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This is a brief memo providing an overview of the current state of my Bachelor project, focus-

sing on the goals achieved so far, and how the results relate to the work previously done at the

Programming Systems Lab. Further, we aim to point out how our approach fits into the broader

landscape of (provability) logic.

1 Preliminaries
At first, let us fix a notational convention: If we have a formula 𝜑 and write 𝜑 (𝑥1, . . . , 𝑥𝑛), we
indicate that 𝜑 has 𝑛 free variables, unless stated otherwise.

Wework in constructive type theory and build upon some key results obtained from formalising

logic in type theory. We rely on results established by Kirst et al. [HK23],[KH23],[KP23]. Most

importantly, we build upon a variant of Church’s thesis for Robinson arithmetic, stating that any

function 𝑓 : N→ N can be represented by a Σ1 formula in Q . More formally, we assume:

Axiom 1.1 (CTQ, cf. [HK23]) For all 𝑓 : N → N there exists a Σ1-formula 𝜑 (𝑥,𝑦) such that for

all 𝑥 : N, Q ⊢ ¤∀𝑦.𝜑 (𝑥,𝑦) ¤↔𝑦 ≡ 𝑓 𝑥 .

Later, this axiom was refined to account for partial functions N ⇀ N. The initial variant of CTQ
can be derived from this statement.

Axiom 1.2 ((partial) CTQ, cf. [KP23]) For all 𝑓 : N ⇀ N there exists a Σ1-formula 𝜑 (𝑥,𝑦) such
that for all 𝑥,𝑦 : N, 𝑓 𝑥 ↓ 𝑦 ↔ Q ⊢ ¤∀𝑧.𝜑 (𝑥, 𝑧) ¤↔𝑧 ≡ 𝑦.

Kirst and Peters [KP23, section 5] use the term CTQ to refer to Axiom 1.2, while we will refer to

Axiom 1.1 by CTQ as we do not use partial CTQ directly. Using CTQ , we can derive the Weak
Representability Theorem playing a pivotal role in our project:

Fact 1.3 (Weak Representability Theorem) Suppose 𝑃 : N → P is an enumerable predicate.

We can find a Σ1-formula 𝜑 (𝑥) such that for all 𝑥 : N, 𝑃𝑛 ↔ Q ⊢ 𝜑 (𝑥).
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Another result following from partial CTQ we will use is the Strong SeparationTheorem:

Fact 1.4 (Strong SeparationTheorem) Let 𝑃, 𝑅 : N → P be disjoint, semi-decidable predicates.

There exists a Σ1-formula 𝜑 (𝑥) satisfying

∀𝑛.𝑃𝑛 → Q ⊢ 𝜑 (𝑛) ∧ 𝑅𝑛 → Q ⊢ ¤¬𝜑 (𝑛)

This gives rise to the following fact for decidable predicates:

Corollary 1.5 Let 𝑃 : N→ P be a decidable predicate. There exists a Σ1-formula 𝜑 (𝑥) such that

∀𝑛.𝑃𝑛 ↔ Q ⊢ 𝜑 (𝑛) ∧ ¬𝑃𝑛 ↔ Q ⊢ ¤¬𝜑 (𝑛).

Proof Since 𝑃 is decidable, both 𝑃 and 𝜆𝑛.¬𝑃𝑛 are semi-decidable. Further, both are clearly disjoint.

By the previous fact, we obtain a Σ1-formula 𝜑 (𝑥) such that

∀𝑛.𝑃𝑛 → Q ⊢ 𝜑 (𝑛) ∧ ¬𝑃𝑛 → Q ⊢ ¤¬𝜑 (𝑛).

For each of the the conversesQ ⊢ 𝜑 (𝑛) → 𝑃𝑛 andQ ⊢ ¤¬𝜑 (𝑛) → ¬𝑃𝑛, we decide 𝑃𝑛. If the decision
matches the conclusion of the implications, we are done. Otherwise, for the first converse, we know

that ¬𝑃𝑛 as well as Q ⊢ 𝜑 (𝑛). Exploiting ¬𝑃𝑛 → Q ⊢ ¤¬𝜑 (𝑛) gives us Q ⊢ ¤¬𝜑 (𝑛). Contradictory
as Q is consistent using the standard model. Similarly, one handles the case 𝑃𝑛 when proving

Q ⊢ ¤¬𝜑 (𝑛) → ¬𝑃𝑛. ■

Equipped with these notions, we started our exploration of Löb’s theorem.

