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Abstract

Probabilistic programming languages (PPLs) are a useful tool for statistical mod-
elling, and semantics of PPLs are a highly active field of research. In the literature,
two main approaches to give semantics to PPLs have emerged: Semantics based on
categories of linear operators and semantics based on categories of Markov kernels,
where a Markov kernel is a generalisation of a stochastic matrix. Both approaches
have its strengths and weaknesses, and its weaknesses are complementary. Ad-
dressing these weaknesses is, traditionally, both highly technical and subtle.

Recent advance has been achieved by Azevedo de Amorim who defines a two-
level calculus nicely combining both types of PPLs: One level can be interpreted
by categories of linear operators and the other one using categories of Markov ker-
nels, while a modality mediates between both levels, which is interpreted by a lax
monoidal functor. We introduce the term Banach category to refer to models of
this calculus.

Azevedo de Amorim’s PPL has already been applied in the literature, but the the-
ory of Banach categories remains underdeveloped, an issue we address in this the-
sis. Using string diagrams, a well-known calculus to reason about monoidal cat-
egories, we investigate how the structure of Markov kernels and the lax monoidal
functor interact. Azevedo de Amorim further points out that the semantics of his
calculus behave even better when the lax monoidal functor is full, motivating us
to prove our main theorem: Subject to certain conditions, for any Banach category,
one can find another Banach category — its fullification — such that the lax monoidal
functor of the fullification is full and the original Banach category and its fullifica-
tion are related in a natural way.
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Chapter 1

Introduction

In this master’s thesis, we investigate Banach Categories, which is a recent, so far
unnamed, concept in category theory in the subfield of categorical probability the-
ory. We contribute to a model proposed by Azevedo de Amorim [[15], which ex-
tends Markov categories [5, 27], a frequently applied abstraction of Markov ker-
nels, with notions of linear operators, combining two previously distinct directions
in probabilistic semantics [[10, 12} 21} 18, 41} 52]] into a single entity. We are particu-
larly interested in questions concerning the connections of Azevedo de Amorim’s
model and theoretical computer science as well as categorical logic. We are mo-
tivated by the fact that Azevedo de Amorim’s abstraction captures useful models
and has first applications in the literature, e.g. by him, Witzman, and Kozen [[16]],
but the theory of his abstraction is still underdeveloped.

1.1 Probabilistic Programming Languages and Categorical Semantics

Azevedo de Amorim’s [[15]] work arises in the scope of probabilistic programming lan-
quages (PPLs) [11]], which, in its broader sense, are programming languages with
probabilistic primitives. PPLs are used in statistical modelling, for instance, to ac-
count for the involved randomness. Semantics to PPLs can be given via categories,
and different kinds of PPLs are interpreted by different kinds of categories. Today;,
there are two key classes of PPLs, which are explained below.

Linear languages. On the one hand, there are PPLs based on Girard’s [28]] linear
logic. These languages are higher-order, but have the restriction that variables can
be used only once, i.e. in a linear way. In many models of linear languages, variables
of ground type range over distributions, and using a variable means sampling from
the distribution modelled by the variable. The linearity constraint then bakes in the
fact that sampling is a non-repeatable process.

Usually, models for linear languages are certain vector spaces and linear functions
between them. One notable example is due to Dahlqvist and Kozen [10], who de-
fine a higher-order linear probabilistic language and give semantics to it using cer-
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tain Banach spaces. Also Ehrhard and colleagues [[12} 21} 18] have made significant
contributions to linear languages. A key drawback of linear languages is that it
is hard to program with them due to the linearity restriction. There are ways to
accommodate non-linear programs via Girard’s exponential modality [28]], often
written “!”, which are used both by Ehrhard et al. as well as Dahlqvist and Kozen.
A particularly elegant solution has been proposed by Ehrhard and colleagues. First
in the discrete case [20,21], but it has recently been extended to the continuous case
as well [[19]].

Markov kernel languages. On the other hand, there are PPLs based on Markov
kernels, avoiding these issues by design: Variables of ground type can be thought
of ranging over values, not distributions. A Markov kernel is a generalisation of
a stochastic matrix to the continuous case. The key difference to the linear lan-
guages is that variables can be copied and therefore used several times. A major
drawback, however, is that it is highly difficult to add higher-order functionality to
Markov kernel languages. In fact, this has only been achieved rather recently with
the introduction of quasi-Borel spaces by Heunen, Kammar, Staton, and Yang [[31]].
Still, results from a linear algebraic treatment of probability theory, a more feasible
foundation for the linear case, do not apply to quasi-Borel spaces.

Markov kernel Languages date back to the 1980s with work by Kozen [41]]. Panan-
gaden [52]] observed that categories of Markov kernels are suitable models for these
languages. In particular, Kleisli categories [40] of probability monads, for instance
the Giry monad [29], are paradigmatic examples of models for Markov kernel lan-
guages. Azevedo de Amorim [[15] gives a modern, functional Markov kernel lan-
guage and shows that his approach is compatible with traditional linear algebraic
models of linear logic such as categories of Banach spaces.

Combining both directions as single entity. In general, models of both types
of languages are certain monoidal categories [13, 47]], which are categories with a
weak version of products, more precisely products that may not necessarily have
projections. Models of linear languages are symmetric monoidal closed categories [22]]
(SMMCs) which can natively express higher-order functionality, and models of
Markov kernel languages are Markov categories [15,27], introduced in the late 2010s,
which have built-in support for copying.

