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Abstract

Löb’s theorem for Peano arithmetic (PA) states that, when proving a sentence, one
can assume a sentence expressing provability of it. This result was shown by Löb in
1955, solving a problem posed by Henkin in 1952. In its general form, it concerns
sufficiently strong formal systems of first-order arithmetic, assuming provability
being expressed by a particular formula, which is called provability predicate. To
derive the result in an abstract way, it suffices to show that the provability predicate
obeys a set of axioms called Hilbert-Bernays-Löb derivability conditions.
Even for a fixed formal system, there are many different provability predicates of
varying strengths, and not all qualify for Löb’s theorem. Following Feferman’s no-
tions of extensionality and intensionality, we distinguish external provability pred-
icates that characterise theorems of PA, and internal ones that, in addition, allow
proving PA’s deduction rules as object-level implications. To define an external
provability predicate abstractly, we employ Church’s thesis (CT) for arithmetic,
which states that any function in a constructive setting can be represented by a for-
mula in PA. Löb’s Theorem requires internal provability, and we explain why one
cannot define this – unlike external provability – abstractly using CT. To demon-
strate that such an abstract perspective is nevertheless useful, we show Gödel’s di-
agonal lemma using CT, from which we derive both Tarski’s theorem as well as
Gödel’s first incompleteness theorem.
To define a candidate for an internal provability predicate – usually a tedious task –
we extend the signature of PA by functions simplifying such a definition. Wemech-
anise a large part of the correctness proof for this candidate, leaving one derivability
condition called internal necessitation as further work. Based on an already fully
mechanised internal provability predicate from Paulson’s proof of Gödel’s incom-
pleteness theorems, we mechanise a proof of Löb’s theorem.
All key results presented in this thesis are mechanised in the Coq proof assistant,
based on existing libraries for first-order logic and synthetic computability. A small
part is mechanised in Isabelle/HOL on top of Paulson’s development. Not only do
these tools assure error-free reasoning, proof assistants are also extremely helpful
in organising large proofs, and they help to make informal arguments rigorous.



Acknowledgements

Most importantly, I want to thank my advisors Dominik Kirst and Yannick Forster
for their support during this project. I am extremely thankful that they gaveme the
ability to work on this deeply interesting topic. They provided an outstanding sup-
port, but also gave me the chance to developmy ideas independently. In particular,
I am very grateful for the helpful feedback they provided.
I also want to thank Professor Smolka for giving me the opportunity to write a
Bachelor’s thesis at his lab. Further, I want to thank him for introducing me to the
exciting topics in computational logic since my first semester.
I also thank Haoyi Zeng and Christian Michel for proofreading parts of this thesis.
Further, Iwant to thank Fabian Brenner andChristianMichel for being great friends
who made my stay in Saarbrücken fun and worthwhile.
I would like to thank Professor Groves no less for making me the person I am now.
I am extremely grateful for the support he provided during the last three years.
Finally, I would like to thank Professor Smolka and Dominik Kirst for reviewing
this thesis.



Contents

Abstract iii

1 Introduction 1
1.1 Historical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Type-Theoretic Preliminaries 6
2.1 Constructive Type Theory . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Synthetic Computability Theory and Church’s Thesis . . . . . . . . . 8

2.2.1 Basic Synthetic Definitions . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Church’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 First-Order Arithmetic 11
3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Natural Deduction Systems . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Hilbert Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Robinson and Peano Arithmetic . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Properties of Σ1-formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 External Provability Predicates 22
4.1 Representability in Arithmetic . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Defining Provability Predicates using Church’s Thesis . . . . . . . . . 24

5 Diagonalisation and the Limitative Theorems 27
5.1 The Diagonal Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 The Limitative Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Definability and Tarski’s Theorem . . . . . . . . . . . . . . . . 30
5.2.2 Gödel’s First Incompleteness Theorem . . . . . . . . . . . . . . 31

5.3 The Generalised Diagonal Lemma . . . . . . . . . . . . . . . . . . . . 33



vi Contents

6 Löb’s Theorem 38
6.1 The Hilbert-Bernays-Löb Derivability Conditions . . . . . . . . . . . 38
6.2 Proof from the Hilbert-Bernays-Löb Derivability Conditions . . . . . 41
6.3 Gödel’s Second Incompleteness Theorem . . . . . . . . . . . . . . . . 43

7 Internal Provability Predicates 45
7.1 Church’s Thesis and Internal Provability Predicates . . . . . . . . . . 45

7.1.1 Mostowski’s Modification . . . . . . . . . . . . . . . . . . . . . 46
7.1.2 List Functions from Church’s Thesis . . . . . . . . . . . . . . . 47

7.2 Internal Provability Predicates using Lists . . . . . . . . . . . . . . . . 49
7.2.1 Modus Ponens for Provability . . . . . . . . . . . . . . . . . . . 51
7.2.2 Necessitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2.3 Internal Necessitation . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Conclusion 55
8.1 Notes on the Mechanisation . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Admissibility of Church’s Thesis for Arithmetic . . . . . . . . . . . . 57
8.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A Appendix 63
A.1 Equivalence proof of Hilbert and ND systems . . . . . . . . . . . . . 63

Bibliography 68



Chapter 1

Introduction

In 1955, Löb [32] published an astonishing result: In sufficiently strong formal sys-
tems such as Peano Arithmetic (PA), a sentence φ holds iff provPA[⌜φ⌝] → φ holds,
where the formula provPA(x) is a provability predicate. The result is known as Löb’s
theorem, and its proof is, from a technical perspective, utterly demanding, because
defining provability predicates is tedious. Similarly demanding is it to understand
the result, since the theorem’s statement almost sounds absurd. Goal of this the-
sis is, in the spirit of and as follow-up of Kirst and Hermes’ [51] mechanisation of
the undecidability of provability in PeanoArithmetic and related systems aswell as
Kirst and Peters’ [53] abstract proof of Gödel’s [34] first incompleteness theorem, to
obtain a tractable mechanisation of Löb’s theorem in the Coq proof assistant [101].
Löb’s result belongs to a wider class of limitative theorems, just to mention Gödel’s
first incompleteness theorem [34] stating, in a strengthening due to Rosser [88], that
nomatter how rich a formal system is, there are always sentenceswhich can neither
be proved nor refuted in this very system, provided that it does not prove falsity
and the provable sentences are enumerable. This property is called incompleteness.
Gödel also shows a second incompleteness theorem, stating that these formal systems
cannot prove a sentence expressing their own consistency. It is a consequence of
Löb’s theorem. Another prominent limitative result is Tarski’s theorem [100] assert-
ing that truth cannot be expressed inside a formal system, as opposed to provability,
for which Gödel shows that this is possible, indicating a substantial gap between
truth and provability. The limitative results are not only groundbreaking, but are
also counterintuitive and often misinterpreted, even by mathematicians [27].
Key to all these theorems is a result called diagonal lemmawhich can be used to con-
struct self-referential formulas. Gödel [34] himself only proves a special instance
of this result. Carnap [12] first had the idea to construct general self-referential for-
mulas, but the modern diagonal lemma’s history is difficult to reconstruct [92, 93].
For the proofs of many limitative theorems, the diagonal lemma is applied to prov-



2 Introduction

ability predicates, or the negation thereof. For a first understanding, a provability
predicate for a formal system S of first-order arithmetic is a formula provS(x) hav-
ing a single free variable such that any formula φ we have S ⊢ φ iff S ⊢ provS[⌜φ⌝],
where ⌜φ⌝ is an encoding of φ. Counterintuitively, provability predicates, even
for the same formal system, are not necessarily unique. We distinguish two broad
classes of provability predicates: External ones, which have the aforementioned
property, and internal ones that, in addition to being external, allow proving the de-
duction rules of S as object level implications. Broadly, thismatches Feferman’s [21]
notions of extensionality and intensionality. Löb’s theorem applies to internal prov-
ability predictates and states that S ⊢ φ is equivalent to S ⊢ provS[⌜φ⌝] → φ.
An abstract characterisation what internal provability predicates need to satisfy
was first given byHilbert and Bernays [43]. Löb [67] refined these properties to the
so-called Hilbert-Bernays-Löb derivability conditions, a compact form mostly used to-
day to derive Löb’s theorem andGödel’s second incompleteness theorem [94, 84, 7,
8, 36]. The abstract treatment of provability through these derivability conditions,
as well as work by Gödel [35] on modal logic, have also given rise to provability
logic [105], a modal logic where provability is modelled through a modality.
The shape of Löb’s theorem, namely that when proving a formula, one may as-
sume a provability predicate instantiated to this formula, also appears in the the-
ory of programming languages. In a recent discussion on self-interpreters for total
languages initiated by Brown and Palsberg [11], Bauer [5] contributes a construc-
tion resembling Löb’s theorem. For program logics, Appel, Melliès, Richards, and
Vouillon [1] present a rule allowing one to assume that a property holds at a later
stage in the program’s execution. In the same spirit, the Iris framework [48, 49], a
higher-order concurrent separation logic, contains such a rule.
Kirst and Peters [82] give an abstract and computational proof of Gödel’s first in-
completeness theorem, inspired by previous work by Kirst and Hermes [51]. This
thesis continues Kirst and Peters’ approach and explores its applicativity to Löb’s
theorem as well as Gödel’s second incompleteness theorem, hoping to simplify ex-
isting proofs. Our approach is particularly relevant because mechanising the sec-
ond incompleteness theorem is proven to be notoriously difficult: The first, and
to our knowledge only, axiom-free mechanisation of this theorem is due to Paul-
son [79, 78, 77], who points out how difficult his work was. Paulson’s contribution
is epochal, and his framework easily admits Löb’s theorem as shown in this the-
sis. To our knowledge, the only existing mechanisation of Löb’s theorem is due
to Gross, Gallagher, and Fallenstein [32] for sufficiently strong formalisations of
dependent type theory. They use the proof assistent Agda.
Weworkwith synthetic computability theory due to Richman, Bridges, and Bauer [85,
10, 4]. Synthetic computability lies in the scope of constructivemathematics and al-
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lows to define usual terms from computability theory without referring to a partic-
ular model of computation such as Turing machines or µ-recursive functions. Fol-
lowing Hermes and Kirst [41] as well as Kirst and Peters [53], we assume Church’s
thesis (CT) [61, 104], a well-understood axiom in constructive mathematics stating
that quantifiers over functions in a constructive setting only range over computable
functions. CT implies that every function is representable by a formula in Robinson
Arithmetic (Q), simplifying reasoning concerning arithmetic greatly.
The results of this thesis are formalised in constructive type theory, a flavour of con-
structive mathematics, which is due to Martin-Löf [73]. We make use of synthetic
computability theory as well as Church’s thesis. The concrete implementation of
constructive type theory used in this thesis is the Calculus of Inductive Constructions
(CIC) [16, 76]. Our results are verified in the Coq proof assistant [101] implement-
ing CIC, relying on and contributing to the Coq Library of Undecidability Proofs
[26] and the Coq Library for First-Order Logic [54], large efforts aimed at mech-
anising undecidability and first-order logic in Coq. A small part of this thesis is
mechanised in the proof assistant Isabelle/HOL [71].
1.1 Historical Remarks
The limitative theorems, most prominently Gödel’s results on incompleteness [34],
but also Tarski’s theorem [100], marked a newera inmathematics in the early 1930s.
The influential optimist Hilbert hoped that all mathematics can be formalised in
axiomatic form, with a formalisable consistency proof, which is known as Hilbert’s
program [106]. Hilbert coined his optimism in the famous quote “Wir müssen wis-
sen. Wir werden wissen.” (“We have to know. We will know.”). In essence, Gödel
showed that this proposal is unfeasible, in particular with his second theorem, al-
though this is also subject to philosophical discussion [27].
For Gödel’s incompleteness theorems, sentences equivalent to their own unprov-
ability, i.e. sentences φ such that φ ↔ ¬prov[⌜φ⌝] is provable, are very important.
Gödel shows that such sentences are independent. In 1952, Henkin [39] posed the
similar questionwhether a sentenceφ expressing its ownprovability, i.e. a sentence
such that φ ↔ prov[⌜φ⌝] is a provable, is independent or provable. The question
did not specify a particular provability predicate nor a formal system, but was open
in this regard.
In 1953, Kreisel [59] commented on Henkin’s question by constructing two prov-
ability predicates, one for which such sentences are provable, and one for which
they are independent. Kreisel’s provability predicates are only external provability
predicates. However, he remarks that for a particular internal provability predicate
which has the deduction rules baked in, namely the one Gödel [34] constructed in
his seminal 1931 paper on incompleteness, in a version byHilbert and Bernays from
1939 [43], the question was still open and most likely difficult to answer.
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Itwas Löb [67] in 1955who answeredHenkin’s question satisfactorily by inspecting
Gödel’s provability predicatewhichKreisel did not prove anything about, using the
system Zµ [43] of first-order arithmetic which was popular at this time. He shows
that – if one uses Gödel’s provability predicate – Henkin’s critical formula is indeed
provable.
1.2 Contributions
This thesis’ contributions consist of the following key points.

• We define external provability predicates using CT, and use CT to prove the
diagonal lemma (Lemma 5.2). This gives rise to abstract proofs of important
limitative theorems: Tarski’s theorem (Theorem 5.7), essential undecidability
(Corollary 5.6), and Gödel’s first incompleteness theorem (Theorem 5.10).

• We prove that our synthetic approach does not extend to Löb’s theorem (The-
orem 6.6) by using a trick of Mostowski [70] in the flavour of Bezboruah and
Shepherdson [6] (Lemma 7.5). That is, Löb’s theorem does not follow in the
spirit of Kirst and Peters [53].

• We enrich PA by functions easing the definition of internal provability pred-
icates (Definition 7.6). We define a candidate for such a provability predi-
cate (Definition 7.9), forwhichwe verify theHilbert-Bernays-Löb derivability
conditions (Definition 6.4) except for one called internal necessitation.

• We extend the Coq Library of Undecidability Proofs [26] by a mechanisation
of a Hilbert system for first-order logic (Section 3.4). This mechanisation in-
cludes a proof that natural deduction and the Hilbert system are equivalent.

• Wemechanise Löb’s theorem in Isabelle/HOL [71] based on an internal prov-
ability predicate constructed by Paulson [79, 78, 77] as part of his mechanisa-
tion of Gödel’s incompleteness theorems in Isabelle/HOL.

• We verify all key arguments in Coq [101], assuming CT. All proofs also exist
in mathematical language on paper, making the paper version of this thesis
stand-alone and verifiable without the help of a Coq interpreter. The elec-
tronic version of this thesis contains links to the relevant Coq development.

1.3 Outline
First, we give an overview of the type theory we are using, namely the Calculus of
Inductive Constructions (CIC), in Chapter 2. We give basic definitions and present
key properties of synthetic computability theory. Then, in Chapter 3, we focus on
first-order arithmetic and give an introduction to Robinson Arithmetic and Peano
Arithmetic, two systems we will need in the later chapters. Afterwards, we show
how one can obtain external provability predicates from CT in Chapter 4 and use
these results to prove some limitative theoremswith the help of the diagonal lemma
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in Chapter 5. In Chapter 6, we introduce Löb’s theorem and derive it from the
derivability conditions. This is followed by a discussion why external provability
predicates do not suffice for Löb’s theorem in Chapter 7. There, we also present
an idea how we can target this issue. The thesis is rounded up by a conclusion
in Chapter 8 where we discuss related and future work and point out important
aspects of the mechanisation.



Chapter 2

Type-Theoretic Preliminaries

All the results presented in this thesis are formalised in the Calculus of Induc-
tive Constructions (CIC) [16, 76] and largely mechanised in the Coq proof assis-
tant [101] implementing CIC. This chapter provides the relevant background on
CIC.

First, the notion of types and type universes is explained, and important type defi-
nitions are given in Section 2.1. Then, needed notions and results of synthetic com-
putability theory [85, 4, 24] are introduced in Section 2.2.
2.1 Constructive Type Theory
In the CIC [16, 76], each object x is assigned some type X. We write x : X to denote
the assertion that x is of type X. Types also have types themselves. CIC contains
an infinite hierarchy of predicative type universes T1 : T2 : T3 : . . . satisfying T1 ⊆
T2 ⊆ T3 ⊆ . . . . For simplicity, we omit the index and only write T; the infinite
hierarchy is needed for technical purposes which do notmatter in this thesis. There
is also an impredicative universe P of propositions such that P : T. Objects whose
type is P are referred to as propositions, objects whose type is T are referred to as
computational types.

CIC contains dependent function types ∀x : X. T , where T may refer to x. The λ-
abstraction λx : X. v has type ∀x : X. T if v has type T and X is a type. If X can be
inferred from the context, we also write λx. v. Functions must be defined by strict
structural recursion to guarantee termination. Simple function types X → Y are
dependent function types ∀x : X. Y where x does not occur freely in Y.

Types in T and P can be defined inductively. Performing case analysis on induc-
tively defined propositions when constructing an element of a computational type
is only allowed in highly restricted instances. This comes from the fact objects hav-
ing a propositional type are considered as proofs, and information from proofs
should not be eliminated to computational settings. The following inductive defi-
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nitions are essential for this thesis and the accompanying mechanisation:
• Natural numbers: N : T := 0 : N |S : N → N

We write n + 1 instead of Sn. Further, the usual notations 1 := 0 + 1, 2 :=

(0+ 1) + 1, . . . are defined as one would expect.
• Booleans: B : T := True : B |False : B

We write !b for boolean negation.
• Product types: ×(X : T, Y : T) : T := Pair : X→ Y → X× Y

We use the notation (x, y) := Pair xy.
• Sum types: +(X : T, Y : T) : T := InjL : X→ X+ Y | InjR : Y → X+ Y

• Option types: O(X : T) : T := None : O(X) |Some : X→ O(X)

• Dependent pair types: Σ(X : T, p : X→ T) : T := Sig : ∀x : X. p x→ Σx. p x

• Lists: L(X : T) : T := Nil : L(X) |Cons : X→ L(X) → L(X)

We write [ ] for Nil and x :: ℓ for Cons x ℓ. Further we use the notation

[x1, x2, . . . , xn] := x1 :: x2 :: · · · :: xn :: [ ].

An append function (++ : ∀X : T.L(X) → L(X) → L(X)), a length function
(|· | : ∀X : T.L(X) → N), amap function (@ : ∀X, Y : T. (X→ Y) → L(X) → L(Y))
as well as an element access function (·[·] : ∀X : T.L(X) → N → O(X)) can be
defined by structural recursion on lists. Further, amembership predicate x ∈ ℓ
and a sublist predicate ℓ ⊆ ℓ′ can be defined by structural recursion on lists.

• Vectors: V(X : T) : N → T := Nil : V(X, 0) |Cons : ∀n : N. X→ V(X,n) → V(X,Sn)

Vectors are lists whose number of elements is part of their type. By abuse of
notation, we use all the notations and functions defined on lists for vectors as
well.

The usual propositional constants ⊥ and ⊤, as well as operators ∧,∨, and ∃ can be
obtained in constructive type theory by defining them as inductive propositions in
P. Universal quantification is established via dependent function types, and impli-
cation via simple function types. Propositional negation is defined as ¬P := P → ⊥,
and equivalence as P ↔ Q := (P → Q)∧ (Q→ P). Functions of type X→ P for some
type X are called predicates. If P is a predicate, we may write x ∈ P instead of P x,
depending on what fits better in the context. Predicates P and Q are said to be dis-
joint if ∀x.¬(x ∈ P ∧ x ∈ Q). If P is a predicate, P := λx.¬x ∈ P is said to be the
complement of P. Clearly, P and P are disjoint.
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If X is a type, a function of type ∀xy : X. (x = y) + ¬(x = y) is called an equality
decider for X. A type X is called discrete if an equality decider can be defined for it.

Lemma 2.1 N is discrete.

Proof Standard. See Forster, Kirst, and Smolka [24]. □

Since CIC is intuitionistic, the law of excluded middle LEM := ∀X : P. X ∨ ¬X is
independent in CIC. It can be assumed consistently. All proofs presented in this
thesis do not make use of LEM. However, the following standard result is used
twice (for Theorem 5.5 and Theorem 5.7).

Lemma 2.2 Let X : P be a proposition. Then, ¬¬(X∨ ¬X).