2 Löb’s Theorem
The initial goal was to show Löb’sTheorem, a result of provability logic stating that when we prove

a formula in a sufficiently strong formal system, we can assume provability of this formula without

additional cost. More formally, there is a modality, the box-modality (written □), expressing prov-

ability of a formula. Löb’s theorem can then be stated as the following rule, where T is an arbitrary

theory:

Theorem 2.1 (Löb) Suppose 𝜑 is a sentence. In order to prove T ⊢ 𝜑 , it suffices to show T ⊢
□𝜑 ¤→𝜑 .

Three questions arose: Firstly, how can □ be defined? Secondly – given a sensible definition of □
– how can Löb’s Theorem be shown? Lastly, which theory should we choose? We assumed that

Peano arithmetic suffices, so we raised the question whether Robinson arithmetic is still enough.

The second question admits a fortunate answer. As long as □ obeys four axioms (pointed out

below), Löb’s theorem can be derived. In particular, we can abstract away concrete implementation

details of the modality’s definition. The required axioms are as follows:

1. Necessitation: For all 𝜑 : F, T ⊢ 𝜑 implies T ⊢ □𝜑 .
2. Modal fixed points: Whenever 𝜑 is a sentence, we can construct another sentence 𝜓 such that

Q ⊢ 𝜓 ¤↔(□𝜓 ¤→𝜑).
3. Internal necessitation: For all 𝜑 : F, we can derive T ⊢ □𝜑 ¤→□□𝜑 .
4. Box distributivity: For all 𝜑,𝜓 : F, we have T ⊢ □(𝜑 ¤→𝜓 ) ¤→□𝜑 ¤→□𝜓 .
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For any operation □ on formulas and theories T obeying these rules, Löb’s theorem can be de-

rived; such an argument has been done by Boolos et al. [BBJ07, theorem 18.4], with a slightly

different handling of modal fixed points. A first version of this proof is formalised in Coq in the file

coq/Loeb formalisation fol.v. As of now, the formalisation needs some minor adjustments to

account for the current formulation of our axioms, but it is a purely modal-logical argument not

using any internals of formulas and deduction systems (apart from the inference rules).

3 Defining the Box modality
In search of a definition for □, we wanted to obtain a formula Prov(𝑥) characterising provability

in our deduction system. At first, we worked in Robinson arithmetic. Intuitively, we asked for the

property ∀𝜏 : F.Q ⊢ 𝜏 ↔ Q ⊢ Prov(𝜏). By defining □𝜏 := Prov(𝜏), we would have a candidate for

the Box modality. Unfortunately, Prov(𝜏) is not syntactically correct, as we may only substitute in

terms, but not entire formulas. Gödel numbering is the road to success in resolving this issue:

Fact 3.1 (Gödel numberings) There exist functions g¥od : F → N and g¥od−1 : N → F inverting
each other, i.e. ∀𝑛.g¥od(g¥od−1 (𝑛)) = 𝑛 and ∀𝜑.g¥od−1 (g¥od(𝜑)) = 𝜑 . We call g¥od(𝜑) the Gödel
number of 𝜑 .

Remark 3.2 In the Coq mechanisation, we consistently use g for g¥od and f for g¥od−1. In the

future, we will work with coercions to allow for a more readable Coq development.

Definition 3.3 For a formula 𝜑 , we define ⌜𝜑⌝ := g¥od(𝜑). This is the Gödel numeral or quine
quote of 𝜑 .

The term ‘quine quote’ was used by Norrish [Nor18].

Having this machinery set up, we can derive the Box modality.

Lemma 3.4 There exists a Σ1-formula Prov(𝑥) satisfying the following equivalence: ∀𝜏 .Q ⊢ 𝜏 ↔
Q ⊢ Prov(⌜𝜏⌝).

Proof We apply the weak representability theorem. The predicate 𝜆𝜑.Q ⊢ 𝜑 is enumerable by

standard techniques, cf. [FKS19]. A routine argument concludes enumerability of 𝜆𝑛.Q ⊢ g¥od−1 (𝑛).
Applying this theorem, we obtain a Σ1-formula Prov(𝑥) such that for all𝑚 : N

Q ⊢ g¥od−1 (𝑚) = (𝜆𝑛.Q ⊢ g¥od−1 (𝑛))𝑚 ↔ Q ⊢ Prov(𝑚).