Azevedo de Amorim [15] introduces a two-level PPL with one level being inter-
preted by an SMCC and the other level being interpreted by a Markov category.
Variables of ground type in the higher-order SMCC level range over distributions
and cannot be copied, while variables in the first-order Markov level range over
values which can be copied freely. The translation between both levels can be seen
as sampling: A distribution, living in the SMCC level, can be sampled from, and
the resulting value, which lives in the Markov level, can then be used freely.
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The translation between the levels is achieved via a lax monoidal functor from the
Markov category to the SMCC. Roughly speaking, this is a mapping between the
categories that preserves the monoidal structure to a sufficient extent. Models
of Azevedo de Amorim’s language are therefore triples: A Markov category, an
SMCC, and a lax monoidal functor. In this thesis, we introduce the term Banach
category for these triples.

1.2 Diagrammatic Reasoning with String Diagrams

In monoidal categories, many concepts, such as associativity of the monoidal prod-
uct, are defined up to isomorphism. While this gives rise to a wide range of exam-
ples of monoidal categories, formal reasoning about morphisms in such categories
becomes extremely tedious as the isomorphisms of the monoidal structure occur
ubiquitously. To alleviate these difficulties, string diagrams [53} 7] are used for dia-
grammatic reasoning in monoidal categories. This is a graphical calculus operating
on equivalence classes of morphisms modulo the isomorphisms of the monoidal
structure, which simplifies reasoning greatly. There are also graphical gadgets to
incorporate additional structure, such as copying in Markov categories.

1.3 Historical Remarks

Category theory. The scene for this thesis is set in the scope of category theory,
which originated in the late 1940s jointly by Eilenberg and Mac Lane [24]] as a tool
to better understand algebraic topology and homology theory. Remarkably, almost
all of the fundamental categorical definitions are introduced in this single paper, yet
some examples of the new categorical definitions implicitly occurred a few years
prior [23]].

Categorical semantics. Since the 1940s, category theory has come a long way and
is by now a versatile tool not only applied in algebra, but also theoretical com-
puter science. Prominently, category theory has vast applications in logic and the
theory of programming languages, for instance via categorical semantics, where
programs are interpreted as morphisms in a category. A key observation, made
formally precise by Lambek and Scott [43]], is that certain categories, called Carte-
sian closed categories [44], can be used to give semantics to Church’s simply typed
A-calculus [6]], the paradigmatic theoretical underpinning of functional program-
ming. Also, Lambek and Scott make precise that Cartesian closed categories are
equivalent to intuitionistic logic. These equivalences are the result of work in the
1970s, mostly due to Lambek, and they are the categorical counterpart to the cele-
brated Curry-Howard correspondence [9,132]] between simply typed A-calculus and
intuitionistic logic. The equivalence between all three is sometimes referred to as
Curry-Howard-Lambek correspondence.

In the same spirit, SMCCs and linear languages as well as Markov categories and
Markov kernel languages show the same equivalence, which motivates their cate-
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gorical study explained earlier.
1.4 Contributions

Azevedo de Amorim’s [[15] calculus behaves even better when the lax monoidal
functor of the Banach category is full: Fullness would give a way to translate from
the SMCC level back to the Markov level in certain circumstances. This is partic-
ularly useful since under the assumption of fullness, functions in the SMCC level
between two types induced from the Markov level are themselves only Markov
kernels, and can hence be programmed with the freedom of copying variables. In
the present thesis, we investigate this fullness condition and give a construction to
turn lax monoidal functors into full functors (i.e. we “fullify” them). Concretely,
the present thesis contributes the following:

e We formally introduce the name Banach category for a triple of a Markov cat-
egory €, an SMCC £, and a lax monoidal functor F: € — £ (Definition [2.27),
following Azevedo de Amorim’s [[15]] observation that these triples are well-
suited models to combine linear languages and Markov kernel languages.

e We investigate, in terms of string diagrams, how the lax monoidal functor of
a Banach category interacts with the structure of the Markov category (Sec-
tion. Further, we point out that strong monoidal functors have even better
graphical properties.

e We prove that for any Banach category (C,F, £) where C is small, there exists
a Banach category (€, F, L) (called the fylliﬁcation of (6,F£)) and a strict
monoidal functor q : £ — £ such that F is full and the following diagram

commutes (Corollary [4.28]):

C

7
—
\‘

L
o
L

e We demonstrate that the mapping (C,F,£) — (G, F,£) is a functor (Propo-
sition 4.30]), which gives rise to future directions to study this fullification
functor, for instance with respect to universal properties via adjunctions.

1.5 OQOutline

First, we give an overview of the definitions and results of category theory used in
this thesis in Chapter which includes the definition of Banach categories. Then, in
Chapter[3] we investigate the interplay of the lax monoidal functor and the structure
of the Markov category in a Banach category graphically. This is motivated by a
brief example of convex spaces, discussed in Section After this, we proceed
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to the main theorem of this thesis in Chapter fi We first review a few technical
preliminaries, and then prove our main result. This is split into two parts: First,
we only define the full functor in Section and then proceed to verify that the
fullification is indeed a Banach category in Section[4.6} The thesis is rounded up by
a conclusion and discussion of related work in Chapter



Chapter 2

Background in Category Theory

All results and arguments presented in this thesis are formulated in the language of
category theory [24]]. This chapter provides the required background in category
theory to follow all arguments presented in the present thesis.