Proof Standard. □

2.2 Synthetic Computability Theory and Church’s Thesis
2.2.1 Basic Synthetic Definitions
Synthetic computability theory [85, 4] lies within the scope of constructive mathe-
matics. In absence of a concrete model of computation, it allows to define standard
terms fromcomputability theory such as decidability, enumerability, andmany-one
reduction. This approach is applicable in CIC since every function definable in CIC
without assuming additional axioms is computable. We work with type-theoretic
synthetic definitions due to Forster, Kirst, and Smolka [24, 22].

Definition 2.3 (Decidability) Let X be a type and P : X → P a predicate. P is called
decidable if there is a decider f : X→ B such that, for all x : X, x ∈ P iff f x = True.

Definition 2.4 (Semi-Decidability) Let X be a type and P : X → P a predicate. P is
called semi-decidable if there is a semi-decider f : X → N → B such that, for all x : X,
x ∈ P iff there is n : N such that f xn = True.

Definition 2.5 (Enumerability) Let X be a type and P : X → P a predicate. P is called
enumerable if there is an enumerator f : N → O(X) such that, for all x : X, x ∈ P iff there
is n : N such that f n = Some x.

Definition 2.6 (Enumerable Types) A type X is called an enumerable type if there is
an enumerator f : N → O(X) such that, for all x : X, there is n : N such that f n = Some x.

The type N of natural numbers is enumerable.

Lemma 2.7 N is an enumerable type.

Proof λn.Somen enumerates N [24]. □

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.Synthetic.DecidabilityFacts.html#discrete_nat
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.Synthetic.Definitions.html#decidable
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.Synthetic.Definitions.html#semi_decidable
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.Synthetic.Definitions.html#enumerable
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.Synthetic.EnumerabilityFacts.html#enumerable__T
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.Synthetic.EnumerabilityFacts.html#enumerator__T_nat
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For any decidable predicate P, both P and the complement of P are semi-decidable.

Lemma 2.8 Let X be a type and P : X → P a decidable predicate. Then, P and P are
semi-decidable.

Proof Let f : X → B be a decider for P. Then, λxn. f x and λxn. !(f x) are semi-
deciders for P and P, respectively [22, p. 38]. □

On types that are both enumerable and discrete, the notions of semi-decidability
and enumerability coincide.

Lemma 2.9 Let X be a type that is both discrete and enumerable and let P : X → P be a
predicate. Then, P is semi-decidable iff P is enumerable.

Proof See Forster [22, p. 38]. □

Many-one reductions are defined as one expects.

Definition 2.10 (Many-One Reducibility) Let X, Y be types and P : X→ P, Q : Y →
P be predicates. P is called many-one reducible to Q if there is a many-one reduction
f : X→ Y such that, for all x : X, x ∈ P iff (f x) ∈ Q.

We write P ⪯M Q if P is many-one reducible to Q.

Many-one reductions transport decidability.

Lemma 2.11 Let X, Y be types and P : X → P, Q : Y → P predicates such that both Q is
decidable and P ⪯M Q. Then, P is decidable, too.

Proof Let g : Y → B be a decider for Q. Then, λx. g (f x) is a decider for P [24]. □

In certain settings, many-one reductions transport enumerability.

Lemma 2.12 Let X, Y be types such that X is enumerable and Y is discrete. Further, let
P : X→ P, Q : Y → P be predicates such that both Q is enumerable and P ⪯M Q. Then, P
is enumerable, too.

Proof See Forster, Kirst, and Smolka [24]. □

2.2.2 Church’s Thesis
Church’s Thesis (CT) [61][104, pp. 192ff.] is an axiom in constructivemathematics
stating that every function N → N in CIC is computable in a previously specified
model of computation, for instance µ-recursive functions by assuming a universal
functionψ. In synthetic computability, it can is used to prove undecidability results.

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.Synthetic.SemiDecidabilityFacts.html#decidable_semi_decidable
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.Synthetic.EnumerabilityFacts.html#enumerable_semi_decidable
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.Synthetic.Definitions.html#reduces
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.Synthetic.ReducibilityFacts.html#dec_red
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.Synthetic.MoreReducibilityFacts.html#enumerable_red
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Definition 2.13 (CTµ) There exists a step-indexed interpreter ψµ : N → N → N →
O(N) of µ-recursive functions such that ψµ c xn is the output of the c-th µ-recursive func-
tion on input x after n steps of computation, or None if the c-th µ-recursive function does
not terminate within n steps. We set

CTµ := ∀f : N → N. ∃c : N. ∀x : N. ∃n : N. ψµ c xn = Some (f n).

In this thesis, we assume a particular variant of Church’s thesis, namely enumer-
ability of partial functions (EPFµ). To state EPFµ, a notion of partial functions is
needed. These functions are implemented using step-indexing.

Definition 2.14 (Partial Functions) Let X, Y be types. A function f : X → N → O(N)
is called a partial function from X to Y, written f : X ⇀ Y, if it is deterministic, that is,
for all x, n, n′, y, y′, we have

f xn = Somey→ f xn′ = Somey′ → y = y′.

If f is a partial function, we write f x ↓ y if there exists n such that f xn = Somey and f x ↑
if f x = None for all n. This notation denotes termination and divergence, respectively.

It is now possible to state EPFµ. The definition is based on a step-indexed inter-
preter Θµ : N → (N ⇀ N) for µ-recursive functions. For the implementation of
µ-recursive functions in CIC, we refer to Larchey-Wendling and Forster [65]. The
axiom EPFµ states that Θµ is universal for all partial functions.

Axiom 2.15 (EPFµ) ∀f : N ⇀ N. ∃c : N. ∀xy : N. Θµ
c x ↓ y↔ f x ↓ y.

This axiom is assumed without further comment in Chapters 4 and 5, and Sec-
tion 7.1. Results in these parts of this thesis not depending on EPFµ are marked
explicitly.
Forster [23] discusses the question whether one can consistently assume EPFµ in
CIC, coming to the conclusion that no consistency proof for our exact setting exists
yet, but pointing out that consistency ofCT has been shown for very similar settings
by referring to Swan and Uemura [98]. Recently, Pédrot [81] proved a statement
close to CTµ where the existential quantifiers are replaced by Σ-types consistent for
Martin-Löf type theory [73].

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_fol/FOL.Incompleteness.utils.html#part
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_fol/FOL.Incompleteness.epf.html#is_universal


Chapter 3

First-Order Arithmetic

In this chapter, we give an overview of first-order arithmetic, most prominently
Robinson Arithmetic (Q) [86] and it extension Peano Arithmetic (PA) [80]. All
definitions and results presented in this chapter are standard.
While our presentation is self-contained, our notions are based on larger projects
aimed at mechanising first-order logic and undecidabibility in the proof assistant
Coq, namely the Coq Library of Undecidability Proofs [26] and the Coq Library
for First-Order Logic [54]. The definitions in these libraries are by far more general
than ours.
First, we define syntax of first order-arithmetic, including an encoding of formulas
as natural numbers, a process known as Gödelisation (Section 3.1). We then intro-
duce Tarski semantics, a semantic interpretation of formulas (Section 3.2). After
that, two equivalent syntactic notions of provability in first-order arithmetic, ND
and Hilbert systems, are introduced (Sections 3.3 and 3.4). Further, we introduce
the theories of Robinson Arithmetic as well as Peano Arithmetic (Section 3.5) and
conclude this chapter by defining Σ1-formulas – the first level of the arithmetical
hierarchy – and deriving key properties of such formulas, most prominently Σ1-
completeness (Section 3.6).
3.1 Syntax
Terms and formulas are defined using an inductive type. In the accompanying Coq
development, they are instantiations of the much more general concept of a signa-
ture, which allows for parametrisation via function and predicate symbols via finite
types alongside their arities. We use the signature of Peano Arithemtic featuring
function symbols O,S ,+, · with respective arities 0, 1, 2, and 2 as well as the predi-
cate symbol = of arity 2.

Definition 3.1 (Syntax of First-Order Arithmetic) Let V be an accountably infinite
type of variables, for instance N. The types T of terms and F formulas of first-order arith-

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.FOL.Arithmetics.Signature.html#PA_funcs
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metic are defined inductively according to the following BNF:

t, u : T ::= x |O |S t | t+ u | t · u x : V

φ,ψ : F ::= ⊥ |φ∨ψ |φ∧ψ |φ→ ψ |∃x.φ |∀x.φ | t = u x : V

For formulas φ,ψ, notions of negation, truth and equivalence are defined as follows:

¬φ := φ→ ⊥
⊤ := ¬⊥

φ↔ ψ := (φ→ ψ)∧ (ψ→ φ).

For terms t, u, we also define comparison t ⩽ u := ∃x. u = t+ x.

Lemma 3.2 F is both discrete and enumerable.

Proof Standard techniques [50, 26]. □

The term O is supposed to denote the number 0 inside our system of first-order
arithmetic, whereas S t for some term t is supposed to denote the successor of t.
This gives rise to a canonical embedding from N to T.

Definition 3.3 (Numerals) We define the following embedding from N to T:

· : N → T

0 := O

n+ 1 := Sn

Any term of the form n for some n : N is called a numeral.

We will see in Chapter 7 that numerals behave particularly well, and why terms
that are not numerals pose certain issues.
Formulas can be encoded as natural numbers. Such encoding schemes are known
asGödelisations, andGödel constructed a concrete instance in his 1931 paper [34].
This in turn allows to speak about formulas inside the language of first-order arith-
metic, a crucial ingredient of provability predicates and beyond.

Definition 3.4 (Gödelisation) 1. A pair of functions göd : F → N and göd−1 :

N → F is called a Gödelisation if göd−1 inverts göd.

2. Let göd, göd−1 be a Gödelisation andφ any formula. We say that gödφ is theGödel
number of φ, and that gödφ is the Gödel numeral associated with φ. To simplify
notation, we define ⌜φ⌝ := gödφ.

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.FOL.Arithmetics.Signature.html#PA_funcs_eq
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.FOL.Arithmetics.FA.html#num
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.Definitions.html#goedelisation
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Gödelisations do not have to be bijective, and Gödel’s original Gödelisation was
not. However, any bijection between F and N gives rise to a Gödelisation, so the
following result asserts their existence. The following result is mechanised using
standard techniques, c.f. [50, 26].
Lemma 3.5 The types N and F are in bijection.

Our results do not depend on this definition but are quantified over any Gödelisa-
tion.
We also need to define the notion of closed formulas and free variables.
Definition 3.6 Let φ be a formula and x a variable that somewhere occurs in φ. We say
that x is bound in φ if any occurrence of x is contained in a subexpression of φ of the form
∃x.ψ or ∀x.ψ. Otherwise, we say that x occurs freely in φ. Formulas that contain only
bound variables are called closed. We also use the term sentence to refer to closed formulas.

Whenever φ is a formula in which at most the variables x1, . . . , xn occur freely, we
write φ(x1, . . . , xn) to emphasise this fact.
Since formulas only have a finite number of variables, we can assume that all free
and bound variables are pairwise distinct in any mathematical context (definition,
theorem, proof, etc.), as we can simply rename variables until the formula has this
property. This assumption is known as the Barendregt convention [3, pp. 26f.].
In the Coq mechanisation, the technique of de Bruijn indices [19] is used to han-
dle variables and binders. While this trades off readability of formulas, it eases
mechanisation significantly. In the mechanisation, many lemmas on substitution
are used which are not spelled out in this paper presentation. Section 8.1 contains
more background on different techniques to mechanise variables and binders.
We are now in the position to define substitutions on terms and formulas. Substitu-
tions plug in terms for the free variables of a formula. The following definitions are
standard and provide, by assuming the Barendregt convention, a capture-avoiding
substitution. Environments specify which terms to substitute for which variable.
Definition 3.7 (Environments) 1. For a type U, a function ν : V → U is called an

environment.

2. If ν is an environment, x : V and t : U, the update ν[x 7→ t] is defined as

(ν[x 7→ t])y :=

{
t if x = y
νy if x ̸= y.

Definition 3.8 (Substitution) The parallel substitutions ·[·] : F → (N → T) → F

and ·[·] : T → (N → T) → T are defined by recursion on formulas and terms, respectively.

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.FOL.Semantics.Tarski.FullCore.html#env
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.FOL.Syntax.Core.html#subst_form
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The quantifier cases are as follows:

(∃x.φ)[ν] := ∃x. (φ[ν[x 7→ x]]) (∀x.φ)[ν] := ∀x. (φ[ν[x 7→ x]])

The remaining cases are standard. Substitutions only affecting a single variable x are defined
as φ[x 7→ t] := φ[id[x 7→ t]], where id : V → T maps each variable to the term denoting
this variable. We also use the notation

φ[t1, . . . , tk] := φ(x1, . . . , xn)[[id[x1 7→ t1] . . . [xk 7→ tk]],

where k ⩽ n.

This substitution is capture-incurring if the Barendregt convention is not assumed.
For example, we have (∀x. x = y)[y 7→ x] = ∀x. x = x, while one would expect a
formula such as ∀z. z = x.
3.2 Semantics
We now have a notion of formulas and terms, but have not assigned any meaning
in P to these abstract syntactic objects yet. Tarski semantics [100] gives any formula
a propositional meaning. The logical connectives and equality are interpreted as
their meta-level counterpart, and the function symbols are interpreted using the
corresponding functions on natural numbers. This is a special case of a model, but
for our purposes, this highly restricted setting suffices. The following definitions
are based on mechanisations by Forster, Kirst, and others [25, 52].
Definition 3.9 (Theory) A theory T : F → P is a predicate on formulas.
Definition 3.10 (Satisfaction) The satisfaction relation N ⊨· · : (N → N) → F → P
relating an environment ν : V → N and a formula φ is defined by structural recursion as
follows:

N ⊨ν ⊥ := ⊥
N ⊨ν (φ∨ψ) := (N ⊨ν φ)∨ (N ⊨ν ψ)
N ⊨ν (φ∧ψ) := (N ⊨ν φ)∧ (N ⊨ν ψ)
N ⊨ν (φ→ ψ) := (N ⊨ν φ) → (N ⊨ν ψ)
N ⊨ν (∃x.φ) := ∃n.N ⊨ν[x 7→n] φ

N ⊨ν (∀x.φ) := ∀n.N ⊨ν[x 7→n] φ

N ⊨ν (t = u) := JtKν = JuKν

JxKν := ν x

JOKν := 0

JS tKν := JtKν + 1

Jt+ uKν := JtKν + JuKν
Jt · uKν := JtKν · JuKν

Let T be a theory. We also define

N ⊨ φ := ∀ν.N ⊨ν φ
N ⊨ν T := ∀φ ∈ T.N ⊨ν φ
N ⊨ T := ∀φ ∈ T.N ⊨ φ.

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.FOL.Semantics.Tarski.FullCore.html#sat
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We say that T is sound if N ⊨ T .

3.3 Natural Deduction Systems
While Tarski semantics gives intuitive propositional interpretations of formulas, it
does not describe syntactic rules characterising the provability of a formula. Natu-
ral deduction (ND) systems as well as Hilbert systems fit this purpose. Proving in
ND fits our understanding of propositional reasoning well, while Hilbert systems
allow for simple representations of proofs. It is well-known that both systems are
equivalent.
Natural deduction systems originate from the 1930s and are due to Gentzen [30,
31] and Jaśkowski [46]. ND systems were developed because reasoning in Hilbert
systems is far away from meta-mathematical reasoning. The following definition
is based on work by Forster and others [24, 25].
Definition 3.11 (ND Provability) Let φ be a formula and Γ a list of formulas. We
inductively define intuitionistic ND provability Γ ⊢i φ as follows:

φ ∈ Γ
Γ ⊢i φ

C
Γ ⊢i ⊥
Γ ⊢i φ

E
φ, Γ ⊢i ψ

Γ ⊢i φ→ ψ
II

Γ ⊢i φ Γ ⊢i φ→ ψ

Γ ⊢i ψ
IE

Γ ⊢i φ

Γ ⊢i φ∨ψ
DI1

Γ ⊢i ψ

Γ ⊢i φ∨ψ
DI2

Γ ⊢i φ∨ψ φ, Γ ⊢i τ ψ, Γ ⊢i τ

Γ ⊢i τ
DE

Γ ⊢i φ Γ ⊢i ψ

Γ ⊢i φ∧ψ
CI

Γ ⊢i φ∧ψ

Γ ⊢i φ
CE1

Γ ⊢i φ∧ψ

Γ ⊢i ψ
CE2

Γ ⊢i φ[x→ t]

Γ ⊢i ∃x.φ
EI

Γ ⊢i ∃x.φ φ, Γ ⊢i ψ x fresh for Γ and ψ
Γ ⊢i ψ

EE

Γ ⊢i φ x fresh for Γ
Γ ⊢i ∀x.φ

AI
Γ ⊢i ∀x.φ

Γ ⊢i φ[x 7→ t]
AE

We also define classical ND provability Γ ⊢c φ using the above set of rules plus

Γ ⊢c ((φ→ ψ) → φ) → φ
PC.

We write Γ ⊢ φ if a statement applies to both intuitionistic and classical ND provability.
The list Γ is called a context. We set ⊢ φ := [] ⊢ φ and say that φ is a theorem of Γ or
provable in Γ if Γ ⊢ φ. We say that φ is refutable in Γ if ¬φ is provable in Γ .

The reliance on the Barendregt convention is essential. Consider the claim [∀z. z =
z] ⊢ ∃x. ∀y. x = y. Morally, this should not be derivable. However, if the existential
quantifier is instantiated to the term y, we would have to show [∀z. z = z] ⊢ ∀y. y =

y, which is true.
The following results are standard [25, 50].

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.FOL.Deduction.FullND.html#prv
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Lemma 3.12 (Weakening) Let φ be any formula, and let Γ ⊆ Σ be contexts. We have
that Γ ⊢ φ implies Σ ⊢ φ.
Lemma 3.13 (Substitutivity) Let φ be any formula and Γ a context such that Γ ⊢ φ.
Then, Γ [ν] ⊢ φ[ν] for all environments ν, where Γ [ν] is the result of applying ν to each
element of Γ .
Lemma 3.14 (Translation) Let φ be a formula and Γ a context such that Γ ⊢i φ. Then
also Γ ⊢c φ.

ND provability can also be defined for potentially infinite theories. Weakening,
substitutivity, and translation lift to theories as well.
Definition 3.15 (ND provability on theories) Let T be a theory and φ any formula.
We say that T ⊢ φ if there is a context Γ such that both Γ ⊢ φ and ∀φ.φ ∈ Γ → φ ∈ T .
Lemma 3.16 (Soundness) Let T be a theory and φ a formula such that T ⊢i φ. Then,
N ⊨ν T implies N ⊨ν φ for all environments ν.

3.4 Hilbert Systems
NDsystems give syntactic rules characterising provability of formulas. ND systems
were predated by Hilbert systems, which also provide syntactic rules to prove a
formula, but are far from usual mathematical reasoning. Hilbert systems were first
constructed by Frege in 1879 [28]. The name is due to Hilbert as he wanted to
formalise mathematics in formal systems, known as Hilbert’s Program [106].
Unlike ND systems, Hilbert systems are equipped with few inference rules. In-
stead, they heavily rely on axioms. Rautenberg [84] presents a Hilbert systemwith
a single inference rule (modus ponens), but a restricted syntax of formulas. Troel-
stra and Schwichtenberg [102] define a Hilbert system with full syntax, but two
rules of inference (modus ponens and generalisation). The Hilbert system pre-
sented here combines both: Full syntax and modus ponens as only inference rule.
Definition 3.17 (Hilbert System Axioms) The axiomsHi of the intuitionistic Hilbert
system are defined by the following predicate:

Hi(φ→ ψ→ φ)

Hi(φ→ ψ→ φ∧ψ)

Hi(φ→ φ∨ψ)

Hi(ψ→ φ∨ψ)

Hi(⊥ → φ)

Hi((∀x.φ) → φ[x 7→ t])

Hi(φ[x 7→ t] → ∃x.φ)

Hi((φ→ ψ→ τ) → (ψ→ τ) → φ→ τ)

Hi(φ∧ψ→ φ)

Hi(φ∧ψ→ ψ)

Hi(φ∨ψ→ (φ→ τ) → (ψ→ τ) → τ)

Hi(φ→ ∀x.φ) x fresh for φ
Hi((∀x.φ→ ψ) → (∀x.φ) → ∀x.ψ)
Hi((∃x.φ) → (∀x.φ→ ψ) → ψ) x fresh for ψ

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.FOL.Deduction.FullNDFacts.html#Weak
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.FOL.Deduction.FullNDFacts.html#subst_Weak
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.FOL.Deduction.FullNDFacts.html#prv_intu_peirce
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.FOL.Deduction.FullND.html#tprv
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_undec/Undecidability.FOL.Semantics.Tarski.FullSoundness.html#soundness
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System.html#hilAx
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The topmost rules are called K and S, respectively.

