y)

< Jy.y =96d(G) A p(y)

< p(G)
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Technical background: Tarski’s Theorem

Theorem (Tarski’'s theorem)

There is no True(x) : IF such that for all formulae ¢
(NE @ — NE True(p)) and (N ¢ — N E = True(p)).

e Suppose True(x) has this property
e By diagonal lemma and soundness, find G such that NE G <> = True(G)

e Case distinction

» If NE G, then N E True(G)
Further, N £ ~True(G) from N G <> —True(G), i.e. N is inconsistent

» If N G, have NF —True(G)
Show N E G. Easy from NE G <> = True(G) O

32



Technical Background: Godel’s First Incompleteness Theorem

Theorem (Strong separability, cf. [HK23])

Suppose P, Q : N — P are

e both semi-decidable and

e disjoint (i.e. for alln: N, we have Pn— Qn— L).
Then, there is a formula ¢(x) such that for all n: N we have
(Pn— PAE @(n)) and (Q n — PAF —p(n)).

Corollary

We find SProv(x) : F such that for all formulas ¢
(PAF ¢ — PAE SProv(®)) A (PAF = — PA + —=SProv(p))
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Technical background: Godel’s First Incompleteness Theorem (Continued)

We have SProv(x) such that for all formulae ¢
(PAF ¢ — PAF SProv(®)) A (PAF = — PA F =SProv(p))

Proof (of Godel’s first incompleteness theorem).

e Need to find: Sentence G with PA G and PA Y/ -G
e Plug =SProv(x) into diagonal lemma, obtain PA - G <+ =SProv(G)
o fPAFG

» Obtain PA I SProv(G) by property of SProv(x)

» Observe that PA = =SProv(G) from diagonal lemma, contradiction
o If PAF -G

» Obtain PA  =SProv(G) by property of SProv(x)
» Observe that PA F G from diagonal lemma, contradiction
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