First, the notion of a category and all needed fundamentals from a first course in
category theory are given (Section [2.1); all these definitions are standard. Then, a
brief overview over string diagrams [53,[7,/50] is given, which are a graphical tool to
reason about morphisms in monoidal categories [13,47] (Section ) . After that, we
introduce the rather recent notion of Markov categories [27, 5], which are certain
monoidal categories designed to provide a categorical approach to probability the-
ory (Section 2.3). Finally, we define the Banach category consisting of monoidal
functors from Markov categories to symmetric monoidal closed categories (Sec-
tion[2.4)).

The reader with a working knowledge in category theory may wish to skip Sec-

tion 2.1} and perhaps even Section 2.2]if they have a solid knowledge of monoidal
categories. Section[2.3]is a recommended read, and Section [2.4]is essential.

2.1 Fundamental Categorical Notions

The standard introductory textbook to category theory is Mac Lane’s “Categories
for the Working Mathematician” [48]], which contains all the concepts introduced
in this section. For the following definitions, we also borrowed the slightly more
modern notation from Borceux [2, Chapters 1-3].

Categories. The first notion is the one of a category. Think of a mathematical
structure, such as groups, fields, or vector spaces over a fixed field. They all come
with objects, and (homo)morphisms between them. In fact, many structures in
mathematics and theoretical computer science are organised in this way.

Definition 2.1 (Category) A category C consists of
e a class Ob(C) of objects of C,
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e foreach A,B € Ob(C), a class C(A, B) of morphisms or arrows from A to B,
e for each A,B,C € Ob(C), a class term
o: C(A,B) x €(B,C) = C(A, C)
for the composition operation. For f € C(A,B) and g € C(B, C), the morphism go f
is called the composite of f and g, and
e for each A € Ob(C), a morphism ida € C(A, A) called the identity on A.
This data is required to satisfy the following properties:

e Associativity: For all objects A, B, C,D € Ob(C) as well as f € C(A,B), g € €(B, C),
and h € C(C, D), it needs to hold that

(hog)of=ho(gof).

o Identity: For all objects A, B € Ob(C) and f € C(A, B), it needs to hold that

fZidBOf:fOidA.

Consider again the example of groups. If one picks the class of all groups, Grp, as
objects and for all groups G, G/, sets

Grp(G,G’) :={f: G — G'|f is group homomorphism},

then one obtains a category. Also, the class of all sets, denoted Set, with functions
as morphisms, gives rise to a category. Not all categories are such that morphisms
are actual functions, as it is for Grp and Set. Consider any partially ordered set
(X, <). This gives a rise to a category D where Ob(D) := X and

_J0 ifx gLy
Dlx,y) = {{*} frx<y

By virtue of transitivity and reflexivity of <, composition and identities in D are
trivial to define. Moreover, the associativity and identity laws trivially hold.

Notation-wise, we will usually write A € Cinstead of A € Ob(C). Further, appealing
to the intuition that morphisms generalise the concept of functions, we will write
f: A — Binstead of f € C(A,B). Here, A is called the domain of f and B the
codomain of f. Also, we say that A — B is the type of f.

A category € such that, forall A, B € €, the class (A, B) is a set will be called locally
small. If, in addition, Ob(C) is a set, then € will be called small. From now on, we
assume that all categories appearing in this text are locally small.
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A key tool in category theory are commutative diagrams. A diagram is a directed
graph with objects of a fixed category as vertices and morphisms in this category as
edges (multiple edges between the same two vertices are allowed). We introduce
them by example. Let C be a category and A,B,C,D € C. Then, for morphisms
f, g, h, k, the diagram below is said to be commutative if go f =k o h:

P
—

>

O >

O+— ™
[(a}

—
K

Note that the types of the morphisms can be inferred from the diagram. This ex-
ample scales to arbitrary (finite) diagrams. A general finite diagram is said to be
commutative if any two paths between two vertices describe the same morphism.
There is a formalism (via so-called cones) for diagrams that even accounts for in-
finite diagrams. Cones is not needed for this thesis and the interested reader is
referred to the textbooks, e.g. Borceux [2} Section 2.6].

There is also a categorical version of isomorphisms.

Definition 2.2  Let C be a category and A, B € C. A morphism f: A — B is an isomor-
phism, or iso, if there exists =1 : B — A such that bothidp = =" o fand idg =fof .

Constructions in categories and universal properties. Consider again the cate-
gory Set of sets and functions. For sets A and B, there exists a Cartesian product
A x B whose elements are pairs (a,b) such that a € A and b € B. There are stan-
dard projections 1y : A x B - A and m : A x B — B. Whenever, for some set C,
there are functions f : C — A and g : C — B, then there exists a unique function
(f,g) : C = A x B such that f = m; o (f,g) and g = m; o (f, g). Here, (f, g) is given by
¢ — (f(c),g(c)). This is in fact a purely categorical property.

Definition 2.3 (Product) Let C be a category and A,B € €. A product of A and B,
written A x B, is an object of € with arrows 7y : A x B — Aand m; : A x B — B having
the following property:

For any C € € with arrows f : C — A and g : C — B, there exists a unique arrow
(f,g) : C — A x B such that the following diagram commutes:

N

C
A <f,9>i
AXxB

N
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The definition of products involves a universal property, which is a key concept in
category theory. A universal property is, as the name suggests, some universally
quantified statement that asserts a unique existence of something for each element
the quantifier ranges over. In the example of products, this quantifier just ranges
over objects C together with morphisms C —+ A and C — B. The unique existence is
asserted for the arrow (f, g). Arrows obtained from universal properties are written
as dashed arrows in diagrams.