The axioms Hc of the classical Hilbert system consist of all the intuitionistic ones plus
Hc(((φ→ ψ) → φ) → φ).

We write H(φ) if a statement applies to both intuitionistic and classical Hilbert system
axioms.

With these axioms at hand, it is possible to define Hilbert system provability.

Definition 3.18 (Hilbert System Provability) Let Γ be a list of formulas. We induc-
tively define Hilbert system provability Γ ⊢H φ as follows:

Γ ⊢H φ→ ψ Γ ⊢H φ

Γ ⊢H ψ
HMP

H(φ)

Γ ⊢H ∀x1. ∀x2. . . . ∀xn. φ
HAX

φ ∈ Γ
Γ ⊢H φ

HAS

As for ND provability, the list Γ is called a context.

For theories T : F → P, we define T ⊢H φ := ∃Γ. Γ ⊢ φ∧ ∀ψ.ψ ∈ Γ → ψ ∈ T .

Note that none of these rules changes the context Γ . Technically, this definition
defines two flavours ofHilbert systemprovability: An intuitionistic version Γ ⊢Hi

φ

and a classical version Γ ⊢Hc
φ. They are distinguished by the premiseH(φ) in the

rule HAX. In the intuitionistic variant, we require the premiseHi(φ), while we use
Hc(φ) in the classical variant. Following our convention, we write Γ ⊢H φ if a
statement applies to both flavours.
Due to the simplicity of the rules of inference, we obtain structurally simple repre-
sentations of proofs. Monk [68, p. 172] has a very close formulation.

Definition 3.19 Let Γ be context. A nonempty list ℓ = [ψ1, ψ2, . . . , ψn] of formulas is
called a Hilbert proof in context Γ of a formula φ if φ = ψn and for all i = 1, 2, . . . , n we
have one of the following:

1. ψi ∈ Γ ,

2. There are variables x1, x2, . . . , xk such that ψi = ∀x1. ∀x2. . . . ∀xk. ψ and H(ψ),

3. There are j, j′ < i such that ψj = ψj′ → ψi. That is, ψi follows from ψj and ψj′ by
modus ponens.1

The above definition easily generalises to theories. We have the judgement Γ ⊢H φ

if and only if there is a Hilbert proof in context Γ ofφ. One direction is an induction
on the derivation Γ ⊢H φ, the other one follows by strong induction on the length

1Note that this implies that j ̸= j′.

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System.html#hilprv
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of the Hilbert proof. Further, notice that if ℓ1 and ℓ2 are Hilbert proofs of φ and
φ→ ψ, respectively, then ℓ1 ++ ℓ2 ++ [ψ] is a Hilbert proof of ψ.

We have now seen two systems providing syntactic rules describing the provability
of formulas: ND systems and Hilbert systems. While ND allows to do the kind of
reasoning we are used to from meta-mathematics, Hilbert systems give a way to
write down proofs in a structurally simple way. It is well-known that both systems
are equivalent.

Theorem 3.20 (Equivalence of ND and Hilbert systems)

1. We have Γ ⊢ φ if and only if Γ ⊢H φ for any context Γ and formula φ.

2. We have T ⊢ φ if and only if T ⊢H φ for any theory T and formula φ.

The proof is standard and widely known in the literature. For our setting, it can be
found in Appendix A.1. Here, we content ourselves with a proof sketch.

Proof (Sketch) The direction Γ ⊢H φ→ Γ ⊢ φ (the soundness of ⊢H with respect
to ⊢) follows by deriving the Hilbert system axioms in ND and verifying the rule
HMP, which is clearly present in ND. The only interesting part concerns the uni-
versal quantifiers in the second rule of Hilbert system provability. The converse
Γ ⊢ φ→ Γ ⊢H φ (the completeness of ⊢H with respect to ⊢) requires more ingenu-
ity and insight. It is key to show (φ, Γ ⊢H ψ) → (Γ ⊢H φ→ ψ), a result known as the
deduction theorem. Our completeness proof follows the textbook presentations by
Rautenberg [84, pp. 121ff.] and Smolka [96, pp. 271ff.].

The agreement on theories then follows from the equivalence result for contexts.□

3.5 Robinson and Peano Arithmetic
When axiomatising natural numbers, one typically usesPeanoArithmetic(PA) [80]
or its intuitionistic counterpart Heyting Arithmetic (HA). For many parts of this
thesis, it suffices to work with the finite theory of Robinson Arithmetic (Q) [86]
lacking the scheme of induction, thus being much weaker than PA. We work with
formulations by Hermes and Kirst [51, 41].

Definition 3.21 (Robinson Arithmetic) The axioms of Robinson Arithmetic (Q)
are

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#Hil_ND_agree
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#Hil_ND_agree_theories
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(DI) ∀x. S x ̸= 0
(SI) ∀xy.S x = Sy→ x = y

(AB) ∀x. O + x = x

(AR) ∀xy. (S x) + y = S (x+ y)

(MB) ∀x. O · x = O

(MR) ∀xy. (S x) · y = y+ x · y
(CD) ∀x. x = 0∨ ∃y. x = Sy

(ER) ∀x. x = x

(ES) ∀xy. x = y→ y = x

(ET) ∀xyz. x = y→ y = z→ x = z

(ES) ∀xy. x = y→ S x = Sy

(EA) ∀xyuv. x = y→ u = v→ x+ u = y+ v

(EM) ∀xyuv. x = y→ u = v→ x · u = y · v.

Definition 3.22 (Peano Arithmetic, Heyting Arithmetic) PeanoArithmetic (PA)
andHeytingArithmetic (HA) both consist of all the axioms of RobinsonArithmetic except
for (CD), but including all instances of the axiom scheme of induction

(INφ) φ[O] → (∀x.φ[x] → φ[S x]) → ∀x.φ[x].

We say that a formula φ is provable in PA if PA ⊢c φ and that it is provable in HA if
HA ⊢i φ.

The theories of PA and HA consist of the same formulas. They are only distin-
guished by the flavour of the deduction system (classical or intuitionistic) they
are used in. As Kirst [50, p. 24] points out, we could remove the inference rule
PC from the ND system and add all instances of Peirce’s law to the axioms of PA,
but then we would also have to distinguish two versions of Robinson Arithmetic
(a classical and an intuitionistic one, with the classical one having an infinite the-
ory). Therefore, and to stay in line with the Coq mechanisation, we do not use this
approach.
Although PA and HA lack the axiom (CD), the statements PA ⊢c (CD) and HA ⊢i

(CD) are readily derivable using the axiom scheme of induction.
Robinson Arithmetic is much weaker that Peano Arithmetic due to the absence of
induction. Even seemingly obvious claims such as ∀x. x+ O = x cannot be derived
in Robinson Arithmetic [94, pp. 69f.].2 The proof constructs a model of Q where
this formula is false, but one can show that each theorem of Q holds in each model
of Q, yielding the contradiction.
Robinson and Peano Arithmetic only prove formulas true in the standard model.
Lemma 3.23 (Soundness of Q and HA) Q and HA are sound.

The proof was conducted in a similar setting by Peters [82, pp. 18ff.]. Lemma 3.16
then gives the following consistency statement: Q ̸⊢i ⊥ and HA ̸⊢i ⊥.

2Smith shows that Q ̸⊢ ∀x.O + x = x since he uses slightly different formulations of the axioms.
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3.6 Properties of Σ1-formulas
Whenwe define provability predicates in the following chapters, we are confronted
with Σ1-formulas [56, 69] due to particular properties, most importantly Σ1-com-
pleteness. Further, the concept of recursive enumerability [14] is closely related to
Σ1-formulas: ∆1 formulas correspond to decidable predicates, while Σ1 formulas
as existential quantifications over decidable predicates then correspond recursively
enumerable predicates.
The following definition of ∆1 dates back to Mostowski [69], although we use a
different notion of provability of formulas.
Definition 3.24 (∆1 and Σ1-formulas, cf. [53, 42])

1. A formula φ is ∆1 if for every environment ν : V → T that only substitutes closed
terms (i.e. ν(n) is closed for all n), we have Q ⊢ φ[ν] or Q ⊢ ¬φ[ν].

2. A formula φ is Σ1 if it is of the form ∃x1. ∃x2. . . . ∃xn. ψ for some ∆1-formula ψ.

The definition of ∆1 is semantic. To prove that a formula is ∆1, it is useful to have
a syntactic characterisation. We have some syntactic sufficient conditions for this,
but will not need an equivalent syntactic definition.
Lemma 3.25 The following formulas are ∆1.

1. Falsity (⊥),

2. φ ∧ ψ, φ ∨ ψ, φ → ψ, φ↔ ψ, ¬φ and φ[ν] for any environment ν, provided that
φ and ψ are ∆1,

3. bounded quantifiers ∀x ⩽ y.φ and ∃x ⩽ y.φ, where x and y are distinct variables
and φ is ∆1, and

4. t = u for any terms t and u.

The above results were mechanised in Peters’ Bachelor’s thesis [82, p. 21].
We can now focus on some important theorems concerning Σ1-formulas. Hermes
[40, pp. 31f.] already showed variants of ∃-compression, Σ1-completeness and Σ1-
soundness for a syntactic definition of ∆1 not involving quantifiers and using PA
as well as HA in favour of Q; Peters [82, pp. 21f.] then showed the results in our
setting.
Lemma 3.26 (Properties of Σ1-formulas) Let φ be a Σ1-formula. We have:

1. (∃-compression) There is a ∆1-formula ψ such that

Q ⊢ φ↔ ∃x.ψ,
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2. (Σ1-completeness) if φ is closed and N ⊨ φ, then also Q ⊢ φ,

3. (Σ1-witness) if x is the only free variable of φ and Q ⊢ ∃x.φ(x), then there is n : N
such that Q ⊢ φ[n],

4. (Σ1-soundness) if φ is closed and Q ⊢c φ, then N ⊨ φ,

5. (Σ1-conservativity) if φ is closed and Q ⊢c φ, then Q ⊢i φ,

6. (Consistency of classical Q) Q ̸⊢c ⊥.

Being Σ1-sound is a property of theories.

Definition 3.27 (Σ1-soundness) A theory T is called Σ1-sound if for all Σ1-sentences
φ, we have that T ⊢c φ implies N ⊨ φ.

Lemma 3.28 Let T be a Σ1-sound theory. Then, T is consistent.
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Chapter 4

External Provability Predicates

In the following, we explore provability predicates for first-order arithmetic. A
provability predicate is a formula prov(x) characterising the provability of another
formula φ in the sense that φ is provable if and only if prov[⌜φ⌝] is provable.

We distinguish two main flavours of provability predicates. External ones which,
given a theory T , characterise theorems of T , and internal ones which, in addition,
allow proving the deduction rules of the deduction system as object level implica-
tions. While Gödel [34] constructed an internal provability predicate to prove his
incompleteness theorems, we first focus on how far we can get with external ones
in Chapter 5, and later point out where boundaries are in Chapter 7.

This chapter focusses on the definition of two external provability predicates (Sec-
tion 4.2), one being an external version of Gödel’s predicate, and one allowing
for a proof of Gödel’s first incompleteness theorem imposing few assumptions on
the involved theory. These definitions are based on Church’s thesis for arithmetic
(CTQ) [41, 42, 53] stating that any function N → N can be represented by a formula
in Robinson Arithmetic (Section 4.1). In this chapter, EPFµ is assumed.
4.1 Representability in Arithmetic
It is well known that any total µ-recursive function f : N → N is representable in Q
in the following sense: There is a Σ1-formula φf(x, y) satisfying Q ⊢ ∀y.φf[n, y] ↔
y = f n for all n : N [94, pp. 297f.]. Note that, in particular, Q ⊢ φf[n, f n], but this is
in fact much weaker.

There is even a proof of a similar claim mechanised in the proof assistant Coq by
O’Connor [74] in a slightly different arithmetical system; he requires f to be primi-
tive recursive1.

1There appears to be a typographical error in O’Connor’s definition of representability in his 2005
paper; it is no longer present in his PhD thesis [75].
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EPFµ implies the following representability property as shown by Kirst and Pe-
ters [53].

Lemma 4.1 (CTQ, cf. [53]) For every partial function f : N ⇀ N, there exists a Σ1-
formula φf(x, y) such that for all n,m : N, we have f n ↓ m iff Q ⊢ ∀y.φf[n, y] ↔ y = m.

For total functions, CTQ implies the following, slightly simpler statement.

Lemma 4.2 (total CTQ, cf. [41, 42, 53]) For every function f : N → N, there exists a
Σ1-formula φf(x, y) such that for all n : N, we have Q ⊢ ∀y.φf[n, y] ↔ y = f n.

Essentially, CTQ states that the evaluation of the function f can be internalised into
the system of first-order arithmetic. Thus, model of computation, Robinson Arith-
metic is at least as strong as CIC. In our setting, total CTQ was introduced as axiom
by Hermes and Kirst [41] requiring φf(x, y) to consist of one existential quantifier
followed by a ∆1-formula. It was later reformulated to the form used here where
φf(x, y) only needs to be Σ1 [42]. Kirst and Peters [53] then developed CTQ, con-
cluded total CTQ from CTQ, and proved that EPFµ implies CTQ.
From total CTQ, we can derive a similar property for multivariate functions N →
· · · → N → N. It will be presented in Chapter 5.
CTQ gives rise to the representability theorems allowing not only to internalise
functions, but also distinguished predicates into the system of first-order arith-
metic. This will be particularly useful in our subsequent study of provability pred-
icates.

Definition 4.3 (Representability, cf. [41, 53]) Let P, P′ : N → P be predicates and T
a theory.

1. We say that P isweakly representable in T if there is a Σ1-formula φ(x) such that
∀n : N. P n↔ T ⊢ φ[n].

2. We say that P is strongly representable in T if there is a Σ1-formula φ(x) such that
∀n : N. (P n→ T ⊢ φ[n])∧ (¬P n→ T ⊢ ¬φ[n]).

3. We say that P and P′ are strongly separable in T if there is a Σ1-formula φ(x) such
that ∀n : N. (P n→ T ⊢ φ[n])∧ (P′ n→ T ⊢ ¬φ[n]).

For consistent theories, strongly separable predicates are disjoint.

Lemma 4.4 Let T be a consistent theory that strongly separates P, P′ : N → P witnessed
by φ(x). Then, P and P′ are disjoint.

Proof P n and P′ n together imply T ⊢ φ[n] and T ⊢ ¬φ[n], i.e. T is inconsistent. □
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The following theorem provides necessary conditions for representability of pred-
icates in Robinson Arithmetic.

Theorem 4.5 (Representability Theorem) Q can represent predicates as follows:

1. Every enumerable predicate N → P is weakly representable in Q.

2. Every decidable predicate N → P is strongly representable in Q.

3. Every pair of disjoint enumerable predicates N → P is strongly separable in Q.

Proof Points (1) and (2) were first shown by Hermes and Kirst [41, 42] in our
setting, while (3) is due to Kirst and Peters [53]. □

Note that point (2) in the representability theorem follows from point (3) as for a
decidable predicate both the predicate itself as well as its complement are enumer-
able (since N is a discrete and enumerable type). Using “Rosser’s Trick” [88], one
can also show that (1) implies (3), as done by Peters in our setting [82, p. 28].

Lemma 4.6 Let T be a Σ1-sound theory extending Q and let P : N → P be an enumerable
predicate. Then, P is weakly representable in T .

Proof By the representability theorem, there is a Σ1-formula φ(x) weakly repre-
senting P in Q, i.e. for all n : N, we have

P n iff Q ⊢ φ[n]. (4.1)

We need to show, for all n : N, that

P n iff T ⊢ φ[n].

The direction from left to right follows from (4.1) and weakening, the converse
from Σ1-soundness of T and Σ1-completeness of Q. □

4.2 Defining Provability Predicates using Church’s Thesis
Formulas can be encoded as numerals numerals using Gödelisation. Thus, first-
order arithmetic can speak about formulas. Gödel [34] showed that sufficiently
strong systems of first-order arithmetic can even speak about provability using
provability predicates. While Gödel gave explicit definitions for these predicates,
we will first approach the issue from a synthetic perspective using CTQ to see how
much of Gödel’s results follow from this assumption.
The notion of external provability predicates can easily be made precise. The defi-
nition is inspired by Kreisel [59].2

2Kreisel requires T ⊢ φ iff T ⊢ provT [⌜φ⌝], i.e. he does not distinguish soundness.
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Definition 4.7 (External Provability Predicates) Let T be a theory. A formula provT (x)
is called an external provability predicate for T if for all formulas φ, we have

T ⊢ φ implies T ⊢ provT [⌜φ⌝].

provT (x) is called sound if, in addition, we also have

T ⊢ provT [⌜φ⌝] implies T ⊢ φ.

We now construct a sound external provability predicate. If λn. T ⊢ (göd−1 n) was
enumerable, where T is a Σ1-sound theory, Lemma 4.6 would solve the task. By
standard techniques [24], λφ. T ⊢ φ is enumerable if T is enumerable. It is straight-
forward to conclude enumerability of λn. T ⊢ göd−1 n from this result.

Lemma 4.8 Let T be an enumerable type, T an enumerable theory and g : T → F any
function. The predicate λt. T ⊢ g t is enumerable.

Proof We have (λt. T ⊢ g t) ⪯M (λφ. T ⊢ φ) witnessed by g.
Since λφ. T ⊢ φ is enumerable by standard techniques [24], λn. T ⊢ gn, T is enu-
merable by assumption, and N is discrete by Lemma 2.1, we obtain enumerability
of λt. T ⊢ g t by Lemma 2.12. □

Corollary 4.9 Let T be an enumerable theory.

1. λn. T ⊢ göd−1 n is enumerable.

2. λn. T ⊢ ¬(göd−1 n) is enumerable.

Proof Immediate from Lemma 4.8 since N is enumerable by Lemma 2.7. □

This gives rise to a sound external provability predicate for enumerable theories.

Lemma 4.10 If T is an enumerable, Σ1-sound theory extending Q, there exists a sound
external provability predicate provT (x) for T . Further, provT (x) is Σ1.

Proof We plug the enumerable predicate of Corollary 4.9 into Lemma 4.6, giving
a Σ1-formula provT (x) such that, for all n : N:

T ⊢ göd−1 n iff T ⊢ provT [n].

Setting n := gödφ yields the claim. □

In the same way, by using Corollary 4.9 (2), we could obtain a “refutation predi-
cate”, i.e. a formula characterising the refutable formulas.
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Any inconsistent theory T also admits a sound provability predicate provT (x), one
can pick any formula in one free variable for this since then both T ⊢ φ as well as
T ⊢ provT [⌜φ⌝] are vacuously true.
For any enumerable, consistent theory T , the predicates λn. T ⊢ göd−1 n and λn. T ⊢
¬(göd−1 n) are enumerable by Corollary 4.9 and disjoint. The representability theo-
rem then gives a provability predicate separating provable from refutable formulas.

Lemma 4.11 Let T be a consistent, enumerable theory extending Q. There exists an ex-
ternal provability predicate sProvT (x) for T which is Σ1 and additionally satisfies

T ⊢ ¬φ implies T ⊢ ¬sProvT [⌜φ⌝].

Proof Point (3) of the representability theorem on the predicates λn. T ⊢ göd−1 n

and λn. T ⊢ ¬(göd−1 n) (which are enumerable by virtue of Corollary 4.9) as well
as weakening. □

The “s” in sProvT (x) stands for separation.
If T is even a Σ1-sound theory, an unmechanised result of Peters [82, Fact 6.1] in
conjunction with Σ1-soundness of T can be used to show that sProvT (x) is even
sound. If, however, T is only consistent, T ⊢ sProvT [⌜φ⌝] still implies that φ is not
refutable, since otherwise T ⊢ ¬sProvT [⌜φ⌝] contradicting consistency. That is, φ is
either provable or independent.
For any inconsistent theory T , we trivially obtain a predicate sProvT (x): One can
pick any formula ψ(x) since then both T ⊢ ψ[⌜φ⌝] and T ⊢ ¬ψ[⌜φ⌝] are vacuous for
all φ.
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Chapter 5

Diagonalisation and the Limitative Theorems

This chapter focusses on some significant limits that formal systems of logic have.
In particular, we show that in sufficiently strong formal systems, there are sentences
which are neither provable nor refutable, a result due to Gödel [34], which, at the
time it was published, triggered an earthquake in the mathematical community.