If 𝜏 is any formula, we can plug in g¥od(𝜏) for𝑚 and arrive at

Q ⊢ 𝜏 = Q ⊢ g¥od−1 (g¥od(𝜏)) ↔ Q ⊢ 𝜑 (g¥od(𝜏)) = Q ⊢ 𝜑 (⌜𝜏⌝)

and are done. ■

Finally, we can define the Box modality.

Definition 3.5 (Box modality) For any formula 𝜏 , we set □𝜏 := Prov(⌜𝜏⌝).

Immediately, we obtain the necessitation rule.

Fact 3.6 (Necessitation for Box) For all formulas 𝜏 , we have that Q ⊢ 𝜏 implies Q ⊢ □𝜏 .
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Proof Unfold the definition of □. The remaining goal is a direct consequence of Lemma 3.4. ■

Next, we were interested in whether this definition is strong enough for the remaining three prop-

erties our modality should have. Kirst noted that we may need to switch to Peano arithmetic for

Box distributivity and internal necessitation, while the existence of modal fixed points may be de-

rivable fromQ alone, which was our subsequent aim. Kirst suspected that, along the way, we need

Gödel’s diagonal lemma, hence we inspected this result in depth.

4 The diagonal lemma
In computability theory, we are often interested in a program’s behaviour on its ownGödel number.

In a similar fashion, we can analyse a formula’s truth or provability when its own Gödel numeral

is substituted in for the free variables. More specifically, we are interested in substituting in a

formula’s Gödel numeral for one of the free variables.

Definition 4.1 (Diagonalisation, cf. [Smi22]) Let 𝜑 (𝑥) be any formula (with potentially more

than one free variable). We say that 𝜑 (⌜𝜑⌝) is the diagonalisation of 𝜑 . This gives rise to a

function diag : F→ F, 𝜑 ↦→ 𝜑 (⌜𝜑⌝).

We can define a similar function on the level of Gödel numbers:

Definition 4.2 diagN : N→ N, 𝑛 ↦→ g¥od(diag(g¥od−1 (𝑛))) sends a formula’s Gödel number to the

Gödel number of its diagonalisation.

Note that CTQ applies to diagN; this is why we introduced this function at all.

We have a straightforward interchangeability result.

Lemma 4.3 Let 𝜑 be a formula. Then diagN (g¥od(𝜑)) = g¥od(diag(𝜑)).

Proof Immediate from the definitions and the identity g¥od−1 (g¥od(𝜑)) = 𝜑 . ■

Ultimately, our aim is to show the following result, the well known diagonal lemma.

Theorem 4.4 (Diagonal lemma for Q) Let 𝐵(𝑥) be a formula. There exists a sentence𝐺 satisfy-

ing Q ⊢ 𝐺 ¤↔𝐵(⌜𝐺⌝).

Interestingly, diagonalisation is nowhere mentioned in the theorem statement. However, diagonal

thinking plays a pivotal role in its proof. Before heading straight to showing the claim, let us discuss

a preliminary result making our argument easier to digest.

Lemma 4.5 There exists a Σ1-formula dg(𝑥,𝑦) such that for all 𝜓 : F, Q ⊢ ¤∀𝑦.dg(⌜𝜓 ⌝, 𝑦) ¤↔𝑦 ≡
⌜diag(𝜓 )⌝.

Proof With CTQ , we find a Σ1-formula dg(𝑥,𝑦) satisfying, for all 𝑥 : N,

Q ⊢ ¤∀𝑦.dg(𝑥,𝑦) ¤↔𝑦 ≡ diagN (𝑥).

Suppose𝜓 : F. We obtain, by setting 𝑥 = g¥od(𝜓 ),

Q ⊢ ¤∀𝑦.dg(⌜𝜓 ⌝, 𝑦) ¤↔𝑦 ≡ diagN (g¥od(𝜓 )) .

We finish by rewriting with Lemma 4.3. ■
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Having all this in mind, we can discuss the proof of Theorem 4.4. Apart from getting the substitu-

tions right, over which we abstract here, the argument itself is not very involved provided that we

instantiate the existential quantifier with a sensible candidate. Indeed, finding this formula is a bit

delicate and hence the true art in showing this claim. The proof idea is from [BBJ07].