There is a way to define arbitrary finite products, one simply uses induction on the
definition provided above. The 1-ary product of A is just A with the identity as
projection, and a 0-ary product is a terminal object:

Definition 2.4 (Terminal Object) Let C be a category. An object T € C is called ter-
minal if for all A € C, there exists a unique arrow of type A — T.

Again, the definition above involves a universal property. In Set, any singleton set
is terminal.

One last, slightly more technical, definition is needed, which follows the same pat-
tern. It is used in Section 4.1]

Definition 2.5 (Pullback) Let C be a category and A, B, C € C with arrows f : A — C
and g : B — C. A pullback of f and g is an object P € C with arrows py : P — A and
p2 : P — B such that

e the following diagram commutes, and

A

f

C

P2

T —— T

BRI
|
g

o forall Q € Cwitharrows q1: Q — Aand q2 : Q — B such that foqy = goqy,
there exists a unique arrow t : Q — P such that the following diagram commutes:

>

O —
-+

In diagrams, the corner to the bottom right of P is used to indicate a pullback. The
second point in the definition above is the universal property of the pullback. In
Set, a pullback of f: A — Cand g: B — Cis given by {(a,b) € A x B|f(a) = g(b)}.
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Note that a product, a terminal object, or a pullback need not be unique. For in-
stance, both {0} and {1} are terminal in Set. However, any two terminal objects are
isomorphic, similar for products and pullbacks.

Also, not all categories need to have products, terminal objects, or pullbacks. For
instance, the partially ordered set {a, b, c} such that b > aand ¢ > abut b and c are
incomparable, does not have a terminal object.

All these definitions are similar: One specifies a set of objects and morphisms be-
tween them, and then asserts that some universal object with universal arrows ex-
ists for this structure. Indeed, all three notions introduced in this section are exam-
ples of limits. See Borceux [2, Chapter 2] for more details.

Constructions on categories. A few operations on categories will be needed: The
product of two categories, and the key concept of the opposite of a category. The
former is standard, the latter more interesting.

Definition 2.6 (Product Category) Let C,D be categories. The category € x D is de-
fined as follows:

o Objects of € x D are pairs (A, B) such that A € Cand B € D.

o Amorphismf:(Aq1,B1) = (A2,B2)in €x Disapairf = (a,b)suchthata: Ay —
Ay is a C-morphism and b : By — B is a D-morphism.

— The composition of (a,b) : (A1,B1) — (A2,B2) and (a’,b’) : (A2,B2) —
(A3, B3) is defined as

(a’,b") o (a,b):=(a’oa,b’ ob).

— The identity on (A, B) is given by id (o ) := (ida,idp).
The category C x D is called the product category, or just product, of C and D.

For product categories, associativity and identity laws are induced from € and D,
respectively. Slightly more interesting are opposite categories.

Definition 2.7 (Opposite Category) Let C be a category. Define a category C°P as fol-
lows:

e Ob(e°P) := 0b(0),
e for A,B € C°P, C°P(A,B) := C(B, A), and
— composition as well as identities as in C.

The category C°P is the opposite category, or dual, of C.
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The opposite of a given category C is just as €, but with reversed arrows. The con-
cept of duals will become useful when defining functors that reverse arrows, as in
the Yoneda lemma (Theorem , for instance.

Functors. As with many mathematical structures, there exists a notion of “map”
between two categories. This is the concept of a functor.

Definition 2.8 (Functor) Let €, D be categories. A functor F : C — D consists of:

o amapping F: Ob(€) — Ob(D). For A € C, the object obtained by applying F to A is
denoted by F A, and

e for each A,B € Ob(C), a mapping F : C(A,B) — D(FA,FB). For f: A — B, the
morphism obtained by applying F to f is denoted by Ff.

This data is required to satisfy the following properties:
e For all objects A,B,C € Cas well as f: A — Band g: B — C, it needs to hold that

F(gof) =FgoFf.

e For all objects A € C, it needs to hold that

Fida =idra .

F is said to be full (faithful) if each mapping F : C(A,B) — D(FA,FB) is surjective
(injective). If F is both full and faithful, we say that F is fully faithful. Further, if F is
faithful and injective on objects, we say that F is an embedding.

There are many natural examples for functors. One important class of functors are
forgetful ones: There is a functor U : Grp — Set which sends a group to its un-
derlying set and a group homomorphism to the underlying function it represents.
That is, U “forgets” the group structure. Also, consider two partially ordered sets
(X,<x) and (Y, <y), seen as a category. A functor F: (X, <x) — (Y,<y) is a function
X — Y such that for x1,x; € X, it holds that x; <x x, implies Fx; <y Fx;.

An important class of functors are so-called hom-functors.

Definition 2.9 (Covariant Hom-Functor) Let C be a category and C € C. The covari-
ant hom-functor C(C,—) : € — Set is defined as follows:

e On objects, define C(C,—) D := C(C, D).

e Onarrows f:D — E, define C(C,—) f := fo—, where “fo—""is a function ¢(C,D) —
C(C,E) such that h — foh.
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Definition 2.10 (Contravariant Hom-Functor) Let € be a category and C € C. The
contravariant hom-functor C(—, C) : C°P — Set is defined as follows:

e On objects, define (—,C) D := €(D, C).

e Onarrows f: D — E (i.e. f is a morphism of type E — D in @), define C(—,C) f :=
— o f, where “— o f” is a function C(D, C) — C(E, C) such that h — ho f.