The motivation of this chapter is to demonstrate that one can get very far with the
external provability predicates constructed in Chapter 4 as well as Church’s thesis,
proving how useful our abstract perspective is.

We first show the well-known diagonal lemma in Section 5.1. We can then already
use this essential tool to prove Tarski’s theorem and essential undecidability of
Q in Section 5.2.1 as well as three variations of Gödel’s first incompleteness theo-
rem in Section 5.2.2. In Section 5.3, we show a lesser-known generalisation of the
diagonal lemma, rounding up our discussion of this central result. In this chapter,
EPFµ is assumed.
5.1 The Diagonal Lemma
A key ingredient to the limitative theorems is the technique of diagonalisation,
spelled out by the diagonal lemma. For any formula φ(x), it provides a sentence G
such that Q ⊢ G↔ φ[⌜G⌝]. The result is also known as the fixed-point lemma since
G can be seen as a propositional fixpoint of φ(x).

Gödel himself [34] did not prove the diagonal lemma, but only used a particular
instance of it. Carnap [12] first had the idea of constructing arbitrary self-referential
sentences in 1934, and the diagonal lemma is often attributed to him. Carnap’s
version, however, is a semantic statement, i.e. it provides fixed-points G such that
N ⊨ G iff N ⊨ φ[⌜G⌝], as Smith [92, 93] points out.

Our development is based on lecture slides by Norrish [72]. The key idea in the
proof of the diagonal lemma is to inspect formulas of the shape φ[⌜φ⌝], that is,
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formulas instantiated to their own Gödel numeral. This technique is called diago-
nalisation. The idea behind it is standard.
Definition 5.1 (Diagonalisation)

1. We say that φ[⌜φ⌝] is the diagonalisation of the formula φ.

2. We call diagF : F → F, diagF φ := φ[⌜φ⌝] the diagonalisation function on
formulas.

3. We call diagN : N → N, diagN n := göd (diagF (göd−1 n)) the diagonalisation
function on numbers.

Instead of defining the diagonalisation of φ as φ[⌜φ⌝], one can also use the defini-
tion ∃x. x = ⌜φ⌝∧ φ. This is what Norrish does. This more complicated definition
seems to be widespread in the literature. Still, Smith [95, p. 83] also uses φ[⌜φ⌝].
The function diagN is important since it operates on numbers and total CTQ applies
to it. This is the only observation we need before we can prove the diagonal lemma.
We are now in the position to prove the diagonal lemma, stating that for any for-
mula φ(x), there is a sentence G such that Q ⊢ G ↔ φ[⌜G⌝]. Using total CTQ,
we obtain a Σ1-formula dg(x, y) capturing diagN. The fixpoint G is then defined as
the diagonalisation of the formula F(x) := ∃y. dg[x, y] ∧ φ[y], giving the equation
G = ∃y. dg[⌜F⌝, y] ∧ φ[y]. Since dg(x, y) captures diagN, the sentence G asserts that
φ(x) instantiated to the diagonalisation of F is provable, which is to say that φ[⌜G⌝]
is provable.
Lemma 5.2 (Diagonal Lemma) Let φ(x) be a formula. There exists a sentence G such
that Q ⊢ G↔ φ[⌜G⌝].

Proof As outlined, we use total CTQ on the function diagN and obtain a Σ1-formula
dg(x, y) such that, for all formulas φ,

Q ⊢ ∀y. dg[⌜φ⌝, y] ↔ y = diagN (gödφ).

Note that diagN (gödφ) = göd (diagF φ) because göd−1 inverts göd. Thus,

Q ⊢ ∀y. dg[⌜φ⌝, y] ↔ y = ⌜diagF φ⌝. (5.1)

We setG := diagF F, where F := ∃y. dg[x, y]∧φ[y]. Clearly,G is closed, i.e. a sentence.
We have to show, after unfolding some definitions,

Q ⊢ (∃y. dg[⌜F⌝, y]∧φ[y]) ↔ φ[⌜G⌝].

For the direction from left to right, we introduce the assumption and have to show

dg[⌜F⌝, y], φ[y],Q ⊢ φ[⌜G⌝].
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After applying (5.1) and rewriting on the object level, we have to show
dg[⌜F⌝, ⌜diagF F⌝], φ[⌜diagF F⌝],Q ⊢ φ[⌜G⌝],

which is vacuous since G = diagF F by definition.
For the converse, we have to prove

φ[⌜G⌝],Q ⊢ ∃y. dg[⌜F⌝, y]∧φ[y].

We instantiate y to ⌜G⌝. Proving φ[y] is then immediate from the assumptions. To
show dg[⌜F⌝, y], we apply weakening and have to show Q ⊢ dg[⌜F⌝, ⌜G⌝], which is
true by (5.1) and the fact that G = diagF F. □

Lemma 5.3 (Diagonalisation Equivalence (Carnap 1934 [12])) Let φ(x) be a for-
mula. There exists a sentence G such that N ⊨ G↔ φ[⌜G⌝].
Proof By the diagonal lemma, there isG such that Q ⊢i G↔ φ[⌜G⌝]. As Q is sound
and G↔ φ[⌜G⌝] closed, we easily obtain N ⊨ G↔ φ[⌜G⌝]. □

There is a very similar result in computability theory due to Kleene [55]: The re-
cursion theorem. For a concrete model of computation, it states that, whenever
f : N → N is a total computable function, there is an index i of a machine such that
Mi andMf(i) compute the same function, whereMj denotes the j-th machine. This
particular formulation is due to Rogers [87, p. 180]. Its proof also uses diagonali-
sation.
The proof of the diagonal lemma is not difficult, but it is nontrivial to come upwith
the fixed point. Kripke [62] claims to have developed a “much more natural” ap-
proach, he extends the system of first-order arithmetic to natively contain diagonal
constructions. This proof has long been folklore, it was only published in 2023.
There is also a variation of the diagonal lemma providing fixed-points on the level
of equality of terms instead of equivalence of formulas. It due to Jeroslow [47] from
his work on the simplification of Gödel’s second incompleteness theorem.
Now, the diagonal lemma is used to prove some important limitative theorems,
before the diagonal lemma is generalised to formulas with multiple free variables
in Section 5.3.
5.2 The Limitative Theorems
The following theorems state what formal systems of first-order arithmetic are not
capable of, i.e. where their limits are. In the literature, this conglomerate of related
results is often referred to as the limitative theorems [8]. We first work on inde-
finability as well as Tarski’s theorem, and then draw our attention to Gödel’s first
incompleteness theorem.
Our exploration of the limitative results follows Boolos, Burgess, and Jeffrey [8].
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5.2.1 Definability and Tarski’s Theorem
We have already seen in Chapter 4 that, for instance, Robinson Arithmetic can in-
ternalise its own provability by means of a provability predicate. We could even
find a provability predicate sProvQ(x) such that Q ⊢ φ implies Q ⊢ sProvQ[⌜φ⌝] and
Q ⊢ ¬φ implies Q ⊢ ¬sProvQ[⌜φ⌝]. A very similar question is to ask whether there
is a formula trueQ(x) such that Q ⊢ φ implies Q ⊢ trueQ[⌜φ⌝] and Q ̸⊢ φ implies
Q ⊢ ¬trueQ[⌜φ⌝]. Remarkably, although the modification seems to be minor, there
is not. In particular, the statements Q ⊢ ¬φ and Q ̸⊢ φ are fundamentally different,
something we will elaborate on in Section 5.2.2.
If we compare sProvQ(x) and trueQ(x) from the perspective of traditional comput-
ability theory, then trueQ(x) would solve the halting problem: Deduction systems
can be seen as model of computation whose machines take formulas as input and
output 0, 1, or a are undefined. On inputφ, the machineMQ outputs 1 if Q ⊢ φ and
0 if Q ⊢ ¬φ. MQ is undefined if neither of the two is the case. trueQ(x) would then,
for each formula φ, answer the following question: “DoesMQ halt on input φwith
output 1?” That is, trueQ(x) solves the halting problem. On the contrary, sProvQ(x)

solves the following problem for each formulaφ: “Provided thatMQ halts on input
φ, does it output 0 or 1?” This can be solved in any sensible model of computation
by using a simulation via a universal program.
Before we prove the result claimed above, we give a name to the property that
trueQ(x) would have.

Definition 5.4 (Definability) Let P : F → P be a predicate and T a theory.

1. A formula φ(x) defines P in T if Pψ implies T ⊢ φ[⌜ψ⌝] and ¬Pψ implies T ⊢
¬φ[⌜ψ⌝] for all formulas ψ.

2. P is definable in T if there is a formula defining P in T .

Using Gödelisation, the representability theorem asserts that any decidable predi-
cate is definable in Q (and therefore all extensions of Q).

Theorem 5.5 (Indefinability Theorem) Let T be a consistent extension of Q. The
predicate λφ. T ⊢ φ is not definable in T .

Proof Suppose trueT (x) defines λφ. T ⊢ φ in T . By the diagonal lemma and weak-
ening, there is a sentence G such that T ⊢ G↔ ¬trueT [⌜G⌝].
Since we have ¬¬(T ⊢ G∨ T ̸⊢ G) by Lemma 2.2 and need to show falsity, we obtain
T ⊢ G∨ T ̸⊢ G. Case analysis.
If T ⊢ G, then T ⊢ trueT [⌜G⌝] since trueT (x) defines λφ. T ⊢ φ in T . Further, from
T ⊢ G↔ ¬trueT [⌜G⌝] we deduce T ⊢ ¬trueT [⌜G⌝]. This contradicts consistency of T .
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If T ̸⊢ G, then T ⊢ ¬trueT [⌜G⌝] since trueT (x) defines λφ. T ⊢ φ in T . But from
T ⊢ G↔ ¬trueT [⌜G⌝], we conclude T ⊢ G. Contradiction. □

The existence of sProvT (x) is not refuted by the above argument: The proof does a
case analysis on T ⊢ G or T ̸⊢ G, which is exhaustive. There is no reason that a case
analysis on T ⊢ G or T ⊢ ¬G, which we would need to refute existence of sProvT (x)
using this argument, is exhaustive.
The indefinability theorem implies that for consistent extensions of Q, provability
is undecidable. This is known as essential undecidability. Kirst and Peters [53]
already mechanised it, but they follow a substantially different approach.

Corollary 5.6 (Essential Undecidability of Q) Let T be a consistent extension of Q.
The predicate λφ. T ⊢ φ is not decidable.

Proof Suppose P is decidable. Using Gödelisation, P it definable in T thanks to the
representability theorem (2). This contradicts the indefinability theorem. □

Note that provability in inconsistent theories is trivially both definable and decid-
able.
In a similar spirit to the indefinability theorem, Tarski’s theorem rules out the ex-
istence of a formula trueN(x) such that N ⊨ φ iff N ⊨ trueN[⌜φ⌝] for all sentences
φ. This is in stark contrast to ND provability, where sound external provability
predicates have such a property. The proof is inspired by Harrison [38].

Theorem 5.7 (Tarski’s Theorem [100]) There is no formula trueN(x) such that N ⊨ φ
iff N ⊨ trueN[⌜φ⌝] for all sentences φ.

Proof Let trueN(x) have this property. By the diagonalisation equivalence, there is
a sentence G such that N ⊨ G ↔ ¬trueN[⌜G⌝]. Since G and trueN[⌜G⌝] are closed,
N ⊨ G↔ N ̸⊨ trueN[⌜G⌝], contradicting the assumption N ⊨ G↔ N ⊨ trueN[⌜G⌝]. □

5.2.2 Gödel’s First Incompleteness Theorem
In Section 5.2.1, we already noted that the claims Q ⊢ ¬φ and Q ̸⊢ φ seem to differ
substantially. In fact, the former is stronger: Q ⊢ ¬φ implies Q ̸⊢ φ by virtue of Q’s
consistency, but the converse is false: We have Q ̸⊢ ∀x. x+O = x (see Section 3.5, see
Smith [94, pp. 69f.]), but we do not have Q ⊢ ¬(∀x. x+O = x) since this sentence is
false in the standard model. That is, ∀x. x+ O = x is independent in Q.
We give three different proofs of Gödel’s first incompleteness theorem [34]. The
first rules out completeness, i.e. that a deduction system proves or refutes any
sentence, and the remaining two produce sentences that are independent, i.e. sen-
tences which are neither provable not refutable.
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Kirst and Hermes [51] already mechanised a variant of Gödel’s first incomplete-
ness theorem which rules out completeness of sound extensions of Q. Kirst and
Peters [53] then improved upon this result to obtain actual independent sentences
for any consistent extension of Q. They do not prove incompleteness of first-order
arithmetic directly, but follow a strategy using a notion of abstract formal systems.
We now complement this approach by taking the more traditional track via the
diagonal lemma, simplifying some reasoning. The following table provides an
overview over the results presented, also referring to previous work relied on.

Result
Property of T Soundness Σ1-Soundness Completeness

Shows that completeness
implies computational taboo

Kirst and
Hermes [51] – –

Rules out completeness – Theorem 5.8
Provides independent
sentence – Theorem 5.9

Theorem 5.10
Kirst and
Peters [53]

We first use the indefinability theorem to show that Σ1-sound extensions of Q can-
not be complete. Recall that Σ1-soundness implies consistency (Lemma 3.28).

Theorem 5.8 (Gödel’s First Incompleteness Theorem) Let T be an enumerable, Σ1-
sound extension of Q. We do not have T ⊢ φ or T ⊢ ¬φ for all sentences φ.

Proof Suppose T had this property. Let provT (x) be the formula constructed in
Lemma 4.10. We show that provT (x) defines λφ. T ⊢ φ in T , contradicting the inde-
finability theorem.
If T ⊢ φ, then immediately T ⊢ provT [⌜φ⌝]. If, on the other hand, T ̸⊢ φ, then
either T ⊢ provT [⌜φ⌝] or T ⊢ ¬provT [⌜φ⌝] by completeness of T . The former can be
ruled out since it would imply T ⊢ φ, contradicting consistency of T . Therefore,
T ⊢ ¬provT [⌜φ⌝]. □

We can now draw our attention to proofs of Gödel’s first incompleteness theorem
which even provide independent sentences. Our first proof is close the traditional
argument often seen in textbook presentations, for instance in Boolos, Burgess and
Jeffrey [8], or Smith [94].

Theorem 5.9 (Gödel’s First Incompleteness Theorem) Let T be an enumerable, Σ1-
sound extension of Q. There is a sentence G such that neither T ⊢ G nor T ⊢ ¬G.

Proof We apply the diagonal lemma to the negation of provT (x), constructed in
Lemma 4.10, yielding (after weakening) G such that T ⊢ G ↔ ¬provT [⌜G⌝]. We

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.Limitative_Theorems.html#godel_first_incompleteness_tarski
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claim that G is independent. By translation, it suffices to show that neither T ⊢c G

nor T ⊢c ¬G since T ⊢ G implies T ⊢c G and T ⊢ ¬G implies T ⊢c ¬G.
If T ⊢c G, then T ⊢c provT [⌜G⌝], but from T ⊢c G↔ ¬provT [⌜G⌝]we also see that T ⊢c

¬provT [⌜G⌝], so T is inconsistent and, in particular, not Σ1-sound. Contradiction.
If T ⊢c ¬G, then T ⊢c ¬¬provT [⌜G⌝] by virtue of T ⊢c G ↔ ¬provT [⌜G⌝]. Since the
classical system proves elimination of double negation, we observe T ⊢c provT [⌜G⌝].
By Σ1-soundness of T , have N ⊨ provT [⌜G⌝], and thus T ⊢ provT [⌜G⌝] by Σ1-com-
pleteness ofQ andweakening. But then also T ⊢ G, thus T ⊢c G and T is inconsistent
and, in particular, not Σ1-sound. Contradiction. □

While this result is already very strong since it yields actual independent sentences,
it requires T to be Σ1-sound. This is already an improvement over Gödel’s [34]
original proof, which required a stronger assumption called ω-consistency, but
Rosser [88] proved that mere consistency of T already suffices using a technique
now known as “Rosser’s trick”.
In a certain sense, we can say that sProvT (x) already has “Rosser’s trick” baked in
since the required representability result can be obtained using this trick, as shown
by Peters [82, p. 28], but this is not required, as Kirst and Peters prove this repre-
sentability result differently [53].

Theorem 5.10 (Gödel’s First Incompleteness Theorem) Let T be an enumerable and
consistent extension of Q. There is a sentence G such that neither T ⊢ G nor T ⊢ ¬G.

Proof Let sProvT (x) be the provability predicate constructed in Lemma 4.11. By
the diagonal lemma and weakening, we obtain a sentence G such that T ⊢ G ↔
¬sProvT [⌜G⌝]. We claim that G is independent.
Suppose that T ⊢ G. Then T ⊢ sProvT [⌜G⌝] by Lemma 4.11 and T ⊢ ¬sProvT [⌜G⌝] by
virtue of T ⊢ G↔ ¬sProvT [⌜G⌝]. Contradiction, since T is consistent.
Now suppose that T ⊢ ¬G. Then T ⊢ ¬sProvT [⌜G⌝] by Lemma 4.11 as well as
T ⊢ ¬¬sProvT [⌜G⌝] by virtue of T ⊢ G ↔ ¬sProvT [⌜G⌝]. Contradiction, since T is
consistent. □

5.3 The Generalised Diagonal Lemma
Although sufficient for all our applications, the diagonal lemma can only be applied
to formulas in one free variable. It is a canonical question to ask whether, and if so,
how, this construction generalises. Indeed, there is a rarely stated generalisation to
arbitrary formulas. Boolos [7, pp. 53f.] does have this generalisation, and Boolos,
Burgess, and Jeffrey [8, pp. 229f.] leave a minor generalisation as exercise.

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.Limitative_Theorems.html#godel_first_incompleteness_strong_sep
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In its proof, we need to be able to represent functionsN → N → · · · → N in Robinson
Arithmetic in the spirit of total CTQ, i.e. for each f : N → N → · · · → N taking k ⩾ 1
arguments, find a formula φf(x1, . . . , xk, y) such that for all n1, . . . , nk : N, we have

Q ⊢ ∀y.φf[n1, . . . , nk, y] ↔ y = f n1 . . . nk.

When the above result is needed in the literature, it is often directly shown that any
total recursive function is representable in this sense. Since we work in synthetic
computability theory, the above result needs to be shown in a different way. We
derive it from total CTQ.
On a high-level, we do induction on k. When we have a function f taking k + 1

many arguments, we use an embedding ⟨·, ·⟩ : N × N → N (with projection func-
tions π1 and π2, respectively) in order to obtain a sensible function g only taking
k arguments, i.e. we compress two arguments into one without losing any infor-
mation. The inductive hypothesis then gives us a formula φg(x1, . . . , xk, y) having
the required property for g. A lemma shown by Kirst and Peters [53] as part of
their program to prove that EPFµ implies CTQ can be used to construct a formula
ψ(x1, . . . , xk+1, y) such that

Q ⊢ ∀y.ψ[n1, n2, n3, . . . , nk+1, y] ↔ φg[⟨n1, n2⟩, n3, . . . , nk+1, y]

for all n1, . . . , nk+1 : N. The formula ψ then has the required property.
Lemma 5.11 (Multivariate, total CTQ) Let f : N → N → · · · → N be a function taking
k ⩾ 1 arguments. There is a Σ1-formula φf(x1, . . . , xk, y) such that, for all n1, . . . , nk : N,

Q ⊢ ∀y.φf[n1, . . . , nk, y] ↔ y = f n1 . . . nk.