Proof (of Theorem 4.4) First, we define 𝐺 . We inspect the formula 𝐹 (𝑥) := ¤∃𝑦.dg(𝑥,𝑦) ¤∧𝐵(𝑦).
We set 𝐺 := diag(𝐹 ) = 𝐹 (⌜𝐹 ⌝). Clearly, 𝐺 is closed.

We are left to show Q ⊢ 𝐺 ¤↔𝐵(⌜𝐺⌝). After unfolding the definitions of 𝐺 and 𝐹 , we arrive at

Q ⊢ ( ¤∃𝑦.dg(⌜𝐹 ⌝, 𝑦) ¤∧𝐵(𝑦)) ¤↔𝐵(⌜𝐺⌝).

The direction from left to right is straightforward: We introduce our assumption, and destruct the

existential as well as the conjunction. That is, we have, for some term 𝑦,

Q, dg(⌜𝐹 ⌝, 𝑦), 𝐵(𝑦) ⊢ 𝐵(⌜𝐺⌝).

We apply Lemma 4.5 to our assumption dg(⌜𝐹 ⌝, 𝑦) and obtain the proof state

Q, dg(⌜𝐹 ⌝, 𝑦), 𝐵(𝑦), 𝑦 ≡ ⌜diag(𝐹 )⌝ ⊢ 𝐵(⌜𝐺⌝).

Since𝐺 = diag(𝐹 ), we finish by rewriting on the meta level followed by a rewrite with 𝑦 ≡ ⌜𝐺⌝ in
the deduction system.

For the converse, we have to show

Q, 𝐵(⌜𝐺⌝) ⊢ ¤∃𝑦.dg(⌜𝐹 ⌝, 𝑦) ¤∧𝐵(𝑦).

Instantiating the existential with ⌜𝐺⌝ leaves us to prove

Q, 𝐵(⌜𝐺⌝) ⊢ dg(⌜𝐹 ⌝, ⌜𝐺⌝) ¤∧𝐵(⌜𝐺⌝).

By the assumption and conjunction rules as well as weakening, we are left to show

Q ⊢ dg(⌜𝐹 ⌝, ⌜𝐺⌝)

following from Lemma 4.5 as 𝐺 = diag(𝐹 ). ■

5 Applications of the diagonal lemma
Having established the diagonal lemma, we can draw our attention to some important corollaries,

including the existence of modal fixed points, contributing to the proof of Löb’s theorem.

5.1 Modal fixed points
Wewill now clarify how the diagonal lemma contributes to the fixed point theorem. The high-level

idea is, given a sentence 𝜑 , to apply the diagonal lemma to the formula Prov(𝑥) ¤→𝜑 . The result will

then satisfy our requirements. The following proof accounts for all technical details.

Theorem 5.1 (Modal fixed points) For all sentences 𝜑 , there exists a sentence 𝜓 such that Q ⊢
𝜓 ¤↔(□𝜓 ¤→𝜑)

Proof We use the diagonal lemma to obtain a sentence 𝜓 satisfying Q ⊢ 𝜓 ¤↔(Prov(⌜𝜓 ⌝) ¤→𝜑).
Applying the definition of Box gives us our goal Q ⊢ 𝜓 ¤↔(□𝜓 ¤→𝜑). ■
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5.2 Tarski’s indefinability result
In this and the subsequent section, we explore certain limits of our deductive system following

from the diagonal lemma. From CTQ , we concluded capability of Q to represent type-theoretic

functions. In a similar fashion, we can ask whether there is a notion to ‘represent’ predicates

N→ P inside the deduction system. Indeed, there is, and one talks of a predicate being definable.
The definition is taken from Boolos et al. [BBJ07].

Definition 5.2 (Definable) Let 𝑃 : N → P be a predicate and T a theory. The formula 𝜑 (𝑥)
defines 𝑃 in T if, for all 𝑛 : N, we have both 𝑃𝑛 → T ⊢ 𝜑 (𝑛) and ¬𝑃𝑛 → T ⊢ ¤¬𝜑 (𝑛).

Definition 5.3 (Definablility) A predicate 𝑃 : N → P is said to be definable in a theory T if

there exists a formula defining 𝑃 in T .

Remark 5.4 Every decidable predicate is definable in any extension of Q by Corollary 1.5 and

weakening.