The operation denoted by f o — is called postcomposition, and the operation — o f
is called precomposition.

Hom-functors play a key role in the Yoneda lemma (Theorem 2.15]), a key result
which is used to define the fullification of a lax monoidal functor (Corollary [4.17)).

Yet another important example of a functor is the tensor product of vector spaces.
If Vectr denotes the category of real vector spaces with linear maps between them,
then the tensor product ® : Vectg x Vectg — Vecty is indeed a functor. Here,
Vectg x Vecty is the product category of Vectg with itself. This example reappears
in Section

With functors, we can succinctly define the notion of a subcategory. A subcategory
is to a category what a subset is to a set.

Definition 2.11 (Subcategory) Let C, D be categories. We say that C is a subcategory
of D if there is an embedding © — D. Further, C is a full subcategory if there is an
embedding € — D that is full.

Categories and functors form a category as well, up to size issues. We will therefore
also draw commutative diagrams where categories are vertices and functors are
edges. For the technical details see e.g. Borceux [2]].

Natural transformations and Yoneda lemma. There is a notion of morphism be-
tween functors, called natural transformations. In fact, natural transformations are
the reason why Eilenberg and Mac Lane [24] introduced categories and functors
at all.

Definition 2.12 (Natural Transformation) Let C, D be categories and F, G : € — D be
functors. A natural transformation « from F to G is a family « = {xc : FC — G Clcee
of D-morphisms such that, for all A,B € Cand f : A — B, the following square commutes:

FA %, GA

| Jor

FBT>GB
B

To indicate that « is a natural transformation from F to G, we write oc: F = G.
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For example, let € be a category, A,B € Cand f : A — B. Consider the hom-functors
C(—,A) and €G(—, B). Define a natural transformation « : €¢(—, A) = €(—, B), where
oc = fo—, ie. «c is postcomposition by f. It is easy to check that this defines a
natural transformation. By abuse of notation, we will also write o simply as f o —
and call it postcomposition by f.

Natural transformations where each component is iso are called natural isomor-
phisms or natural isos.

If ¢,D,¢& are categories, ;G : D — € and H : € — D functors, then a natural
transformation « : F = G canonically induces a natural transformation o« * H :
FoH = GoHby setting (o« x H) o := apy A. This is called whiskering.

Natural transformations o : F = G and 3 : G = H can be composed, the composite
Boa:F = His defined pointwise. A routine calculation shows ( o ) x I =
(B *I)o(oxI) for any functor I of appropriate type. For two fixed categories € and D,
one gets a category with functors from € to D as objects and natural transformations
as arrows:

Definition 2.13 (Functor Category) Let C,D be categories. The functor category
[C, D] is defined as follows:

e Objects of [C, D] are functors C — D.
o A morphism from F to G is a natural transformation o : F = G.
— The composition of o« : F = G and 3 : G = H is defined pointwise.

— The identity on F is given by {idr A }ace, which is trivially a natural transfor-
mation.

For a category C, elements of [C°P,Set] are called presheaves. A very important
functor is the the Yoneda embedding, used for the fullification (Section[4.5)).

Definition 2.14 (Yoneda Embedding) Let C be a category. The Yoneda embedding
Y : C — [C°P, Set] is the functor defined as follows:

e On objects, define Yy C := C(—, C).

e Onarrows, f: C — D, Yf is postcomposition by f.

The key result of elementary category theory is the Yoneda lemma, notably the
only non-definition presented in this section. The following is the contravariant
version of the Yoneda lemma, where, for functors F,G : ¢ — D, Nat(F, G) denotes
the collection of all natural transformations F = G.
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Theorem 2.15 (Yoneda Lemma) Let C be a category and F : C°P — Set a functor. For
each A € C, there exists a bijection

NA,F: Nat(C(—,A),F) — FA.

In particular, the natural transformations « : C(—,A) = F form a set. Further, these
bijections are natural in A, and if C is small, these bijections are also natural in F.

A key consequence of the Yoneda lemma when applied to the Yoneda embedding Y
is that Y is fully faithful, which is a crucial insight for the proof that the fullification
is indeed a full functor (see Theorem [4.16]).

Lemma 2.16 Y is fully faithful.

There is also a way to represent natural transformations diagrammatically, via past-
ing diagrams. A situation where € and D are categories with functors F,G: ¢ — D
and a natural transformation o : F = G is denoted as follows:

F
~—

C o« D
~—_ A
G

This idea scales well to larger diagrams, see another example in Proposition
Pasting diagrams can also be used to express equalities between natural transfor-
mations. Consider a setting with categories C, D, €, functors F: ¢ - D, G,H: D —
g, ,and [,] : € — €& as well as natural transformations «: G = Hand  : I = J. The
equality p = « * F can be written as follows:

G
L IR
C Bl & = C—— D o} €&
~_ " ~_
] H

A real-world example is present in Proposition[4.3] If a natural transformation in a
pasting diagram is just the identity transformation, the transformation arrow (=)
can be removed from the pasting diagram. Pasting diagrams where all natural
transformations are identity transformations are in fact commutative diagrams. For
a more detailed account of pasting diagrams, see for instance the contemporary
textbook account by Johnson and Yau [136] on 2-categories [149] 4} [17].