Proof Induction on k, starting at k = 1. The base case is an instance of total CTQ.
Let now f be given such that f takes k+ 1many arguments. By induction, we have
the claim for all functions taking k arguments. We set g := λm. f (π1m) (π2m).
Clearly, g takes k arguments. By the induction hypothesis, we obtain a Σ1-formula
φg(x1, . . . , xk, y) such that

Q ⊢ ∀y.φg[n1, . . . , nk, y] ↔ y = gn1 . . . nk (5.2)

for all n1, . . . , nk : N.
A lemma by Kirst and Peters [53] (it only shows up in their Coq development1)
provides a Σ1-formula ψ(x1, . . . , xk+1, y) such that

Q ⊢ φg[⟨n,m⟩] ↔ ψ[n,m]

1The statement is available at https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq_
fol/FOL.Incompleteness.ctq.html#compress_free.
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for all n,m : N. This achieved via pairing on the object level. The above result
readily implies

Q ⊢ φg[⟨n1, n2⟩, n3, . . . , nk+1] ↔ ψ[n1, n2, n3, . . . , nk+1] (5.3)
for all n1, . . . , nk+1 : N.
We set φf = ψ and have to prove

Q ⊢ ∀y.ψ[n1, . . . , nk+1, y] ↔ y = f n1 . . . nk+1

for all n1, . . . , nk : N. Since each formula in Q is closed, y is fresh for Q and thus, by
virtue of AI, it suffices to show

Q ⊢ ψ[n1, . . . , nk+1, y] ↔ y = f n1 . . . nk+1. (5.4)

From (5.2), we obtain (using g ⟨n1, n2⟩n3 . . . nk+1 = f n1 n2 n3 . . . nk+1)
Q ⊢ ∀y.φg[⟨n1, n2⟩, n3, . . . , nk+1, y] ↔ y = f n1 n2 n3 . . . nk+1,

from which we can deduce (by instantiating the ∀-quantifier with the variable y)
Q ⊢ φg[⟨n1, n2⟩, n3, . . . , nk+1, y] ↔ y = f n1 n2 n3 . . . nk+1. (5.5)

Our goal is (5.4), which follows from (5.3) and (5.5) by tracing the equivalences.□

The key in this proof is the compression of two arguments into one using pairing.
We remark that Kirst’s and Peters’ [53] result is invaluable in this proof.
In Coq, the notations N → N → · · · → N, f n1 . . . nk and φ[n1, . . . , nk, y] need to be
made rigorous. The former is obtained via a functionN → Twhich, for each natural
number, yields such a function type with an appropriate number of arguments.
The notation f n1 . . . nk for evaluation is explained via a vector [n1, . . . , nk] of k
elements; the evaluation is then defined by recursion on k. The substitution in
φ[n1, . . . , nk, y] is obtained via a fold operation on the vector [n1, . . . , nk].
We are now in the position to generalise the diagonal lemma, the proof is taken
from Boolos [7, pp. 53f.]. He shows it for PA, we even prove it for Q. The proof
follows the same idea as the proof of diagonal lemma. Its mechanisation is further
work. No results in this thesis depend on it.
Lemma 5.12 (Generalised Diagonal Lemma, not mechanised) Let

ψ1(x1, . . . , xn, y1, . . . , yk), . . . , ψn(x1, . . . , xn, y1, . . . , yk)

be formulas, where n ⩾ 1.

There exist formulas G1(y1, . . . , yk), . . . , Gn(y1, . . . , yk) such that, for all i = 1, 2, . . . , n,

Q ⊢ Gi ↔ ψi[⌜G1⌝, . . . , ⌜Gn⌝].
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Proof Let s be a function satisfying the following equation

s (göd τ)m1 . . . mn = göd (τ[m1, . . . ,mn])

for all formulas τ and m1, . . . ,mn : N, i.e. s is a substitution function on Gödel
numbers.
By Lemma 5.11, we find a formula φs(w1, . . . , wn, z) capturing s and define

Fi := ∃z1. . . . ∃zn. φs[x1, x1, . . . , xn, z1]∧ . . .

∧φs[xn, x1, . . . , xn, zn]∧ψi[z1, . . . , zn]. (5.6)

Each Fi has the free variables x1, . . . , xn, y1, . . . , yk. With this, we can define the
fixed-points Gi:

Gi := Fi[⌜F1⌝, . . . , ⌜Fn⌝] (5.7)

Clearly, each Gi has the free variables y1, . . . , yk. We need to show that

Q ⊢ Gi ↔ ψi[⌜G1⌝, . . . , ⌜Gn⌝].

For the direction from left to right, we introduce the assumption Gi, unfold the
definitions of Gi as well as Fi and destructure the n existential quantifiers. As we
have, for each j = 1, . . . , n, the assumption φs[⌜Fj⌝, ⌜F1⌝, . . . , ⌜Fn⌝, zj], we deduce
zj = ⌜Fj[⌜F1⌝, . . . , ⌜Fn⌝]⌝ by the defining property of φs. The definitions of Fj (5.6)
and of Gj (5.7) together then yield zj = ⌜Gj⌝, which is what was needed.
For the converse, we assume ψi[⌜G1⌝, . . . , ⌜Gn⌝] and have to show Gi. After un-
folding Gi and Fi, we instantiate each zj with ⌜Gj⌝, which immediately gives the
ψi[z1, . . . , zn]-part. We still have to show φs[⌜Fj⌝, ⌜F1⌝, . . . , ⌜Fn⌝, ⌜Gj⌝] for each j.
Again, we have the equality ⌜Fj[⌜F1⌝, . . . , ⌜Fn⌝]⌝ = ⌜GJ⌝. Thus, we are done by the
defining property of φs. □

Notice that the proof is also a generalisation of the proof of Lemma 5.2. For k = 0

and n = 1, the result degenerates to the claim of Lemma 5.2. In this situation, the
above proof defines F1 := ∃z1. φs[x1, x1, z1]∧ψ1[z1] and G1 := F1[⌜F1⌝], i.e. G1 is the
diagonalisation of F1, just as in the proof of Lemma 5.2. Further, φs[x1, x1, z1] also
captures the diagN, so the proofs are essentially the same in this simple case.
The generalisation extends Lemma 5.2 along two axes, as succinctly pointed out by
the following corollaries.
Corollary 5.13 Let ψ1(x1, . . . , xn), . . . , ψn(x1, . . . , xn) be formulas. There exist sen-
tences G1, . . . , Gn such that, for all i = 1, 2, . . . , n,

Q ⊢ Gi ↔ ψi[⌜G1⌝, . . . , ⌜Gn⌝].
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In other words: Many formulas have many (closed) fixed points.
Corollary 5.14 Let ψ(x, y1, . . . , yk) be a formula. There exists G(y1, . . . , yk) such that

Q ⊢ G↔ ψ[⌜G⌝].

In other words: Open formulas formulas have open fixed points.
A variant of Corollary 5.13 for n = 2 is an exercise in Boolos, Burgess and Jeffrey’s
book [8, pp. 229f.].
The fixed-points obtained from Corollary 5.13 are not necessarily equal.
Lemma 5.15 The formulas x = x and x = S x do not have a fixed-point G in the sense
that both

Q ⊢ G↔ ⌜G⌝ = ⌜G⌝,
Q ⊢ G↔ ⌜G⌝ = (S ⌜G⌝).

Proof From the assumptions, we conclude
Q ⊢ ⌜G⌝ = (S ⌜G⌝),

since Q ⊢ ⌜G⌝ = ⌜G⌝ by virtue of (ER). By Lemma 3.25, this formula is ∆1 and thus
Σ1, so by Σ1-soundness of Q we can show gödG = gödG+ 1, contradictory. □

Note that Q ⊢ ⌜G⌝ = (S ⌜G⌝) is not directly a contradiction since Q does not prove
that numbers are different from their successors. Therefore, some soundness argu-
ment is needed to obtain a contradiction. Lemma 3.16 is also not sufficient since it
does not disprove the classical judgement Q ⊢c ⌜G⌝ = (S ⌜G⌝), so this slight detour
via Σ1-soundness is used.
Likewise, it cannot be enforced that the fixed points in Corollary 5.14 are closed.
Lemma 5.16 The formula x = y does not have a closed fixed-point G in the sense that

Q ⊢ G↔ ⌜G⌝ = y.

Proof Suppose Gwas such a sentence. As all axioms of Q are closed, y is fresh for
Q and we obtain

Q ⊢ ∀y.G↔ ⌜G⌝ = y

by virtue of AI. This gives us both
Q ⊢ G↔ ⌜G⌝ = ⌜G⌝,
Q ⊢ G↔ ⌜G⌝ = (S ⌜G⌝),

which contradicts Lemma 5.15. □

We are not aware that these counterexamples appear in the literature. Further, they
do not rely on CTQ.
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Chapter 6

Löb’s Theorem

This chapter is devoted to stating and proving Löb’s theorem from 1955 [67], one
of the key results presented in this thesis. This theorem states that, when provT (x)
is a sufficiently strong provability predicate and T a rich enough theory, then, re-
markably, T ⊢ provT (⌜φ⌝) → φ implies T ⊢ φ for all sentences φ. Löb’s theorem
admitsGödel’s second incompleteness theorem as corollary when instantiated to
φ := ⊥. There are many different provability predicates and only a small subset
qualifies for Löb’s theorem.

Löb’s theorem and work by Gödel [35] on a particular system of modal logic gave
rise to provability logic [105], a branch of modal logic where provability is given
by means of a modality. Its purpose is the investigation what theories of arithmetic
can derive about their provability predicates. Löb’s theorem, for instance, states
that assuming provability on the object level does not add any power in the sense
that one can also only derive provable formulas under this assumption.

First, we discuss sufficient properties for provability predicates to qualify for Löb’s
theorem, known as Hilbert-Bernays-Löb derivability conditions, and give some
historical background on these conditions in Section 6.1. The key of this section
is Definition 6.4 which suffices to understand almost all of the remaining chapter.
Then, we prove and discuss Löb’s theorem in Section 6.2, from which we conclude
Gödel’s second incompleteness theorem in Section 6.3
6.1 The Hilbert-Bernays-Löb Derivability Conditions
Löb [67] isolated abstract conditions that a provability predicate needs to satisfy
in order for Löb’s theorem to hold. Before we state these conditions, we give some
historical context to explain where they originated from.

In 1939, Hilbert and Bernays [43] were the first to give a rigorous treatment of
Gödel’s second incompleteness theorem [34]. They proved this theorem for all
sufficiently strong formal systems where a provability predicate satisfying certain
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abstract conditions, called Ableitbarkeitsforderungen, can be defined. These condi-
tions became known as the Hilbert-Bernays derivability conditions. In our set-
ting, these can be stated as follows.
Definition 6.1 (Hilbert-Bernays Derivability Conditions, cf. [43]) Let T be a the-
ory and BewT (x),BT (w, x) formulas such that both BewT (x) = ∃w.BT [w, x] and T ⊢ φ
iff there is n : N such that T ⊢ BT [n, ⌜φ⌝]. We say that BewT (x) satisfies the Hilbert-
Bernays derivability conditions if the following assertions hold for all formulas φ,ψ,
and primitive recursive terms f(x).

1. T ⊢ φ→ ψ implies T ⊢ BewT [⌜φ⌝] → BewT [⌜ψ⌝],

2. T ⊢ BewT [⌜¬φ(x)⌝] → BewT [⌜¬φ(ẋ)⌝], and

3. T ⊢ f(x) = O → BewT [⌜f(ẋ) = O⌝].

We use the term HB conditions as abbreviation for Hilbert-Bernays derivability condi-
tions.

Hilbert and Bernays stated (1)-(3) using different notation, the formulation given
here is inspired by Kurahashi [63]. The formula BT (w, x) is sometimes called a
proof predicate. The requirement thatBewT (x) = ∃w.BT [w, x] is from Hilbert and
Bernays [43], modern treatments such asKurahashi requireBewT (x) toweakly rep-
resent the set of provable formulas. In order to explain the historical background
accurately, the original definition is given.
In the above definition, for any formula ψ, the term ⌜ψ(ẋ)⌝ is a notational gadget
which – intuitively – denotes a term in which x is a free variable, such that we have
⌜ψ(ẋ)⌝[x 7→ n] = ⌜ψ[n]⌝ for all n : N. Formalising this, however, is extremely tedious
as pointed out by Paulson [78, 79]whomechanised this in a proof assistant. Simply
put, these conditions are difficult to work with.
For a particular system of first-order arithmetic which they call Zµ, Hilbert and
Bernays define a concrete provability predicate BewZµ

(x) := ∃w.BZµ
(w, x) similar

to Gödel’s [34] predicate. They show that this predicate satisfies theHB conditions,
yielding Gödel’s second incompleteness theorem for this system and BewZµ

(x).
Further, for this particular system, they prove the following additional property.
Lemma 6.2 (cf. Hilbert-Bernays [43]) Let φ,ψ be formulas of Zµ. We have

Zµ ⊢ BewZµ
[⌜φ→ ψ⌝] → BewZµ

[⌜φ⌝] → BewZµ
[⌜ψ⌝].

This lemma abuses notation because Zµ is not defined in terms of ND provabil-
ity, and even the syntax of formulas differs. For the high-level idea this section is
supposed to convey, this difference does not matter.
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Löb [67] then showed his theorem in 1955 for Zµ as well as similar systems based
on the predicateBewZµ

(x) and showed that it also satisfies the following property.
Lemma 6.3 (cf. Löb [67]) Let φ be a formula of Zµ. We have

Zµ ⊢ BewZµ
[⌜φ⌝] → BewZµ

[⌜BewZµ
[⌜φ⌝]⌝].

Then, Löb’s theorem follows abstractly and mechanically from Lemmas 6.2 and 6.3
and the fact that Zµ ⊢ φ implies Zµ ⊢ BewT [⌜φ⌝], as shown in Section 6.2. Since
Löb’s theorem implies Gödel’s second incompleteness theorem (see Section 6.3),
these facts about BewT (x) provide sufficient conditions for Gödel’s second incom-
pleteness theoremwhich are easier to handle than the ones in HB conditions. They
became known as Hilbert-Bernays-Löb derivability conditions.
After the historical analysis, we switch back to the notation from Chapter 4.
Definition 6.4 (Hilbert-Bernays-Löb Derivability Conditions) Let T be a theory.
A formula provT (x) is said to satisfy Hilbert-Bernays-Löb derivability conditions if
the following assertions hold for all formulas φ,ψ.

1. T ⊢ φ implies T ⊢ provT [⌜φ⌝] (i.e. provT (x) is an external provability predicate),

2. T ⊢ provT [⌜φ→ ψ⌝] → provT [⌜φ⌝] → provT [⌜ψ⌝], and

3. T ⊢ provT [⌜φ⌝] → provT [⌜provT [⌜φ⌝]⌝].

(1) is called necessitation, (2) is called the modus ponens rule or box distributivity,
and (3) is called internal necessitation. We use the term HBL conditions as abbrevia-
tion for Hilbert-Bernays-Löb derivability conditions.

There are lots of unsound provability predicates, for instance provT (x) := ⊤, sat-
isfying the HBL conditions. Later, it is shown that these conditions are sufficient
for Löb’s theorem andGödel’s second incompleteness theorem. However, these re-
sults are only interesting if provT (x) is also sound, which gives rise to the following
definiton.
Definition 6.5 (Internal Provability Predicates) Let T be a theory and provT (x) a for-
mula. We say that provT (x) is an internal provability predicate for T if provT (x) satisfies
the HBL conditions and is sound.

Internal provability predicates weakly represent the set of provable formulas, and,
in addition, allow proving essential facts about the deduction system as object-level
implications.
In an extensive analysis of different provability predicates, Kurahashi [63] shows
that for sound external provability predicates the HB conditions and the HBL con-
ditions aremutually incomparable, that is, none of these conditions imply the other.



6.2. Proof from the Hilbert-Bernays-Löb Derivability Conditions 41

6.2 Proof from the Hilbert-Bernays-Löb Derivability Conditions
We now have the required background for Löb’s theorem. When proving a sen-
tence φ, Löb’s theorem allows one to assume provT [⌜φ⌝], provided that provT (x)
satisfies the HBL conditions. In formal terms, T ⊢ provT [⌜φ⌝] → φ implies T ⊢ φ.
In the context of Löb’s theorem, provability is often expressed bymeans of amodal-
ity □(x) since this result has given rise to provability logic [105], where provability
is given by such an abstract modality. In our setting, the notation □φ translates to
provT [⌜φ⌝]. In the following, we stick to this convention to ease readability.
The proof of Löb’s theorem is given in a version by Smith [94, pp. 255]. (6.4) is not
made explicit by him, but Löb [67] makes this point.
Theorem 6.6 (Löb’s Theorem [67]) Let T be a theory admitting the diagonal lemma,
let□ satisfy the HBL conditions and letφ be a sentence. Then, T ⊢ □φ→ φ implies T ⊢ φ.

Proof We apply the diagonal lemma to obtain a sentence G such that

T ⊢ G↔ (□G→ φ). (6.1)

Later, we will see that G is in fact provable. By necessitation, only considering the
implication from left to right, this gives

T ⊢ □(G→ (□G→ φ)). (6.2)

By applying box distributivity on the formulas G and □G→ φ to (6.2), we obtain

T ⊢ □G→ □(□G→ φ). (6.3)

The following is an instance of box distributivity:

T ⊢ □(□G→ φ) → □(□G) → □φ (6.4)

Combining (6.3) and (6.4) yields

T ⊢ □G→ □(□G) → □φ. (6.5)

Using internal necessitation, (6.5) can be simplified to

T ⊢ □G→ □φ. (6.6)

By the assumption T ⊢ □φ→ φ, (6.6) implies

T ⊢ □G→ φ (6.7)

By (6.1), we also have T ⊢ G and thus T ⊢ □G by necessitation. In conjunction with
(6.7), this shows T ⊢ φ as desired. □

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.Loeb.html#Lob's_theorem


42 Löb’s Theorem

This is also the proof which Löb gave in 1955 [67], although he uses a slightly dif-
ferent ordering of the arguments. Note that all formulas in the proof are closed.
The above proof is also mechanised in Isabelle/HOL [71] based on Paulson’s [79]
internal provability predicate.
Löb’s theorem seems paradoxical at a first sight: Since □φ expresses the assertion
thatφ is provable, T ⊢ □φ→ φ seems like it should be trivially derivable. However,
this is not the case. Although a sound provability predicate has the property that
T ⊢ □φ implies T ⊢ φ, this does not mean that □ is sound on the object level, i.e.
T ⊢ □φ → φ, provided that T is consistent: While T ⊢ □⊥ implies T ⊢ ⊥, Löb’s
theorem rules out that T ⊢ □⊥ → ⊥, since otherwise T would be inconsistent. This
is Gödel’s second incompleteness theorem.
From a different viewpoint, proving T ⊢ □φ → φ reduces to showing □φ, T ⊢ φ.
The HBL conditions do not allow eliminating the assumption □φ. In particular,
□φ, T ⊢ φ is a claim in the theory □φ, T , while □ expresses provability in T .
Löb [67] pointed out that his proof can be used to construct paradoxes in natural
language without using negation. Indeed, the proof above can be used to show
Tarski’s theorem. If we reinterpret □(x) as trueN(x) : F, i.e. N ⊨ φ iff N ⊨ □φ for all
closed formulas φ, then N ⊨ □φ → φ is trivially the case. By the diagonalisation
equivalence, there is a closed formula G such that N ⊨ G ↔ (□G → φ). Since
the HBL conditions are vacuously true for □(x) if stated using N ⊨ instead of T ⊢,
Löb’s reasoning yields N ⊨ φ, so in particular N ⊨ ⊥. Curry [18] found a similar
phenomenon, known as Curry’s paradox.
There is also an internal version of Löb’s theorem. It was first mentioned by Smi-
ley [91]; the idea rose in discussions with Kripke, but Smiley does not prove it.
Instead, he merely states that it follows if the proof of Löb’s theorem is formalised.
We follow the proof of Halbach and Leigh [36].
Theorem 6.7 (Internal Löb’s Theorem) Let T be a theory having the diagonal lemma,
let □ satisfy the HBL conditions and let φ be a sentence. Then, T ⊢ □(□φ→ φ) → □φ.

Proof We reason as in the proof of Löb’s theorem up to and including (6.6). From
(6.6), we obtain

T ⊢ (□φ→ φ) → □G→ φ. (6.8)
From (6.1) and basic logic, we get

T ⊢ (□φ→ φ) → G, (6.9)
and thus

T ⊢ □((□φ→ φ) → G) (6.10)

https://www.ps.uni-saarland.de/~bailitis/bachelor/Isabelle/Loeb.html
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by necessitation. Applying box distributivity to (6.10) yields

T ⊢ □(□φ→ φ) → □G. (6.11)

The claim now follows by combining (6.6) and (6.11). □

Internal Löb’s theorem implies Löb’s theorem.
Corollary 6.8 (Löb’s Theorem) Let T be a theory admitting the diagonal lemma, let □
satisfy the HBL conditions and let φ be a sentence. Then, T ⊢ □φ→ φ implies T ⊢ φ.