Next, we focussed on the predicate 𝜆𝑛.T ⊢ g¥od−1 (𝑛) for any consistent extension T ofQ . It turned

out that it is not definable.

Lemma 5.5 (Indefinability lemma) Let T be a consistent theory extendingQ . 𝜆𝑛.T ⊢ g¥od−1 (𝑛)
is not definable in T .

Before proving this claim, we remind ourselves that we can use classical reasoning when proving

distinguished claims, the so called stable claims (cf. [Smo24]):

Definition 5.6 Suppose 𝑃 : P. We say that 𝑃 is stable if ¬¬𝑃 → 𝑃 .

Fact 5.7 (Classical reasoning for stable claims) Suppose 𝑃,𝑄 : P.

We have stable(𝑃) → (𝑄 ∨ ¬𝑄 → 𝑃) → 𝑃 .

We are now ready to show the indefinability lemma. The proof idea is due to Boolos et al. [BBJ07].

Proof (of Lemma 5.5) Suppose 𝑃 := 𝜆𝑛.T ⊢ g¥od−1 (𝑛) was definable witnessed by 𝜑 (𝑥). Using
the diagonal lemma, we find a sentence 𝐺 such that Q ⊢ 𝐺 ¤↔ ¤¬𝜑 (⌜𝐺⌝).

We have to show ⊥, which is stable by a straightforward argument. Using Fact 5.7, we assume

that T ⊢ 𝐺 ∨ T ⊬ 𝐺 . Case analysis.
If T ⊢ 𝐺 , there exists a list𝐴 ⊆ T witnessing this, i.e. 𝐴 ⊢ 𝐺 . As 𝜑 (𝑥) defines 𝑃 , and 𝑃 (g¥od(𝐺))

holds, we conclude T ⊢ 𝜑 (⌜𝐺⌝), i.e. 𝐵 ⊢ 𝜑 (⌜𝐺⌝) for some list 𝐵 ⊆ T . By weakening, we obtain

Q, 𝐴, 𝐵 ⊢ 𝐺 ¤↔ ¤¬𝜑 (⌜𝐺⌝), Q, 𝐴, 𝐵 ⊢ 𝐺 as well as Q, 𝐴, 𝐵 ⊢ 𝜑 (⌜𝐺⌝). We apply T ’s consistency to our

goal and have to show T ⊢ ¤⊥. Straightforward from the assumptions, as Q, 𝐴, 𝐵 is contained in T .

If we obtain T ⊬ 𝐺 , we apply this assumption to our goal and have to show T ⊢ 𝐺 . Now, since
¬𝑃 (g¥od(𝐺)) holds, we conclude T ⊢ ¤¬𝜑 (⌜𝐺⌝), i.e. 𝐴 ⊢ ¤¬𝜑 (⌜𝐺⌝) for some list 𝐴 ⊆ T . Again, by

weakening, have Q, 𝐴 ⊢ 𝐺 ¤↔ ¤¬𝜑 (⌜𝐺⌝) as well as Q, 𝐴 ⊢ ¤¬𝜑 (⌜𝐺⌝). As our goal is T ⊢ 𝐺 , we are

done since Q, 𝐴 is contained in T . ■

While this result is somewhat abstract, it has interesting consequences. One of which is Tarski’s
Theorem stating that the theory of sentences correct for N is not definable.

1

1
As of now, I am not sure how this ‘correctness’ is modelled in our set-up. In Boolos’ et al. book, a formula is ‘correct’ if it

is true in the his notion of standard interpretation, which most likely coincides with our [KH23, Definition 4] definition

of ⊨ with N as domain type, picking the standard meta-level predicates for the predicate symbols. I am working on

resolving this issue.
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Corollary 5.8 (Tarski’s Theorem.) The theory 𝜆𝜑.N ⊨ 𝜑 is a not definable.

Proof The theory in question is a consistent extension of Q and hence not definable by

Lemma 5.5. ■

Finally, we can conclude this section with an argument that for any consistent extension T of Q ,

it is not decidable whether a formula is derivable from T or not. Most prominently, we cannot

decide whether a formula is a theorem of Q .

Corollary 5.9 Let T be a consistent extension of Q . The predicate 𝜆𝜑.T ⊢ 𝜑 is not decidable.