Adjunctions. The last fundamental categorical concept used in this thesis are ad-
junctions. None of our proofs touch this concept, but it is needed to define sym-
metric monoidal closed categories (SMCCs). There, we will see that adjunctions
be used to categorically formalise the universal property of the tensor product of
vector spaces, see the first paragraph of Section
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Definition 2.17 (Right Adjoint) Let C,D be categories and F : € — D as well as G :
D — € be functors. F is said to be right adjoint to G if for all A € C and B € D, there are
bijections

0a.5:C(GB,A) — D(B,FA)

that are natural in both A and B.

There is also a notion of left adjoints which is obtained by swapping the roles of F
and G in the definition above.

2.2 Monoidal Categories via String Diagrams

Recall the category Vecty of real vector spaces. The tensor product of real vector
spaces is a functor ® : Vectg x Vectg — Vectg which has certain properties such as
symmetry and associativity (up to isomorphism). Also, V® R = V. Further, the
universal property of the tensor product implies Lin(V ® W, U) = Lin(V, Lin(W, U))
in a natural way, where Lin(V, W) denotes the vector space of linear maps from V
to W, i.e. the hom-set of V and W in Vecty. In other words, for fixed W, the functor
U — Lin(W, U) is right adjoint to the functor V. — V@ W.

All these properties can be formulated in terms of category theory and lead to to
notion of a monoidal category [} 47]. For the definition of monoidal categories,
we follow Perrone [55, Chapter 6].

Definition 2.18 (Monoidal Category) Amonoidal categoryisatuple (C,®,1,A, p, )
consisting of the following data:

e g category C,
e afunctor®:€CxC—C,
e anobject 1 € C,

o natural isomorphisms Ap : I A — A, pa : A®I — A, and xa g,c: (A®B)®C —
A®(B®C)

such that the following diagrams commute:

(A®B)® (C®D)

XA®B,C,D

g
(AI)®B oA id (AB)@C)®D A B,COD
A B
~
‘XA,I,BJ A®B 06A,B,C®idDJ A®(B®(C®D))
/
ida @A
A®(I®B) "  (A®(B®C)®D idx ®x,c.
XA B®C,D

AR (B C)oD)
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The isomorphisms A, p, and « are called monoidal structure isomorphisms. In the
following, we will write a monoidal category as (€, ®,I) and leave the structure
isos implicit. If the structure isos are all identities, then (€, ®,1) is called a strict
monoidal category.

A particular class of monoidal categories are Cartesian categories, i.e. categories
with finite products. For example, Set becomes a monoidal category with the usual
Cartesian product and {*} as monoidal unit. This monoidal structure is not strict.
Monoidal categories generalise Cartesian categories by not requiring the universal
property of products, i.e. by not having projections.

There is also a notion of monoidal categories where ® is symmetric.

Definition 2.19 (Symmetric Monoidal Category) Letf (C,®,1) be a monoidal cate-
gory. We say that (C,®,1) is a symmetric monoidal category if there is a natural iso-
morphism oa g : A ® B — B ® A such that the following diagrams commute:

(B C)
OCV WC
(A®B)® BeC)®A B®A
. OA,B
GA,B@ldcj/ l‘XB,C,A / J/O—B,A
B®A)® ®(C®A) A®B —— A®B
‘Xm AUAC
® (A C)

The structure isomorphism o is called braiding.

The commutative diagrams for the structure isos are known as coherence condi-
tions and they assert that any two ways to compose structure isos to get from one
object to another yield the same isomorphism.

The fact that Lin(Ve@W, U) = Lin(V, Lin(W, U)) for vector spaces motivates the notion
of symmetric monoidal closed categories.

Definition 2.20 (Symmetric Monoidal Closed Category, SMCC) Let (C,®,1) bea
symmetric monoidal category. We say that (C,®,1) is a symmetric monoidal closed
category (SMCC) if for all A € C, the functor —® A : C — € has a right adjoint.

This right adjoint will be denoted A —o —: € — C.

There is then an isomorphism C(A ® B,C) — €(A,B —o C), natural in A, B, and C
(naturality in B requires a separate proof and is not immediate from the definition,
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see e.g. Perrone [55, Proposition 6.5.16]). The object B — C is called internal hom
from B to C as it internalises the morphisms from B to C into the category €. Think
of vector spaces and tensor products again: One can show that the internal hom is
given by Lin(W, U), which is the vector space of morphisms of type W — U, i.e. the
linear maps from W to U can be seen as an object of the category of vector spaces.

To later introduce our main subject of study, the category of Banach categories, it
will be useful to consider the category of all SMCCs with functors between them
that strictly preserve the SMCC structure.

Definition 2.21 (SMCCCat) The category SMCCCat of all SMCCs is defined as follows:
o The objects of SMCCCat are SMCCs.
o A morphismF: (€, ®e¢, le,—0e) = (D, ®p, In,—on) is a functor such that
Ip =Fle

FA®p FB =F(A®cB)
FA —op FB =F (A —o¢ B)

for all A,B € € and F preserves structure isos, i.e. FAx = Ar A and simularly for
P, &, and o.

— Composition and identities are given by composition of functors and the identity
functors, respectively.

To reason about arrows in monoidal categories, the graphical calculus of string
diagrams [53]] is useful and used a lot in this thesis. In the following, key features
are presented, following the development of Mellies [50].