Proof By assumption and necessitation, we have T ⊢ □(□φ→ φ) and thus T ⊢ □φ
by internal Löb’s theorem. The assumption then gives T ⊢ φ. □

As Halbach and Leigh [36] point out, one can even go one level deeper and quan-
tify the formula φ on the object level, yielding the following deep version of Löb’s
theorem

T ⊢ ∀x.□(⌜□(ẋ)⌝ →̇ x) → □(x),

where □(x) is now seen as provT (x). This result follows if box distributivity and
internal necessitation are quantified on the object level. Further, one needs a modi-
fication of the diagonal lemmadue to Ehrenfeucht and Feferman [20]. Instantiating
x = ⌜φ⌝ yields internal Löb’s theorem.
6.3 Gödel’s Second Incompleteness Theorem
We are now in the position to both state and prove Gödel’s second incomplete-
ness theorem [34], stating that sufficiently strong formal systems cannot prove a
sentence expressing their own consistency. Such sentences are called consistency
sentences. In the following, the consistency sentence ¬□⊥ is used.
Theorem 6.9 (Gödel’s Second Incompleteness Theorem) Let T be a consistent the-
ory admitting the diagonal lemma and let □ satisfy the HBL conditions. Then, T ̸⊢ ¬□⊥.

Proof Assume T ⊢ ¬□⊥. By Löb’s theorem, T ⊢ ⊥, contradicting consistency. □

The proof is due to Kreisel [61], Boolos [7] made us aware of this. Since each inter-
nal provability predicate satisfies the HBL conditions, Gödel’s second incomplete-
ness theorem applies to those as well.
If □(x) is sound, then Gödel’s second incompleteness theorem implies Gödel’s first
incompleteness theorem in the version of Theorem 5.10: □⊥ is an independent sen-
tence since T ⊢ □⊥ is ruled out by soundness and consistency, and T ⊢ ¬□⊥ by
Gödel’s second incompleteness theorem.
Unlike Gödel’s first incompleteness theorem, where the theorem statement does
not mention provability predicates, the second incompleteness theorem does, i.e.

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.Loeb.html#Lob's_theorem_from_int
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this result depends on the provability predicate being used. Even more, there are
multiple ways to define a consistency sentence given the same provability predi-
cate. We, among many authors [7, 8, 84, 94, 36], use ¬□⊥ expressing that falsity
is not provable. Gödel [34] used a consistency sentence of the shape ∃x. form(x) ∧

¬□x, where form(x) : F asserts that x is the encoding of a formula. Hilbert and
Bernays [43] use ∀x. form(x) → □x→ ¬(□(¬̇x)), where ¬̇ is a function symbol added
to the syntax of formulas, the corresponding function maps the code of a formula
to the code of its negation. The notation used here is inspired by Kurahashi [63],
who also explains relations between them.
Gödel’s second incompleteness theorem also implies Löb’s theorem provided that
the second incompleteness theorem applies not only to T but also some modifica-
tions of it. The result was presented in a talk by Kripke in 1966, Smith [94, p. 257]
took this up and gives a proof sketch. It is futurework to analysewhether this proof
can be mechanised.
Jeroslow [47] points out that, when deriving Gödel’s second incompleteness theo-
rem1 from the HB conditions, the third condition is the crucial one. This condition
easily implies internal necessitation [67], which can therefore be seen as the key
ingredient to Gödel’s second incompleteness theorem. In Chapter 7, we point out
that internal necessitation is also the most difficult condition to establish.

1Jeroslow uses the consistency sentence ∀x.¬(□x∧□(¬̇x)) (in his original paper, the quantifier is
missing, it is present in later treatments such as Popescu and Traytel [83]). Jeroslow points out that
his approach is too weak to show Löb’s theorem.



Chapter 7

Internal Provability Predicates

After having studied Löb’s theorem and sufficient conditions for it in Chapter 6,
we now focus on selected approaches to define internal provability predicates, i.e.
provability predicates which are both useful in the sense that they are sound and
strong in the sense that Löb’s theorem andGödel’s second incompleteness theorem
applies to them.
First, we note that there are sound external provability predicates which are not
internal. Then, a few naïve approaches to define internal provability predicates us-
ing CTQ are sketched and it is explained why CTQ is too weak to define such pred-
icates. Following a usual approach that proofs are represented as lists of formulas
(Definition 3.19), the system of first-order arithmetic is extended by list functions
which are then used to define a candidate for an internal provability predicate in
Section 7.2. For this candidate, the modus ponens rule and necessitation are veri-
fied. Internal necessitation is not proved for this predicate. instead we discuss why
this particular condition is extremely difficult to establish.
7.1 Church’s Thesis and Internal Provability Predicates
Recall the external provability predicate sProvT (x) from Lemma 4.11. It satisfies T ⊢
¬φ→ T ⊢ ¬sProvT [⌜φ⌝], so in particular T ⊢ ¬sProvT [⌜⊥⌝] since T ⊢ ¬⊥ is true. That
is, Gödel’s second incompleteness theorem does not apply to sProvT (x). Although
not mechanised, we noted at the end of Section 4.2 that sProvT (x) is sound if T is
Σ1-sound. That is, there is a sound external provability predicate which does not
qualify for Gödel’s second incompleteness theorem and is therefore not internal. In
other words, the provability predicates obtained from CTQ by Lemma 4.10 are not
necessarily internal. Thus, to define such predicates, a new approach is required.
As a by-product of our further elaboration, we also obtain a mechanised proof of
the fact that there are sound external provability predicates which are not internal.
Gödel’s [34] original and internal provability predicate is of the form ∃w. prfT [w, x],
where prfT (w, x) is a proof predicate. Many internal provability predicates pre-
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sented in the literature follow the same approach. Morally, prfT [n, ⌜φ⌝] for n : N
and φ : F should be provable in T iff n encodes a proof of the formula φ.
Definition 7.1 (External Proof Predicates) Let T be a theory. A formula prfT (w, x) is
called an external proof predicate for T if for all formulas φ, we have

T ⊢ φ↔ ∃n : N. T ⊢ prfT [n, ⌜φ⌝].

If T is enumerable, λn. göd−1 n is too by Corollary 4.9, witnessed by an enumerator
f : N → O(N). Then, P := λnm. fn = Somem is a decidable and therefore enumer-
able predicate. In principle, multivariate CTQ for n = 2 could be used to derive
a version of Theorem 4.5 (1) for binary enumerable predicates, which gives a Σ1-
formula prfT (w, x) weakly representing P. By definition of f, prf(w, x) is then an
external proof predicate. For a long time during this thesis project, we conjectured
that ∃x. provT (x) satisfies the HBL conditions. This is, however, not necessarily the
case, as a trick by Mostowski [70, pp. 19f.] shows. That is, the specification of
external proof predicates is too weak for the HBL conditions.
7.1.1 Mostowski’s Modification
Mostwoski’s modification [70, pp. 19f.] works as follows: If T is a consistent theory
extending Q and prfT (w, x) an external proof predicate for T , then prfMT (w, x) :=

prfT [w, x] ∧ x ̸= ⌜⊥⌝ is, too. A straightforward proof shows T ⊢ ¬∃w. prfMT [w, ⌜⊥⌝].
Thus, provMT (x) := ∃w. prfMT [w, x] is not an internal provability predicate.
Definition 7.2 (Mostowski’s Modification) Let prfT (w, x) : F be an external proof
predicate TheMostowski modification prfMT (w, x) : F of prfT (w, x) is defined as

prfMT (w, x) := prfT [w, x]∧ x ̸= ⌜⊥⌝.

This particular formulation is inspired by Bezboruah and Shepherdson [6]. Gödel’s
second incompleteness theorem does not apply to provMT (x) := ∃w. prfMT [w, x].
Lemma 7.3 Let T be a theory extendingQ, and let prfT (w, x) be an external proof predicate
for T . Then, T ⊢ ¬provMT [⌜⊥⌝].

Proof After unfolding the definitions, we have to show
T ⊢ ¬(∃w. prfT [w, ⌜⊥⌝]∧ ⌜⊥⌝ ̸= ⌜⊥⌝).

Straightforward since T ⊢ ⌜⊥⌝ = ⌜⊥⌝ by (ER). □

The reason that provMT (x) does not satisfy the HBL conditions is that the modus
ponens rule is not satisfied: From provMT [⌜φ→ ⊥⌝] and provMT [⌜φ⌝] it is not possible
to conclude provMT [⌜⊥⌝].
Now comes the crucial observation: If prfT (w, x) is an external proof predicate for
T , then prfMT (w, x) is, too, provided that T is a consistent extension of Q.
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Lemma 7.4 Let T be a consistent theory extending Q. If prfT (w, x) is an external proof
predicate for T , then so is prfMT (w, x).

Proof We have to show, for all formulas φ,

T ⊢ φ↔ ∃n : N. T ⊢ prfT [n, ⌜φ⌝].

We first prove that T ⊢ φ implies T ⊢ ⌜φ⌝ ̸= ⌜⊥⌝. Since T is consistent, we have φ ̸=
⊥. By weakening, Q ⊢ ⌜φ⌝ ̸= ⌜⊥⌝ suffices. Since ⌜φ⌝ = ⌜⊥⌝ is ∆1 by Lemma 3.25,
we haveQ ⊢ ⌜φ⌝ = ⌜⊥⌝ orQ ⊢ ⌜φ⌝ ̸= ⌜⊥⌝. The former is ruled out by Σ1-soundness
of Q.
Now, suppose that T ⊢ φ. Then, there existsn : N such that T ⊢ prfT [n, ⌜φ⌝]. Further,
T ⊢ ⌜φ⌝ ̸= ⌜⊥⌝ (see above). Thus, T ⊢ prfMT [n, ⌜φ⌝].
Conversely, if there exists n : N such that T ⊢ prfMT [n, ⌜φ⌝], then T ⊢ prfT [n, ⌜φ⌝] ∧
⌜φ⌝ ̸= ⌜⊥⌝ by definition, so in particular T ⊢ prfT [n, ⌜φ⌝] giving T ⊢ φ. □

The same reasoning shows that there exists a sound external provability predicates
that is not internal.

Lemma 7.5 Let T be an enumerable, Σ1-sound extension of Q. There exists a sound ex-
ternal provability predicate provT (x) for T such that T ⊢ ¬provT [⌜⊥⌝].

There are also other external provability predicates that are not internal. Feferman
[21] constructs one which, according to Kurahashi [64], does not satisfy internal
necessitation. Kreisel [60] argues that the Rosser [88] modification of a provability
predicate is too weak for Gödel’s second incompleteness theorem. Guaspari and
Solovay [33] construct internal provability predicates such that for their respective
Rosser modifications either internal necessitation or the modus ponens rule fail.
These results are summarised comprehensibly by Arai [2]. Kurahashi [64] con-
structs a Rosser modification for which both internal necessitation and the modus
ponens rule fail.
7.1.2 List Functions from Church’s Thesis
Mostowski’s modification shows that a purely external characterisation of proof
predicates is too weak to obtain internal provability predicates. Therefore, more
information on the internal structure of prf(w, x) is needed. Gödel’s [34] proof
predicate prfT (w, x), as well as many proof predicates presented in the literature,
interpretw as a list of formulas and formalise the definition of aHilbert proof on the
object level using appropriate representations of list functions. Gödel constructed
representations of the required list functions explicitly, which is a tedious task, in
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particular from a mechanisation perspective, as Paulson [79] notes. In this thesis,
we invstigated whether CTQ (using a Gödelisation of lists) can be used to obtain
these representations abstractly. The answer is negative, and the reason is the subtle
difference between terms and numerals, as illustrated by the following examples.
The successor function λn. n + 1 can be represented in Q using total CTQ by a for-
mula φ(x, y) such that, for all n : N, we have Q ⊢ ∀y.φ[n, y] ↔ y = n+ 1, so in
particular Q ⊢ φ[n,n+ 1]. However, proving Q ⊢ ∀x.φ[x,S x] is not possible as it is
only specified how φ(x, y) behaves when x is a numeral. In principle, it could be
that Q ̸⊢ φ[y,Sy], where y is a variable. In this simple example, there is an explicit
formula, namely φ(x, y) := y = S x, for which also Q ⊢ ∀x.φ[x,S x] is provable, but
these explicit definitions are not so easily available for the needed list functions.
Further, existential quantifiers do not have to be instantiated to numerals. For in-
stance, ∃x. x = y, where y is a variable, is provable in Q by instantiating x to y.
If we were to define a potential proof predicate prfT (w, x) using representations
of the required list functions obtained from CTQ, then provT (x) := ∃w. prfT (w, x)
would not necessarily be an internal provability predicate. The modus ponens rule
illustrates this: It would be required to show, for all formulas φ,ψ, that

T ⊢ provT [⌜φ→ ψ⌝] → provT [⌜φ⌝] → provT [⌜ψ⌝],

which, by using the definitions, reduces to

prfT [ℓ, ⌜φ→ ψ⌝], prfT [ℓ
′, ⌜φ⌝], T ⊢ provT [⌜ψ⌝].

Since ℓ, ℓ′ are witnesses of existential quantifies, they are not necessarily numer-
als. As in the example of the successor function, it is thus not possible to use any
of the list functions underneath the respective definitions of prfT [ℓ, ⌜φ → ψ⌝] and
prfT [ℓ′, ⌜φ⌝]. That is, these assumptions cannot be used to prove provT [⌜ψ⌝].
It is possible to obtain a stronger representability property such that these claims
become provable. Rautenberg [84, pp. 290ff.] calls a function f : N → N provably
recursive in T if there is a Σ1-formula φf(x, y) such that both

T ⊢ φf[n, f n] for all n : N T ⊢ ∀x. ∃!y.φf[x, y].

Any provably recursive function is representable in the sense of total CTQ. Rauten-
berg also proves that each primitive recursive function is provably recursive in PA
and that, in addition, the recursion equations are provable within PA. We expect
that an internal provability predicate can be defined by using these stronger rep-
resentations of list functions. Such an approach was not followed as formalising
recursion equations (particularly inside PA) seemed to require efforts beyond the
scope of a Bachelor’s thesis.
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7.2 Internal Provability Predicates using Lists
Theprevious sections sketchedhypothetical approaches to define internal provabil-
ity predicates which failed since the CTQ-representation is too weak. In the follow-
ing, the syntax of formulas and terms is extended to natively contain all functions
required to define internal provability predicates. Axioms are modelled that allow
proving facts about these functionswhich are quantified on the object level. That is,
these facts hold for all terms and not just all numerals. The following development
does not use CTQ.
Our approach takes its justification from the fact that these functions can be defined
explicitly in PA as explained by Boolos [7]. Essentially, the idea is already due to
Gödel [34], although he did not make it that explicit.
Definition 7.6 (Syntax of Extended First-Order Arithmetic) Let V be an account-
ably infinite type of variables, for instance N. The types Tℓ of terms and Fℓ formulas of
extended first-order arithmetic are defined inductively according to the following BNF:

t, u : Tℓ ::= x |O |S t | t+ u | t · u | [ ] | t :: u | t++ u | |t| | t{u} | t⇝ u x : V

φ,ψ : Fℓ ::= ⊥ |φ∨ψ |φ∧ψ |φ→ ψ |∃x.φ |∀x.φ | t = u | A t x : V

The symbols [ ] and :: are supposed to act as the list constructors nil and cons, ++
denotes list append, | · | list length, and t{s} is element access. The function symbol
⇝ and the predicate symbolA become clear below. The connectives¬,⊤, and↔ are
defined as in Definition 3.1. The types F and T canonically embed into Fℓ and Tℓ,
respectively. From now on, when using a formula of type F, we treat it as formula
of type Fℓ, similarly for terms. All previous definitions carry over to this setting
without any changes (in particular ND provability and Hilbert provability).
The theory LI contains all axioms needed for the added function and predicate sym-
bols.
Definition 7.7 (List and Syntax Axioms) The axioms of LI are

(LN) |[ ]| = O

(LC) ∀xy. |x :: y| = S |y|

(SZ) ∀xy. (x :: y){O} = x

(SS) ∀xyz. (x :: y){S z} = y{z}

(AL) ∀xy. |x++ y| = |x|+ |y|

(SL) ∀xyz. z < |x| → (x++ y){z} = x{z}

(SR) ∀xyz. z < |y| → (x++ y){z+ |x|} = y{z}

as well as the axiom schemas

(IMφ,ψ) ⌜φ⌝ ⇝ ⌜ψ⌝ = ⌜φ→ ψ⌝,

(HXn,φ) A ⌜∀x1 . . . xn. φ⌝, provided that H(φ),

(LXφ) A ⌜φ⌝, provided that φ ∈ LI or φ ∈ PA.

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.internal_provability.PA_Lists_Signature.html#PA_li_funcs
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.internal_provability.QEqLiFull.html#QEqLiFull
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The predicate symbol A captures the property of being an axiom of the Hilbert
system, of LI, or of PA. That is, A ⌜φ⌝ ∈ LI iffφ ∈ LI, φ ∈ PA or there existsψ : F and
n : N such that both H(ψ) and φ = ∀x1 . . . xn. ψ. Further, (IMφ,ψ), (HXn,φ) and
(LXφ) are axiom schemas since the formulas andn are quantified on themeta level,
i.e. for each formula and number n a distinguished axiom is part of LI. This comes
from the fact that formulas and numerals cannot be quantified over on the object
level. The function symbol ⇝ internalises the fact that there exists an object level
function which sends the Gödel numerals of the formulas φ and ψ to the Gödel
numeral of the formula φ → ψ. Congruence axioms for each of the new function
symbols are also required, but omitted in this paper presentation for simplicity.
These axioms can be found in the Coq development.
The theory LI gives rise to extended Peano and Heyting Arithmetic.

Definition 7.8 (Extended Peano and Heyting Arithmetic) The axioms of extended
Peano Arithmetic (EPA) and extended Heyting Arithmetic (EHA) both consist of all
the axioms in LI as well as those in PA.

As for PA and HA, EPA and EHA are equal. They are only distinguished by the
flavour of the deduction system (classical or intuitionistic) which they are used in.
With the extended syntax and the corresponding axioms at hand, it is possible to
define a candidate for an internal provability predicate formalising Hilbert proofs.
To simplify matters, we sketch the constructions for EHA. It also applies to EPA.

Definition 7.9 (Candidate for Internal Provability Predicate) We set

wellFEHA(w, i) := Aw{i} ∨ ∃j, j′ < i.w{j} = w{j ′}⇝ w{i}

prfEHA(w, x) := |w| > O ∧w{|w|− 1} = x∧ ∀i < |w|. wellFT [w, i]

provEHA(x) := ∃w. prfEHA[w, x].

Strictly speaking, the notation w{|w| − 1} = x is not syntactically correct as no sub-
traction symbol is in the syntax. This notation abbreviates ∃z. |w| = S z∧w{z} = x.
Knowing that all the functions involved here can be explicitly defined using Σ1-
formulas (cf. Boolos [7]), provEHA(x) could be seen as a Σ1-formula.
In contrast to the provability predicates studied in Section 4.2, it is not even clear
why provEHA(x) should satisfy necessitation. In fact, this property is a consequence
of the modus ponens rule which is derived first. Further, it is currently not possible
to discuss soundness of provEHA(x) since no semantics is defined for the extended
syntax. This can, however, be done and is left as future work for this thesis.

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.internal_provability.QEqLiFull.html#QEqLiFull
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.internal_provability.Prov_Definition.html#prov
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7.2.1 Modus Ponens for Provability
As pointed out in the discussion of Hilbert proofs, if ℓ1 is a Hilbert proof of the
formulaφ→ ψ and ℓ2 of the formulaφ, then ℓ1++ℓ2++[ψ] is aHilbert proof ofψ. The
underlying argument can be formalised inside the extended system of first-order
arithmetic to obtain EHA ⊢i provEHA[⌜φ→ ψ⌝] → provEHA[⌜φ⌝] → provEHA[⌜ψ⌝], i.e.
the modus ponens rule for this system.
Lemma 7.10 (Modus Ponens Rule for provEHA(x)) The formula provEHA(x) satisfies
the modus ponens rule. That is, for all formulas φ,ψ, we have

EHA ⊢i provEHA[⌜φ→ ψ⌝] → provEHA[⌜φ⌝] → provEHA[⌜ψ⌝].

Proof After introducing the assumptions, we have to show
prfEHA[w, ⌜φ→ ψ⌝], prfEHA[w

′, ⌜φ⌝],EHA ⊢i ∃w. prfEHA[w, ⌜φ⌝].

After instantiating the existential with (w++w′) ++ (⌜φ⌝ :: []), it remains to prove
prfEHA[w, ⌜φ→ ψ⌝], prfEHA[w

′, ⌜φ⌝], T ⊢i prfEHA[(w++w′) ++ (⌜φ⌝ :: []), ⌜φ⌝].