Proof Suppose, for contradiction, that 𝑃 := 𝜆𝜑.T ⊢ 𝜑 was decidable. A routine argument derives

decidability of 𝑅 := 𝜆𝑛.T ⊢ g¥od−1 (𝑛). By Corollary 1.5, 𝑅 is definable, whereas Lemma 5.5 asserts

indefinability of 𝑅. Absurd. ■

In essence, the results derived in this section indicate certain boundaries our deduction system

has when it comes to interaction with the meta level – even if we allow for arbitrary consistent

extensions ofQ . This why these (and somemore) theorems are also known as ‘limitative theorems’,

for instance in book by Boolos et al. [BBJ07].

5.3 Gödel’s first incompleteness theorem
Next, we will focus on another consequence of the diagonal lemma: The existence of a sentence

that can neither be proven nor refuted in Q . That is, we will prove a variant of Gödel’s first incom-

pleteness result.

Theorem 5.10 (Gödel’s first incompleteness theorem for Q) There exists a sentence 𝐺 such

that neither Q ⊢ 𝐺 nor Q ⊢ ¤¬𝐺 .

Before heading to the proof, we need to draw our attention to intuitionistic and classical reason-

ing. As we want our results to be as general as possible, we do not stick to intuitionistic (⊢𝑖 ) or
classical (⊢𝑐 ) reasoning in our theorem statements. Unfortunately, the current proof needs classical

reasoning within the deduction system once, so we could only show that Q ⊬𝑐 ¤¬𝐺 . While this

immediately refutes any intuitionistic derivation due to classical reasoning being strictly stronger,

the proof-mode had trouble destructing assumptions when in classical mode, so we needed to find

a way circumventing this. We found such a way, and the details can be found in our proof. We

would like to emphasise our reliance on the following result:

Fact 5.11 (𝚺1-conservativity) Let 𝜑 be a Σ1-sentence such that Q ⊢𝑐 𝜑 . Then Q ⊢ 𝜑 .

As opposed to the library, this is a slightly different yet derivable formulation.

For the proof of Gödel’s result, we use Boolos’ et al. version of Σ1 stating that we can write

Prov(𝑥) = ¤∃𝑦.Prf (𝑥,𝑦) for some Δ1-formula Prf (𝑥,𝑦). We elaborate on this step in the discussion.

Definition 5.12 (𝝎-(in)consistency) Let T be a theory. We say that T is 𝜔-inconsistent if it
proves T ⊢ ¤∃𝑥 .𝜏 (𝑥) for formula some 𝜏 (𝑥), but also admits a derivation of T ⊢ ¤¬𝜏 (𝑛) for all 𝑛 : N.

A theory not being 𝜔-inconsistent is said to be 𝜔-consistent.

Axiom 5.13 Q is 𝜔-consistent.
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Proof (of Theorem 5.10) By the diagonal lemma, we can find a sentence 𝐺 such that Q ⊢
𝐺 ¤↔ ¤¬Prov(⌜𝐺⌝). We show that Q ⊬ 𝐺 as well as Q ⊬ ¤¬𝐺 .

Suppose Q ⊢ 𝐺 . By Lemma 3.4, conclude Q ⊢ Prov(⌜𝐺⌝). Furthermore, we obtain Q ⊢
¤¬Prov(⌜𝐺⌝) from Q ⊢ 𝐺 ¤↔ ¤¬Prov(⌜𝐺⌝). This is contradictory since Q is consistent using the

standard model.

Now, assume Q ⊢ ¤¬𝐺 . We show that Q is 𝜔-inconsistent, contradicting Axiom 5.13. We pick

Prf (⌜𝐺⌝, 𝑦) as witness for 𝜔-inconsistency.
At first, we show that Q ⊢ ¤∃𝑥 .Prf (⌜𝐺⌝, 𝑥). It suffices to verify Q ⊢ Prov(⌜𝐺⌝) by definition of

Prf. By Fact 5.11, it is enough to show Q ⊢𝑐 Prov(⌜𝐺⌝). This fact is applicable since Prov(⌜𝐺⌝) is
a Σ1-sentence. By the contradiction rule, we are left to prove

Q, ¤¬Prov(⌜𝐺⌝) ⊢𝑐 ¤⊥,

for which

Q, ¤¬Prov(⌜𝐺⌝) ⊢ ¤⊥

suffices. We apply our assumption Q ⊢ ¤¬𝐺 and end up in the proof state

Q, ¤¬Prov(⌜𝐺⌝) ⊢ 𝐺.