Fix a symmetric monoidal category (C, ®, I). A morphism f: A — B in Cis depicted

as follows:
B
A

Sometimes, in larger diagrams, we draw diagrams from left to right instead of
bottom-up. The identity is depicted without a box, i.e. the following diagrams
are equal:

A A
= idA
A A

Composition is depicted by drawing boxes in sequence, i.e.if f: A - Band g: B —
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C, then

A A

Monoidal products are represented by drawing wires in parallel, e.g. if f : A7 — B
andg: A; - By, thenf®g: A1 ® A, — B1 ® B, is drawn as follows:

By B>
E(g
A1 Ay
)\A@B
A B

The diagram above represents the identity on A ® B but translates between the two

ways to draw it. This is sometimes convenient within larger diagrams. A similar
gadget to split instead of merge wires can be used as well.

Wires can be merged as follows:

A general morphism between tensors, e.g. f: A® B ® C — D ® E is drawn like this:

DE

ABC

Note that in the diagram above, (A ® B) ® C is identified with A ® (B ® C), i.e. «
is implicitly baked into string diagrams. In general, we will drop parentheses in
terms such as (A ® B) ® C, appealing to the fact that all ways to parenthesise this
expression are isomorphic in a coherent way. Also the unitors A and p are built into
the calculus (see next diagram). As a result, string diagrams represent morphisms
modulo composition with structure isos (except for the braiding, see below).

For the special case where the codomain of f only consists of one object, e.g. f :
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A ® B — C, we also use the following triangle notation:
C

A B
There is, however, nothing wrong with drawing f as a box.

The braiding o is represented by crossing the wires:

B A B A
i ><
A B A B
Labels on wires representing the domain and codomain categories may be dropped
if they can be inferred from the context.

One can also represent functors graphically; this calculus is due to Cocket and
Seely [[7] and extends string diagrams. Let (€, ®¢, Ie) and (D, ®p, In) be symmetric
monoidal categories and F : € — D a functor. The arrow Ff: FA — FB is drawn
within a box labelled F as follows:

FB FB

B
=
AL [F]
FA FA
Everything outside the box is in the category D, and everything inside the box is in
the category €. The functorial equations Fgo Ff = F(gof) and Fida = idfa can
then be written as follows:
FC FC

E

Bﬂ FA FA

F
14 | Oy W

F

FA FA
Of particular interest in this thesis are lax monoidal functors.
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Definition 2.22 (Lax Monoidal Functor) Let (€, ®¢,Ie) and (D,®p,1p) be mono-
idal categories. A functor F : € — D is lax monoidal if there are D-morphisms € : Ip —
Fleand pa g : FA®pFB — F(A®eB), where wis natural in A, B, such that the following
diagrams commute:

(FA®p FB)@p FC A FA @ (FB®p FC)

A, B®pidfc idrp A ®pus,c
F(A®eB)®p FC FA®p F(B®e C)
HA®EB,C HAB®eC

F((A®ReB)®e C) ———— F(A®e (B®e C))

FoaB,c
FA®plp —2 A 4 FA Ip@pFA — A 5 FA
idFA Rp El TF PA £®rDidF Al TF AA
e e

These diagrams are called coherence diagrams. The diagram on top is the associativ-
ity diagram, and the other two diagrams are called left diagram and right diagram,
respectively. The morphisms ¢ and pa g are called coherence morphisms.

There is also a notion of a colax monoidal functor, where the coherence morphisms
go in the other direction. A lax monoidal functor whose coherence morphisms are
isos is called a strong monoidal functor. A strong monoidal functor is both lax and
colax.

The coherence diagrams assert that any way to define a morphism FA; @5 -+ ®p
FAn — F(A] ®¢ -+ ®e An) using the coherence morphisms yield the same mor-
phism, denoted pa,, .. A, -

Iff: Ay ®c---®cAn — Bisa C-morphism, then Ffoua, . . A, is denoted as follows
(where F is lax monoidal):
FB

]

F

FA7 FAn
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Coherence implies that the following diagrams are equal, see Mellies [50]]. This is
used in Lemma[£.14]

FC FC
C
g \ T
C Ay B Anl|F
¢ k5 (2.1)
B cee — B
f f
As A A An[F] A | A[F
FA;  FA; FA; T FA, FA; FA;  FA; FAn

In general, we treat two diagrams as equal if they are equal up to structure isos and
invertible coherence morphisms.

2.3 Markov Categories

Markov categories [5, 27 are a generalisation of categories of stochastic matrices
as well as categories of Markov kernels, first axiomatised by Cho and Jacobs [5] and
extensively studied by Fritz [27]]. These two examples appear below (as FinStoch
and Stoch). Markov categories are very useful in the categorical and synthetic ap-
proach to probability theory, where technical details of models (e.g. measurable
spaces) are hidden and instead, crisp axioms are used to characterise the key prop-
erties of these models, allowing for more abstract and concise reasoning. Markov
categories come with copy (copys : A -+ A ® A) and discard (dela : A — I) mor-
phisms, subject to certain natural conditions.

AkTJA
A

In diagrams, copy 5 is written as

and dela as

A

The definition of Markov categories is given diagrammatically.

Definition 2.23 (Markov Category, cf. Fritz [27, Definition 2.1]) Let (C,®,1) bea
symmetric monoidal category. Cis a Markov category if for all A € C there are morphisms
copya : A — A® Aanddela : A — 1such that
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o copy and dela satisfy the commutative comonoid equations, i.e.

EE
R

o copy and delp are compatible with the monoidal structure, i.e.