This is provable in EHA using the axioms from LI as well as HA. Showing that
(w++w′)++(⌜φ⌝ :: []) is a nonempty listwith last element ⌜φ⌝ can be establishedusing
(AL), (SS) and (SR) as well as a modest amount of arithmetic. For the verification
ofwellF[(w++w′)++(⌜φ⌝ :: []), i] for all i < |(w++w′)++(⌜φ⌝ :: [])|, it is checkedwhether
i < |w|, |w| ⩽ i < |w| + |w′| or i = |w| + |w′|. In the first two cases, the obligation is
reduced to the assumptions prfEHA[w, ⌜φ → ψ⌝] or prfEHA[w

′, ⌜ψ⌝], respectively. In
the last case it is used that ψ follows from φ→ ψ and φ by modus ponens. □

Formalising the above argument in EHA is extremely tedious and requires many
lemmas on arithmetic and lists to be derived inside the ND system. The following
listing shows most of them. The fomulas are implicitly all-quantified.
x = x+ O x+ (Sy) = S (x+ y) x+ y = y+ x S (x+ y) = (x+ y) + SO

¬(x = S ((x+ y) + z)) (x+ y) + z = x+ (y+ z) z+ x = z+ y→ x = y

x < y→ ¬(y < S x) S x = y→ x < y x < y→ z+ x < z+ y

x < y∨ y < x∨ y = x x < y→ y < z→ x < z

y ⩽ x→ x < y+ z→ ∃w.w < z∧ x = y+ z

y ⩽ x→ x < y+ z→ ∃w.w < z∧ x = y+w S (|x|+ |y|) = |(x++ y) ++ (z :: [ ])|

x < |y| → x < |y++ z| x < |z| → |y|+ x < |y++ z| x < |y :: [ ]| → (y :: [ ]){x} = y

x < |y| → ((y++ z) ++w){x} = y{x} x < y→ y < |z| → ((z++w) ++ v){x} = z{x}

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.internal_provability.HBL.html#MP
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x < |z| → ((y++ z) ++w){|y|+ x} = z{x}

x < y→ y < |w| → ((z++w) ++ v){|z|+ x} = w{x} ((x++ y) ++ (z :: [ ])){|x|+ |y|} = z

There are a few more lemmas required which are not shown because their respec-
tive statements are too technical to be stated on paper. Some of the lemmas require
induction. Therefore, Robinson Arithmetic and LI together are insufficient.
Paulson1 [79] first proved the HBL conditions in a proof assistant and notes that
“lengthy deductions in the calculus seem to be essential.” This proof clearly under-
lines this fact. The reason is that no semi-automatic way to derive formal deduc-
tions from standard semantics is available at the moment. Koch’s [44] proof mode
for first-order logic was extremely helpful in conducting the required deductions.
7.2.2 Necessitation
Toprove necessitation, i.e. thatEHA ⊢i φ impliesEHA ⊢i provEHA[⌜φ⌝] for all formu-
las φ, the ND derivation is translated into a Hilbert derivation using Theorem 3.20.
The claim is then shown by induction on this Hilbert derivation, using Lemma 7.10
in the case for the modus ponens rule.
Lemma 7.11 (Necessitation for provEHA(x)) The formula provEHA(x) satisfies neces-
sitation. That is, for all formulas φ, we have that

EHA ⊢i φ implies EHA ⊢i provEHA[⌜φ⌝].

Proof From Theorem 3.20, obtain EHA ⊢Hi
φ. Induction on EHA ⊢Hi

φ.
1. Case HMP. We have to show EHA ⊢i provEHA[⌜ψ⌝] given the inductive hy-

potheses EHA ⊢i provEHA[⌜φ → ψ⌝] and EHA ⊢i provEHA[⌜φ⌝]. Follows from
Lemma 7.10.

2. Case HAX. We have to show EHA ⊢i provEHA[⌜∀x1. . . . xn. φ⌝] and know that
Hi(φ). Thus, A ⌜∀x1. . . . xn. φ⌝ ∈ LI which gives EHA ⊢i A ⌜∀x1. . . . xn. φ⌝,
which implies EHA ⊢i prfEHA[⌜∀x1. . . . xn. φ⌝ :: [], ⌜∀x1. . . . xn. φ⌝]. Thus, the
claim EHA ⊢i provEHA[⌜∀x1. . . . xn. φ⌝] follows.

3. Case HAS. We have to show EHA ⊢i provEHA[⌜φ⌝] given the assumption φ ∈
EHA. Thus, A ⌜φ⌝ ∈ LI which gives EHA ⊢i A ⌜φ⌝, from which we reason as
in the previous case. □

Note that, since EHA is infinite and not a finite context, the induction used in the
previous proof is not a structural induction on a Hilbert derivation, since Hilbert
derivations are defined in terms of finite contexts in lieu of (potentially) infinite
theories. However, the induction rule used here is clearly derivable.

1Paulson noted this for his proof of internal necessitation, but his remark also applies here.

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.internal_provability.HBL.html#nec
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7.2.3 Internal Necessitation
The last HBL condition left is internal necessitation, i.e. that provEHA(x) satisfies
EHA ⊢i provEHA[⌜φ⌝] → provEHA[⌜provEHA[⌜φ⌝]⌝] for all formulas φ. From a techni-
cal perspective, it seems like this condition is the most demanding one to establish.
Paulson [79, 78], the first to verify the HBL conditions for some provability predi-
cate in a proof assistant, noted that the technical details involved are complicated.
Löb [67], the first to state and prove internal necessitation, derived it from the third
HB condition using the deductive apparatus of the system Zµ [43] as well as the
internals of the concrete provability predicate he used. Löb’s proof is rather short
and abstract, however, the proof that the provability predicate used by Löb satisfies
the third HB condition is both long and extremely technical [43].
All approaches to prove internal necessitation studied during this thesis project
prove the generalisation EHA ⊢i φ→ provEHA[⌜φ⌝] for all closed Σ1-formulasφ. This
property is sometimes called provable Σ1-completeness [84, pp. 277ff.]. Świer-
czkowski [99], who has a very detailed development, but works in HF, a finite set
theory of equal strength to PA, points out that it is not possible to show this claim
directly by induction on the structure ofφ asΣ1-formula: EHA ⊢i φ→ provEHA[⌜φ⌝]
only holds for closed Σ1-formulas. Świerczkowski even provides an openΣ1-formula
for which this claim is false.
All approaches to prove this claim studied during this thesis project prove the gen-
eralisation

EHA ⊢i φ(x1, . . . , xn) → provT [⌜φ(ẋ1, . . . , ẋn)⌝]

for all Σ1-formulasφ(x1, . . . , xn), where ⌜φ(ẋ1, . . . , ẋn)⌝ is again the notational gad-
get already seen in the HB conditions. Intuitively, it denotes a term having the
free variables x1, . . . , xn such that ⌜φ[k1, . . . , kn]⌝ can be obtained from this term
by substitution. In Świerczkowski’s development, this is achieved by defining an
encoding [[φ(x1 . . . , xn)]] of formulas φ(x1, . . . , xn) such that the free variables of
the formula are not coded, but preserved (the abstract approach presented in this
thesis is too weak for this). If φ is closed, then ⌜φ⌝ = [[φ]]. When the variables in
[[φ(x1 . . . , xn)]] are instantiated to the numerals k1, . . . , kn, respectively, the result-
ing term is, however, not yet ⌜φ[k1, . . . , kn]⌝. To obtain this, the numerals substi-
tuted into [[φ(x1 . . . , xn)]] still need to be encoded, i.e. quoted. For this, a quotation
functionQ is constructed which, given a term, yields a code denoting this term. So
for a numeral n, Q(n) = ⌜n⌝, where ⌜n⌝ is an encoding of the numeral n. Finally,

⌜φ[ẋ1, . . . , ẋn]⌝ := [[φ(x1, . . . , xn)]][Q(x1), . . . , Q(xn)]

can be defined.
Świerczkowski uses the theory of hereditarily finite sets (HF) where encodings can
be defined much more naturally than in first-order arithmetic. HF and PA are of
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equivalent strength [79]. The quotation function Q is not native to HF and ex-
tremely tedious to define, which was also noted by Paulson [79, 78], who mech-
anised Świerczkowski’s work. Due to this issue, we expect that it would be even
harder to conduct this reasoning formally inside first-order arithmetic.
Another possible solution is to extend the syntax of first-order arithmetic by a quo-
tation function. A similar approach is done by Halbach and Leigh [36]. It seems
like that even in this case, tedious properties about substitutions still need to be
proved. Analysing this is further work.
After establishing the notation [⌜φ(ẋ1, . . . , ẋn)⌝, the fact

EHA ⊢i φ(x1, . . . , xn) → provT [⌜φ(ẋ1, . . . , ẋn)⌝]

remains to be shown for all Σ1-formulas φ(x1, . . . , xn). For this, one usually first
shows that each Σ1-formula is equivalent to a special Σ1-formula. The following
definition is from Rautenberg [84], Paulson [79] uses a similar definition for HF
(he calls these formulas strict Σ-formulas).

Definition 7.12 (Special Σ1-formulas, cf. [84]) We inductively define special Σ1-
formulas as follows:

1. S x = y, x+ y = z, and x · y = z, where x, y, z are distinct variables,

2. φ∧ψ,φ∨ψ,φ[x 7→ O] andφ[x 7→ y], where x, y are distinct variables not occurring
bound in φ, provided that φ and ψ are special Σ1-formulas, and

3. ∃x.φ and ∀x < y.φ, where y does not occur in φ, provided that φ is a special Σ1-
formula.

The claim is then proved by induction on the definition of special Σ1-formulas.
Provable Σ1-completeness relies on the underlying sentence being Σ1. In fact, if
EPA ⊢c φ → provEPA[⌜φ⌝] for all sentences φ (and not just all Σ1-sentences), then
EPA ⊢c provEPA[⌜⊥⌝]. This is pointed out by Halbach and Leigh [36, p. 285]. The
diagonal lemma and the modus ponens rule are sufficient for this, but the proof
uses classical reasoning on the object level.
Paulson [79] notes that the coding discussed above is extremely tedious and not
sufficiently well explained in the literature. He even goes as far as calling a par-
ticular (and crucial) aspect of Boolos’ [7] development “quite wrong”, and Świer-
czkowski’s [99] work on the coding “at best ambiguous”. According to him, this is
no criticism, but underlines the high complexity of the material.



Chapter 8

Conclusion

In this thesis, we studied Löb’s theorem as well as Gödel’s second incomplete-
ness theorem in the light of Kirst and Peters’ [53] abstract approach to Gödel’s
first incompleteness theorem. We showed Löb’s theorem under the assumption
that a provability predicate satisfying the HBL conditions is given. From Löb’s
theorem, we concluded Gödel’s second incompleteness theorem. Up to the proof
of Gödel’s first incompleteness theorem using the separating provability predi-
cate (Theorem 5.10), all proofs are well known. Additionally, we extended Paul-
son’s [79, 78, 77] mechanisation of Gödel’s second incompleteness theorem in Is-
abelle/HOL [71] by a proof of Löb’s theorem based on his provability predicate.
Furthermore, we extended Kirst and Peters’ work by a proof of the diagonal lemma
which allowed for traditional proofs of Gödel’s first incompletenss theorem as well
as Tarski’s theorem, two important limitative results. As part of this effort, we used
CTQ to define sound external provability predicates. These predicates, together
with a few further applications of CTQ, sufficed for all the aforementioned results.
Lastly, wemade precisewhyCTQ is not strong enough to obtain a sensible provabil-
ity predicate which suffices for Gödel’s second incompleteness theorem and thus
not of Löb’s theorem. This fact was already conjectured by Peters [82]. Using an
extended signature of first-order arithmetic containing list functions, we define a
candidate for an internal provability predicate, and verify the modus ponens rule
aswell as necessitation for this definition. In particular, we have defined an external
provability predicate without using CTQ. We did not prove internal necessitation
but pointed out why deriving this property is beyond the scope of this project. As
part of this effort, we contributed a Hilbert system for first-order arithmetic to the
Coq Library of Undecidability Proofs and proved its equivalence to the ND system.
8.1 Notes on the Mechanisation
The Coq [101] mechanisation accompanying this thesis consists of around 2450
lines of code. It is based on the Coq Library of Undecidability Proofs [26] and the
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Coq Library for First-Order Logic [54]. The development relies on previous contri-
butions to these libraries by Kirst and Hermes [51] as well as Kirst and Peters [53].
Further, the proof mode for first-order logic [44] due to Koch is invaluable.

The library of undecidability proofs contains many basic definitions and results
concerning first-order logic that are not bound to a particular signature, i.e. terms
and formulas are quantified over types for predicate and function symbols along-
side their respective arities. For this thesis, except the last part of Chapter 7, the li-
brary’s framework is instantiated to the signature of Peano Arithmetic as presented
in Definition 3.1. For the last part of Chapter 7, the syntax of Definition 7.6 is used.

The library for first-order logic contains all the needed results concerning CTQ, rep-
resentability of predicates as well as Σ1- and ∆1-formulas. It uses the signature of
Peano Arithmetic.

Unlike this paper presentation, where named binders are used, the Coq develop-
ment uses de Bruijn [19] indices. Two primary reasons have led to this decision:
First, the used libraries already rely on de Bruijn, and secondly, mechanising named
binders is very tedious, for instance noted by O’Connor who mechanised Gödel’s
first incompleteness theorem using named binders [74]. We elaborate on this in
Section 8.3. Inspired byAutosubst 2 [97], muchwork concerning substitutions and
renaming on de Bruijn terms is automated in the library of undecidability proofs.

Another possible approach to mechanise first-order logic besides de Bruijn is the
locally nameless representation where bound variables are assigned a de Bruijn
index and free variables a name. Charguéraud [13] gives an extensive descrip-
tion of this technique. The underlying idea, however, was already mentioned by
de Bruijn [19]. There is also the anti-locally nameless representation where free
variables can get a de Bruijn index and bound variables a name (this only a special
case of this technique). The anti-locally nameless representation was introduced
and applied to first-order logic by Laurent [66]. There is also the nominal tech-
nique [29] allowing for named variables, which relies on permutation operations
on variables as well as freshness conditions. Paulson [79, 78, 77] used the nominal
package for Isabelle/HOL [103] for his proof of Gödel’s incompleteness theorems.

For the proofs involving ND derivations, Koch’s [44] first-order proof mode was
heavily used. It allows proving formulas of first-order arithmetic in an interactive
environment similar to the Iris proof mode [49], and uses a named representation
of variables in lieu of de Bruijn. Without this support, manyproofs presented in this
thesis would have beenmuchmore laborious. Most likely, the proof of Lemma 7.10
would have been impossible without this tool’s aid.

However, the proofmode for first-order logic is still very fragile. The key issueswill
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be reported on the issue tracker of the library’s GitHub repository1. In particular,
the file prov_definition.v takes more than 30 minutes to compile.
Further, the mechanisation of Chapter 7 does not contain the symbol A. Instead,
a formula ax(x) is assumed such that EHA ⊢i ax(⌜φ⌝) iff φ ∈ EHA or φ is an ax-
iom of the Hilbert system. This is for future versions of the mechanisation where
semantics is defined for EHA and ax(x) would be obtained from Lemma 4.6. The
difference does not affect the reasoning in any substantial way.
This thesis also consists of slightlymore than 100 lines of code in Isabelle/HOL [71]
for the proof of Löb’s theorem based on Paulson’s provability predicate. The archi-
tecture of the mechanisation is described by Paulson [79].
8.2 Admissibility of Church’s Thesis for Arithmetic
Recall that the definitions of provT (x) and sProvT (x) as well as the diagonal lemma
rely on CTQ. For the diagonal lemma, an axiom-free substitution function is used
which would be primitive recursive. For the external provability predicates, CTQ
is applied to an ND enumerator, which could rely on axioms in its definition. If we
required µ-enumerability in the lemmas providing external provability predicates
(and therefore all limitative theorems), all functions to which CTQ is applied could
be shown to be µ-recursive. It is standard that all µ-recursive functions are repre-
sentable in Robinson Arithmetic, see for instance Smith [94]. Thus, our appeal to
CTQ is dispensable, provided that µ-enumerability is added to the requirements
of the limitative theorems, which would make the results much more tedious. In
essence, for our setting, CTQ allows for simpler theorem statements, but does not
add any power, except the limitative theorems are instantiated to theories which
are only enumerable under additional axioms. Further, CTQ is an axiom that is
well understood, see the discussion in Section 2.2.2.
8.3 Related Work
Kirst and Peters’ proof of Gödel’s first incompleteness theorem This thesis be-
gan as a follow-up of Kirst and Peters’ [53] abstract approach to Gödel’s first incom-
pleteness theorem using a computational proof due to Kleene, described in some
of his books [57, 58]. Kirst and Peters model an abstract notion of formal systems,
prove incompleteness and undecidability results for these formal systems only us-
ing computability theory, and then instantiate these abstract results to Robinson
Arithmetic. Kirst and Peters’ approach provides independent sentences for all con-
sistent extensions of Robinson Arithmetic, and also shows essential undecidability
of this system, refining a previous mechanisation of Kirst and Hermes [51] show-
ing that completeness of sound extensions of a particular subsystem of Robinson
Arithmetic implies decidability of the halting problem for Turingmachines. As part

1Accessible at https://github.com/uds-psl/coq-library-fol/issues.
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of this instantiation, many representability results are mechanised or refined from
previous work by Hermes and Kirst [41, 42]. Kirst and Peters also rely on CTQ.
This thesis provides incompleteness results of the same strength as the ones of Kirst
and Peters, but uses a more direct approach: Instead of developing an abstract the-
ory of formal systems and instantiating it to Robinson Arithmetic, we directly use
CTQ to define provability predicates and to obtain the limitative results.
Kirst and Peters do not make any attempts to prove Gödel’s second incompleteness
theorem, and state that their approach even does not set the stage for the second
theorem. In his Bachelor’s thesis, Peters [82] states that far deeper representability
results are required for the second theorem, which is elaborated on in Chapter 7.
Paulson’s proof of Gödel’s incompleteness theorems There is a mechanisation
of both Gödel’s incompleteness theorems due to Paulson [78, 79] from 2015 using
Isabelle/HOL [71]. It is part of the Archive of Formal Proofs [77]. To the best of
our knowledge, this is the first formalisation of Gödel’s second incompleteness the-
orem. The proof is conducted forHF, a finite set theory of equivalent strength toPA,
as noted by Paulson. His publication is of paramount significance and a landmark
result: For the first time, a complete and machine-checked proof of the second in-
completeness theorem is available, which does not leave out any details. Previous
paper proofs had, according to Paulson, at least numerous inaccuracies. He based
his work on a proof due to Świerczkowski [99] from 2003. As such, Paulson’s proof
finalises all the clarifications made to the proof Gödel’s second incompleteness the-
orem since it was sketched vaguely in 1931 by Gödel [34]. What is still missing is a
complete write-up of his work in mathematical language making his contributions
accessible to a broader audience.
In the terminology of this thesis, Paulson defines an internal provability predicate
for HF. He does so by introducing object level predicates for the syntactic concepts
of HF as well as its deduction rules. Paulson does not appeal to CT but defines and
proves everything from scratch, leading to lengthy deductions in the HF calculus.
The functions introduced in the extended syntax of PeanoArithmetic sidestepmost
Paulson’s work.
Paulson mechanises a proof of the diagonal lemma, which is then used to prove
Gödel’s first incompleteness theorem for HF, where an explicit independent sen-
tence is constructed. For the first incompleteness theorem and the diagonal lemma,
Paulson’s proofs aremostly subsumed by our appeal toCTQ. He showsGödel’s sec-
ond incompleteness theorem by concluding it from the Gödel sentence obtained
through the first incompleteness theorem and the HBL conditions. The second
incompleteness theorem is not established as corollary of Löb’s theorem. This the-
orem is not even proved. We extended Paulson’s mechanisation by a proof of this
result.
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Unlike ourmechanisation, which uses de Bruijn indices, Paulson follows aNominal
approach for the syntax of HF using the Nominal package for Isabelle [103]. For
the coding of formulas, however, he uses de Bruijn representation.
Gross’, Gallagher’s and Fallenstein’s mechanisation of Löb’s theorem There is
a mechanisation of Löb’s theorem due to Gross, Gallagher and Fallenstein [32] in
the proof assistant Agda from 2016. They work in a programming language cen-
tred approach and identify propositions with types under the Curry-Howard cor-
respondence [17, 45]. Provability predicates then express the assertion that a type
is inhabited. Types and programs are encoded using abstract syntax trees.