Due to Q ⊢ 𝐺 ¤↔ ¤¬Prov(⌜𝐺⌝) obtained from the diagonal lemma, we are done.

Next, we verify that Q ⊢ ¤¬Prf (⌜𝐺⌝, 𝑛) for all 𝑛 : N. Now that Prf (𝑥,𝑦) is Δ1 and ⌜𝐺⌝ as well as
𝑛 are closed as numerals, we get Q ⊢ Prf (⌜𝐺⌝, 𝑛) or Q ⊢ ¤¬Prf (⌜𝐺⌝, 𝑛). The latter case proves our

goal. For the former case, we employ falsity elimination. With Q being consistent, we conclude

Q ⊬ 𝐺 from Q ⊢ ¤¬𝐺 . From Q ⊢ Prf (⌜𝐺⌝, 𝑛), we derive Q ⊢ ¤∃𝑥 .Prf (⌜𝐺⌝, 𝑥), which is equivalent to

Q ⊢ Prov(⌜𝐺⌝). By Lemma 3.4, we acquire a derivation of Q ⊢ 𝐺 , clashing with our assumption

Q ⊬ 𝐺 . ■

Remark 5.14 Let T be a consistent and 𝜔-consistent extension of Q admitting a formula 𝜑 (𝑥)
satisfying ∀𝜏 : F.T ⊢ 𝜏 ↔ T ⊢ 𝜑 (⌜𝜏⌝). The same proof shows Gödel’s incompleteness theorem for

T . We underline this claim’s lack of verification.

If 𝜆𝜑.T ⊢ 𝜑 is enumerable, I postulate the existence of such a formula with a slightly generalised

version of the weak representability theorem, but it is not fully certain whether this approach

works.

Remark 5.15 In the proof above, we have only used the 𝜔-consistency for the Σ1-formula

¤∃𝑥 .Prf (⌜𝐺⌝, 𝑥). Using the lemma Sigma1 witness from the library, we can show𝜔-consistency of

Q for such a special kind of formulas. In consequence, we can show Gödel’s theorem forQ without

relying on more than CTQ being true.

In the proof, we used many assumptions requiring sophisticated arguments. Most prominently, we

used that Prov(𝑥) is of the form ¤∃𝑦.Prf (𝑥,𝑦) and we relied on 𝜔-consistency of Q on Σ1-formulas.

Also, we used Σ1-conservativity, although this may be obsolete. Still, this proof is important since

many textbooks, such as [Smi22] and [BBJ07] use a similar argumentation showing the claim.

We can, however, employ Fact 1.4 to make the proof significantly easier, which is what we will

do next. At first, we need an adapted provability formula.

Lemma 5.16 There exists a Σ1-formula SProv(𝑥) satisfying

∀𝜑 : F.Q ⊢ 𝜑 → Q ⊢ SProv(⌜𝜑⌝) ∧ Q ⊢ ¤¬𝜑 → Q ⊢ ¤¬SProv(⌜𝜑⌝).
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Proof We apply Fact 1.4. Since 𝜆𝜑.Q ⊢ 𝜑 is enumerable by standard techniques (cf. [FKS19]),

𝜆𝜑.Q ⊢ ¤¬𝜑 can be shown enumerable, too. We conclude that both 𝑃 := 𝜆𝑛.Q ⊢ g¥od−1 (𝑛) and
𝑅 := 𝜆𝑛.Q ⊢ ¤¬g¥od−1 (𝑛) are also enumerable. As N is discrete, we obtain that 𝑃 and 𝑅 are semi-

decidable. By virtue of Q’s consistency, 𝑃 and 𝑅 are disjoint. We obtain a Σ1-formula SProv(𝑥),
such that

∀𝑛 : N.𝑃𝑛 → Q ⊢ SProv(𝑛) ∧ 𝑅𝑛 → Q ⊢ ¤¬SProv(𝑛).

Now, suppose 𝜑 : F. Setting 𝑛 = g¥od(𝜑) in the result from above yields

𝑃 (g¥od(𝜑)) → Q ⊢ SProv(⌜𝜑⌝) ∧ 𝑅(g¥od(𝜑)) → Q ⊢ ¤¬SProv(⌜𝜑⌝).

We are done since 𝑃 (g¥od(𝜑)) = Q ⊢ 𝜑 and 𝑅(g¥od(𝜑)) = Q ⊢ ¤¬𝜑 . ■

Remark 5.17 While we have Q ⊢ Prov(⌜𝜑⌝) → Q ⊢ 𝜑 for any formula 𝜑 , the implication Q ⊢
SProv(⌜𝜑⌝) → Q ⊢ 𝜑 has not been inspected yet.

We are now ready to present a much shorter proof of Gödel’s first incompleteness theorem.

Proof (of Theorem 5.10, alternative) We apply the diagonal lemma to ¤¬SProv(𝑥) and obtain a

sentence 𝐺 such that Q ⊢ 𝐺 ¤↔ ¤¬SProv(⌜𝐺⌝). We will show: Q ⊬ 𝐺 and Q ⊬ ¤¬𝐺 .
Suppose Q ⊢ 𝐺 . Our reasoning is the same as in our first proof. By Lemma 5.16, we obtain Q ⊢

SProv(⌜𝐺⌝). From Q ⊢ 𝐺 ¤↔ ¤¬SProv(⌜𝐺⌝) and Q ⊢ 𝐺 , we learn Q ⊢ ¤¬SProv(⌜𝐺⌝). Contradiction
to Q’s consistency.

Next, let a derivation of Q ⊢ ¤¬𝐺 be given. From Lemma 5.16, we get Q ⊢ ¤¬SProv(⌜𝐺⌝). Using
Q ⊢ 𝐺 ¤↔ ¤¬SProv(⌜𝐺⌝), we obtain Q ⊢ 𝐺 . Again, this clashes with consistency of Q . ■

6 Discussion
In some books, the diagonalisation of a formula is defined differently, for instance in Boolos’, Bur-

gess’ and Jeffrey’s book [BBJ07]. Instead of picking 𝜑 (⌜𝜑⌝) directly, the formula ¤∃𝑥 .𝑥 ≡ ⌜𝜑⌝ ¤∧𝜑 (𝑥)
is chosen. Clearly, both are logically equivalent, but the latter imposes technical overhead since

we need additional rewrites when using it in proofs. Still, the second formulation does not use

any substitutions. However, we opted for the first formulation; this also used in the literature, for

instance by Smith [Smi22].

Both authors also use a property similar to our CTQ-assumption. Since they are not working

in constructive type theory, they impose computability conditions on the underlying function 𝑓 :

Both authors arrive at a formulation stating that 𝜑 (𝑥,𝑦) captures 𝑓 in Q if Q ⊢ ¤∀𝑦.𝜑 (𝑥,𝑦) ¤↔𝑦 ≡ 𝑧,

provided that 𝑓 (𝑥) = 𝑧. While Smith requires 𝑓 to be primitive recursive and therefore total, we

can always replace 𝑧 with 𝑓 (𝑥) and obtain our notion of CTQ . Boolos et al., on the contrary, allow

𝑓 to be an arbitrary recursive function, so 𝑓 (𝑥) does not need to be defined for all 𝑥 . Note that

this notion of representability asserts 𝑓 (𝑥) = 𝑧 → Q ⊢ ¤∀𝑦.𝜑 (𝑥,𝑦) ¤↔𝑦 ≡ 𝑧 but does not enforce the

converse Q ⊢ ¤∀𝑦.𝜑 (𝑥,𝑦) ¤↔𝑦 ≡ 𝑧 → 𝑓 (𝑥) = 𝑧 to hold true. Our definition of partial CTQ requires

both directions. Still, this does not make any difference in our setting as we only work with total

functions.

Lastly, CTQ states that the representing formula is Σ1. This coincides with Smith’s result, up to

minor differences in the definition of Σ1: Instead of being a Δ1 (cf. [KP23, definition 23]; this prop-

erty is semantic) formula preceded by existential quantifiers, Smith’s Σ1-formulas are those that
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do not use quantification
2
(he calls them Δ0 formulas; this property is purely syntactic) preceded

by existentials. Boolos et al. are even stronger and claim that the representing formula is of the

form ¤∃𝑥 .𝜏 (𝑥) with 𝜏 (𝑥) being Δ0. Hermes and Kirst already showed a somewhat related theorem:

Σ1-compression, cf. [HK23].

Any Δ0-sentence (that is, a Δ0 formula with closed terms substituted in for the free variables)

can be decided within Q (cf. [Smi22, theorem 23]), so any Δ0-formula is a Δ1-formula in our sense.
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