They define a family of formal systems, where provability predicates are part of
the syntax, and give interpretation functions for these respective systems. In this
setting, they prove Löb’s theorem sound with respect to Agda and then provide
a proof of Löb’s theorem under the assumption that a quine, i.e. a program out-
putting its own source code, is given. They also prove an even stronger result,
namely that Löb’s theorem can be derived in any sufficiently strong formalisation
of dependent type theory having, among other requirements, a quotation function.
Waiving the requirement of having this quotation function is left as further work.
Shankar’s proof of Gödel’s first incompleteness theorem Shankar [89, 90] was
the first to mechanise Gödel’s first incompleteness theorem in 1986. He used the
Boyer-Moore theoremprover, which later turned intoNqthm [9]. The proof is done
for Z2 [15, pp. 22ff.], a finite set theory similar toHF. It shows incompleteness along
finite extensions of Z2 under the assumption of consistency.
O’Connor’s proof of Gödel’s first incompleteness theorem O’Connor [74] was
the first to mechanise the first incompleteness theorem in Coq [101]. Similar to this
thesis, he uses first-order arithmetic. O’Connor proves essential incompleteness of
a theory he calls NN which is similar to Robinson Arithmetic. A striking difference
is that the axiom (CD) is not present. Instead, an inequality symbol is part of the
language. O’Connor expects that his proof can be adapted to Robinson Arithmetic.

He models primitive recursivity, shows that all primitive recursive functions are
representable in NN (this required the Chinese remainder theorem and Gödel’s
β-function) and uses this representability result to obtain a provability predicate
from a primitive recursive definition.

O’Connor uses named binders in lieu of de Bruijn. He notes that named binders
are closer to the literature, arguing that the use of named binders would make
his mechanisation more credible since existing literature is followed more closely.
O’Connor concludes that de Bruijn indices may have been a better choice because
named binders were tedious to mechanise.
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Harrison’s proof of selected limitative theorems Harrison [38] also mechanised
Gödel’s first incompleteness theorem, his results were published in his 2009 book.
He used the proof assistant HOL Light [37]. Notably, Harrison also mechanised
Tarski’s theorem which he concludes from diagonalisation equivalence. Harrison
proves that for suitable theories T (including Robinson Arithmetic2) there is a for-
mula provT (x) such that T ⊢ φ iff N ⊨ provT [⌜φ⌝]. Using Tarski’s theorem, he then
concludes that provability in T and validity for N do not coincide, yielding Gödel’s
first incompleteness theorem in a variant that provides independent sentences.
Further, assuming the HBL conditions, Harrison concludes Gödel’s second incom-
pleteness theorem. His proof follows the same steps as our proof via Löb’s theorem
(in the special case where φ is instantiated to ⊥).
Popescu and Traytel’s abstract treatment Popescu and Traytel [83] mechanise
abstract formal systems and show different variations of both Gödel’s incomplete-
ness theorems from an abstract perspective using Isabelle/HOL [71]. Syntax and
provability are introduced axiomatically. Prominently, substitution on terms and
formulas is not defined, but axiomatised. They prove the diagonal lemma on a sim-
ilarly abstract level to ours. Inter alia, Popescu and Traytel prove a variant of the
first incompleteness theoremonly requiring consistency using “Rosser’s trick” [88].
The statement is similar to Theorem 5.10, it yields actual independent sentences.
Unlike our proof, “Rosser’s trick” is applied directly, they do not obtain a sepa-
rating provability predicate sProvT (x) from some abstract representability assump-
tion. Further, they prove a variant of the first incompleteness theoremwhich is very
close – also in the proof – to Theorem 5.9.
Assuming the HBL conditions Popescu and Traytel show Gödel’s second incom-
pleteness theorem not using Löb’s theorem. Additionally, theymechanise a variant
of the second incompleteness theorem due to Jeroslow [47] which does not need
the modus ponens rule (but yields a weaker consistency sentence).
In their paper, Popescu and Traytel also give a wide overview over literature in the
field, which was very helpful while writing this thesis.
Halbach and Leigh’s book In their recent book [36] from 2024, Halbach and
Leigh provide an introduction to first-order logic with a clear focus on introducing
key results such as diagonalisation, Tarski’s theorem and Gödel’s incompleteness
theorems as early as possible, not presupposing much theory on arithmetisation.
To achieve this, Halbach and Leigh develop a flavour of first-order logic based on
syntax rather than arithmetic, which can, however, express arithmetic. The signa-
ture of Halbach and Leigh contains functions for substitution and quotation, allow-
ing them to prove the diagonal lemma directly from the axioms of their system.

2Harrison uses a variant of Robinson Arithmetic that also includes axioms for inequality.
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Halbach and Leigh define a provability predicate satisfying the HBL conditions
and use this to derive both Gödel’s incompleteness theorems (also with Rosser’s
strengthening) aswell as Löb’s theorem. The definition of this provability predicate
is simpler than in theories of arithmetic but still requires significant technical detail.
Halbach and Leigh even go as far as proving that the HBL conditions hold when
the formulas are quantified on the object level, giving rise to the deep version of
Löb’s theorem discussed in Section 6.2.
This thesis distinguished external and internal provability predicates. Halbach and
Leigh do something similar, although their definitions are subtly different. For a
fixed theory T , they explicitly construct a particular internal provability predicate
for T . They call provT (x) the canonical provability predicate for T . Any formula
prov′T (x) such that T ⊢ provT [⌜φ⌝] iff T ⊢ prov′T [⌜φ⌝] for all sentences φ is called an
extensionally correct provability predicate. This notion is close to our definition of
sound external provability predicates since provT (x) is assumed to be sound. They
classify results involving provability predicates as being intensional or extensional.
Extensional results are those who hold for provT (x) as well as all extensionally cor-
rect provability predicates, such as Gödel’s first incompleteness theorem. Inten-
sional results are those which hold for provT (x) but not for all extensionally correct
provability predicates, such as Gödel’s second incompleteness.
To establish internal necessitation, Halbach and Leigh show a variant of the prov-
able Σ1-completeness for their system of first-order logic. The proof is still very
involved, but seems to be simpler than the respective proof for arithmetic due to
the use of a syntax-based theory.
8.4 Future Work
We were not able to prove internal necessitation for the provability predicate con-
structed in Chapter 7 and noted that much work still needs to be done to establish
this condition, in particular due to issues involving quotations. Further, the system
of arithmetic studied in Chapter 7 is not standard. It may thus be worth switch-
ing to the setting of Halbach and Leigh [36] since quotation and substitution are
object-level functions, which may simplify the construction of an internal provabil-
ity predicate. As the types of formulas and terms in the Coq Library of Undecid-
ability Proofs [26] are quantified over arbitrary signatures, adapting to the setting
of Halbach and Leigh should be feasible from a mechanisation perspective. How-
ever, the gain of such a change needs to be analysed in further detail before a final
decision can be made. In particular, it needs to be investigated whether quotations
in HF or in Halbach and Leigh’s setting are easier to mechanise.
The generalised diagonal lemma has not yet been mechanised. We expect that the
mechanisation of this result is tedious since further ellipsis (. . . ) notation needs to
bemade rigorous. However, we assume that themechanisation is not difficult since
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the key result needed in the proof, multivariate CTQ, has already beenmechanised.
In Chapter 4, we used a variant of the representability theorem for Σ1-sound ex-
ensions of Robinson Arithmetic. It would be interesting to mechanise further rep-
resentability results for extensions of Robinson Arithmetic. Peters [82, Section 6]
suggests some results.
Lastly, we worked a lot with enumerability in Chapter 4. It may have been easier
to use semi-decidability instead. Over the types we used them for, both concepts
are equivalent by Lemma 2.9. Future versions of the Coq development could be
updated accordingly.
As Smith [94, p. 257] points out, Kripke presented a proof that Gödel’s second
incompleteness theorem implies Löb’s theorem in certain circumstances. It could
be interesting to analyse hard it is to mechanise this proof.
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Appendix

A.1 Equivalence proof of Hilbert and ND systems
Thefirst step towards the deduction theorem is to prove Γ ⊢H φ→ φ for any context
Γ and formula φ. In order to do this, the following lemma is useful. It will show its
full significance in the proof of the deduction theorem.

Lemma A.1 Let φ,ψ, τ be formulas, and let Γ be any context. We have

1. H(φ) implies Γ ⊢H φ,

2. Γ ⊢H φ implies Γ ⊢H ψ→ φ,

3. Γ ⊢H φ→ ψ→ τ and Γ ⊢H φ→ ψ together imply Γ ⊢H φ→ τ.

Proof We establish the claims in sequence.
1. Suppose thatH(φ). We have φ = ∀x1. x2. . . . xn. φ for n = 0. Thus, Γ ⊢H φ by

virtue of HAX.
2. Assume that Γ ⊢H φ. Since Γ ⊢H φ → ψ → φ by (1), we obtain Γ ⊢H ψ → φ

by using HMP on these two assumptions.
3. Suppose that Γ ⊢H φ→ ψ→ τ and Γ ⊢H φ→ ψ. By (1), also Γ ⊢H (φ→ ψ→
τ) → (ψ→ τ) → φ→ τ. The claim follows by two applications of HMP. □

Lemma A.2 (Identity) For all contexts Γ and formulas φ, we have Γ ⊢H φ→ φ.

Proof We apply Lemma A.1, (3) on the formulas φ := φ, ψ := φ → φ and τ := φ.
This leaves to prove Γ ⊢H φ → (φ → φ) → φ and Γ ⊢H φ → (φ → φ). By
Lemma A.1, 1, it suffices to show H(φ → (φ → φ) → φ) and H(φ → (φ → φ)).
This is true by the definition of H and the fact that φ→ (φ→ φ) = φ→ φ→ φ. □

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#axiom_inclusion
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#operational_K
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#operational_S
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#identity
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We are now in the position to prove the deduction theorem. The theorem essen-
tially states that ⊢H can simulate the introduction rule for implication of the ND
system. For the proof, we remind ourselves that equality of formulas is decidable
by Lemma 3.2, i.e. that (φ = ψ) + ¬(φ = ψ) for all formulas φ,ψ.

Theorem A.3 (Deduction Theorem) For all contexts Γ and formulas φ,ψ, we have
that φ, Γ ⊢H ψ implies Γ ⊢H φ→ ψ.

Proof Induction on the assumption φ, Γ ⊢H ψ.
1. Case HMP. We have to show Γ ⊢H φ → τ given the inductive hypotheses
Γ ⊢H φ→ χ and Γ ⊢H φ→ χ→ τ. This is an instance of Lemma A.1, 3.

2. Case HAX. We have to show Γ ⊢H φ → ∀x1. x2. . . . xn. τ given the assump-
tion H(τ). We apply Lemma A.1, (2) and have to show Γ ⊢H ∀x1. x2. . . . xn. τ
which follows from HAX since H(τ).

3. Case HAS. We have to show Γ ⊢H φ → τ given the assumption τ ∈ φ, Γ . We
checkwhetherφ = τ. If so, we have to show Γ ⊢H φ→ φ, which is an instance
of Lemma A.2. If not, we conclude τ ∈ Γ from τ ∈ φ, Γ . By Lemma A.1, (2), it
suffices to show Γ ⊢H τwhich follows from HAS. □

Now establish a sequence of compatibility lemmas is established which state that
⊢H can simulate each inference rule of the ND system. Completeness of ⊢H with
respect to ⊢ then follows by induction on the NDderivation using the compatibility
lemmas in each case.

Lemma A.4 (Compatibility lemmas) Let Γ be any context, and φ,ψ, τ any formula.
Hilbert system provability ⊢H obeys the following set of rules:

φ ∈ Γ
Γ ⊢H φ

Γ ⊢H ⊥
Γ ⊢H φ

φ, Γ ⊢H ψ

Γ ⊢H φ→ ψ

Γ ⊢H φ Γ ⊢H φ→ ψ

Γ ⊢H ψ

Γ ⊢H φ

Γ ⊢H φ∨ψ

Γ ⊢H ψ

Γ ⊢H φ∨ψ

Γ ⊢H φ∨ψ φ, Γ ⊢H τ ψ, Γ ⊢H τ

Γ ⊢H τ

Γ ⊢H φ Γ ⊢H ψ

Γ ⊢H φ∧ψ

Γ ⊢H φ∧ψ

Γ ⊢H φ

Γ ⊢H φ∧ψ

Γ ⊢H ψ

Γ ⊢H φ[x→ t]

Γ ⊢H ∃x.φ
Γ ⊢H ∃x.φ φ, Γ ⊢H ψ x fresh for Γ and ψ

Γ ⊢H ψ

Γ ⊢H φ x fresh for Γ
Γ ⊢H ∀x.φ

Γ ⊢H ∀x.φ
Γ ⊢H φ[x 7→ t] Γ ⊢Hc

((φ→ ψ) → φ) → φ

Proof We only prove the interesting cases and one standard case.

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#deduction_theorem
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#CompatibilityLemmas
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• Compatibility for II. This is an instance of the deduction theorem.
• Compatibility for AI. We have to show Γ ⊢H ∀x.φ given the assumption Γ ⊢H

φ. Further, x is fresh for Γ . Induction on the assumption Γ ⊢H ∀x.φ.
1. Case HMP. We have to show Γ ⊢H ∀x. τ and are given the inductive

hypotheses Γ ⊢H ∀x.ψ and Γ ⊢H ∀x.ψ → τ. By Lemma A.1, (1) and the
definition of H we also know that Γ ⊢H (∀x.ψ → τ) → (∀x.ψ) → ∀x. τ.
The claim follows by two applications of HMP.

2. CaseHAX.We have to show Γ ⊢H ∀x. ∀x1. x2. . . . xn. ψ given the assump-
tion H(ψ). This follows from HAX.

3. Case HAS. We have to show Γ ⊢H ∀x.ψ and are given the assumption
ψ ∈ Γ . Since ψ ∈ Γ , the variable x is fresh for ψ as well (the x occurring
here is the same x as the one in the claim Γ ⊢H ∀x.φ which is currently
shown by induction). We therefore have H(ψ → ∀x.ψ) and thus Γ ⊢H

ψ → ∀x.ψ by Lemma A.1, (1). The claim follows by one application of
HMP.

• Compatibility for EE. We have to show Γ ⊢H ψ and know that Γ ⊢H ∃x.φ as
well as φ, Γ ⊢H ψ. Further, x is fresh for ψ and Γ . By the deduction theorem,
we obtain Γ ⊢H φ → ψ. By compatibility for AI, we obtain Γ ⊢H ∀x.φ → ψ.
Since x is fresh for ψ, obtain H((∃x.φ) → (∀x.φ → ψ) → ψ) and thus Γ ⊢H

(∃x.φ) → (∀x.φ → ψ) → ψ by virtue of Lemma A.1, (1). The claim now
follows by two applications of HMP.

• Compatibility for CI. Our goal is Γ ⊢H φ ∧ ψ provided that Γ ⊢H φ and
Γ ⊢H ψ. By Lemma A.1, (1) and the definition of H, we also have Γ ⊢H φ →
ψ→ (φ∧ψ). We apply HMP twice to obtain the claim.

The remaining compatibility lemmas are shown in a similar fashion as the one for
CI. No new insights are required. We also remark that the remaining cases are self-
contained and do not refer to any other compatibility lemmas in their respective
proofs, apart from an appeal to the deduction theorem in the case of DE. □

Corollary A.5 (Completeness of ⊢H with respect to ⊢) Let Γ be a context and φ a
formula such that Γ ⊢ φ. Then, Γ ⊢H φ.

Proof Induction on the derivation of Γ ⊢ φ using the compatibility lemmas in each
case. □

Proving soundness of ⊢H with respect to ⊢ is more straightforward. The proof
follows three steps. First, it is shown that H(φ) implies ⊢ φ. Then, it is shown that
⊢ φ implies ⊢ ∀x1. x2. . . . xn. φ for any n ⩾ 0. Soundness then follows from these
intermediate results via induction on Γ ⊢H φ and weakening.

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#ND_to_Hil
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Lemma A.6 (Soundness lemmas) Let φ,ψ, τ be any formula. ND provability obeys
the following set of rules:

⊢ φ→ ψ→ φ ⊢ (φ→ ψ→ τ) → (ψ→ τ) → φ→ τ

⊢ φ→ ψ→ φ∧ψ ⊢ φ∧ψ→ φ ⊢ φ∧ψ→ ψ

⊢ φ→ φ∨ψ ⊢ ψ→ φ∨ψ ⊢ φ∨ψ→ (φ→ τ) → (ψ→ τ) → τ

⊢ ⊥ → φ ⊢ (∀x.φ) → φ[x 7→ t]

x fresh for φ
⊢ φ→ ∀x.φ

⊢ (∀x.φ→ ψ) → (∀x.φ) → ∀x.ψ ⊢ φ[x 7→ t] → ∃x.φ

x fresh for ψ
⊢ (∃x.φ) → (∀x.φ→ ψ) → ψ ⊢c ((φ→ ψ) → φ) → φ

Proof Each subgoal is a routine deduction in the ND system. No special insights
are required. To get a feeling, three cases are proved.

• Case φ → ψ → φ. After applying II twice, we have to show ψ,φ ⊢ φ, an
instance of C.

• Case φ→ ∀x.φ. By II, we are left to show φ ⊢ ∀x.φ. Since x is fresh for φ, AI
can be applied and we have to prove φ ⊢ φ. This follows from C.

• Case (∃x.φ) → (∀x.φ→ ψ) → ψ. We use II twice and need to verify (∀x.φ→
ψ), (∃x.φ) ⊢ ψ. Since x is fresh for both ψ and ∀x.φ → ψ, we can apply EE.
It remains to show (∀x.φ → ψ), (∃x.φ) ⊢ ∃x.φ and φ, (∀x.φ → ψ) ⊢ ψ; the
former follows from C, the latter by AE using the term t := x as well as IE and
C. □

Corollary A.7 Suppose that H(φ) for some formula φ. Then ⊢ φ.

Proof Case analysis on H(φ) using the soundness lemmas in each case. □

Lemma A.8 Suppose that ⊢ φ for some formula. Then, ⊢ ∀x1. ∀x2. . . . ∀xn. φ.

Proof Induction on nwith φ quantified.1 The case n = 0 is trivial. In the successor
case, we have to prove ⊢ ∀x1. x2. . . . xn. ∀xSn. φ. The induction hypothesis gives
⊢ ∀x1. x2. . . . xn. ψ provided that ⊢ ψ for any formula ψ. We apply the induction
hypothesis to the formula ∀xSn. φ. Thus, it suffices to show ⊢ ∀xSn. φ. This follows
from AI. □

1This proof deviates slightly from the Coq mechanisation due to the absence of de Bruijn indices
on paper.

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#SoundnessLemmas
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#empty_context_forall_times_intro
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We are now in the position to prove soundness of ⊢H.

Corollary A.9 (Soundness of ⊢H with respect to ⊢) Let Γ be a context and φ a for-
mula such that Γ ⊢H φ. Then, Γ ⊢ φ.

Proof Induction on the derivation of Γ ⊢H φ.
1. Case HMP. We have to show Γ ⊢ τ given the inductive hypotheses Γ ⊢ ψ and
Γ ⊢ ψ→ τ. This follows from IE.

2. Case HAX. We have to show Γ ⊢ ∀x1. x2. . . . xn. ψ and know that H(ψ). By
weakening, it suffices to show ⊢ ∀x1. x2. . . . xn. ψ. By Corollary A.7, we obtain
⊢ ψ. Follows from Lemma A.8.

3. Case HAS. We have to show Γ ⊢ ψ given the assumption ψ ∈ Γ . This follows
from C. □

Given these results, ⊢ and ⊢H are equivalent.

Theorem A.10 (Equivalence of ND and Hilbert systems) 1. We have Γ ⊢ φ if
and only if Γ ⊢H φ for any context Γ and formula φ.

2. We have T ⊢ φ if and only if T ⊢H φ for any theory T and formula φ.

Proof 1. This follows from Corollaries A.5 and A.9.
2. Let Γ be a witness of T ⊢ φ. We have to show T ⊢H φ. By Corollary A.5, Γ

is also a witness of T ⊢H φ. The converse is symmetric, but we apply Corol-
lary A.9. □

https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#Hil_to_ND
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#Hil_ND_agree
https://www.ps.uni-saarland.de/~bailitis/bachelor/Coq/Loeb.hilbert_system.Hilbert_System_Deduction_Facts.html#Hil_ND_agree_theories
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