A®B A®B

R
A®B A 'B A®B A B

o delp is natural in A, i.e. for all f: A — B, it holds that

A particularly straightforward, but degenerate, example of a Markov category is
a Cartesian category, i.e. a category with finite products: In such a category, the
monoidal unit is a terminal object, and the delete morphism is then the unique
arrow into this terminal object. In the notation of Definition[2.3} the copy operation
X — XxXis given by (idx, idx). The axioms of a Markov category are easy to check.

The prime example of Markov categories, however, are Markov kernels (Stoch, see
Definition 2.25]). For simplicity, we first give the example of Markov kernels be-
tween finite sets (FinStoch), which are exactly stochastic matrices. For both exam-
ples, the development of Fritz [27] is followed.

Definition 2.24 (FinStoch) The category FinStoch is defined as follows:
o The objects of FinStoch are finite sets.

o A morphism f : X — Y is a stochastic matrix f = (fx y)xex,yev, i.e. fxy € [0,1] for
all x,y and 3~ oy fx,y =1 forall x.

— Composition is given by matrix multiplication.
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— The identity on X is given by the identity matrix.

To simplify notation, define f(ylx) := fx,y (sic!). The value f(y|x) denotes the prob-
ability that the kernel f outputs y on input x.

FinStoch becomes a Markov category as follows:
e The monoidal product of sets X,Yis X ® Y := X x Y.

e The monoidal product of matrices f: Xy — Yy and g : X, — Y, is given by

(f @ g)((y, y)l(x,x")) = flylx) - gly'Ix).

e The copy operation copyy : X — X x X is given as

1 ifX:X1 = X2

co x1,%2)|x) =
Pyx(ber, x2)lx) {O otherwise.

o The delete operation delx : X — {0} is given as

delx (0[x) := 1.

The category FinStoch can be generalised to the continuous case by using Markov
kernels. The resulting category is called Stoch. The example below involves some
elementary measure theory, see for instance the textbook by Cohn [8]] for the cor-
responding definitions.

Definition 2.25 (Stoch) The category Stoch is defined as follows:

o Objects of Stoch are measurable spaces, i.e. pairs (X, Xx) where X is a set and x a
o-algebra on X.

o A morphism f: (X,Zx) — (Y, Xy) is a Markov kernel, i.e. a function f : Ly x X —
[0, 1] such that for all x € X, f(—,x) : Zy — [0, 1] is a probability measure on (Y, Zy),
and that for all A € Xy, f(A,—) : X — [0, 1] is Borel-measurable. The value f(A,x)
is also written as f(Alx).

— The composition of Markov kernels f: Ly x X — [0, and g: £z x Y — [0, 1]
is defined as

(go (AR == j _, (A T(dyl).
y

This is a variant of the Chapman-Kolmogorov equation.



24 Background in Category Theory

— The identity on (X, Xx) is given by idx : Zx x X — [0, 1], where

1 ifxeA
0 otherwise.

idx(Alx) == {

The integral in the Chapman-Kolmogorov equation is a Lebesgue integral, where
f(—Ix) : Zy — [0, 1] is the probability measure used for the integration.

Stoch becomes a monoidal category as follows:

e The monoidal product of measurable spaces (X, Zx) and (Y, Zy)is (Xx Y, Zx®
Yy), where Zx ® Ly is the product o-algebra, which is generated by {A x B| A €
2x, B € Zy}. The monoidal unit is ({x},{0, {x}}).

e The monoidal product of Markov kernels f : Ly, x X; — [0,1] and g : Zy, x
X2 — [0, 1] is given by

(f®g): (Zv, ® Zy,) x (X3 x X2) = [0, 1],
where, on the generating sets of Xy, ® Xy,,

(f @ g)((A x B)l(x1,x2)) = f(Alx1) - g(Blx2).

e The copy operation copy(x r,) : (Ix ® Ix) x X — [0,1] is defined, on the
generating sets of Zx ® L, as

1 ifxeANB

co (A x Bx) =
PY(x,2x) {0 otherwise.

e The delete operation del(x 5. : {},{*}} x X — [0, 1] is given by

0 ifX=40

del Alx) =
elix,z5) (Alx) {1 X = s,

Note that in the definition above, the equations for f ® g and copy x s, do not
serve as defining equations as they only say how the respective probability mea-
sures behave on rectangles of measurable sets. But one can show via a standard
measure theoretic argument (see e.g. Cohn [I8, Corollary 1.6.3]) that any two prob-
ability measures that agree on these rectangles already agree on the entire product
o-algebra. A formal way to define these functions is via the Giry monad [29]]. See
Fritz” development for details.
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The category FinStoch is a full subcategory of Stoch: The subcategory embedding
sends a finite set X to (X, P(X)), where P(X) is the powerset of X. A stochastic matrix
f can be seen as a Markov kernel by interpreting f({y1,...,yx}x) as Z]f:] flyilx).

A natural way to obtain Markov categories is from Kleisli categories [40] of mono-
idal monads (see Fritz [27, Section 3]). The Giry monad [29] mentioned above is
a particular example of a monoidal monad, and its Kleisli category gives rise to
Stoch.

As for SMCCs, it will be useful to consider the category of all Markov categories.

Definition 2.26 (MarkovCat) The category MarkovCat of all Markov categories is de-
fined as follows:

o The objects of MarkovCat are Markov categories.

o A morphism T : (€,®¢, Le, copy,del) — (D, @, Ip,copy’,del’) is a functor such
that

Ip =Fle
FA®pFB=F(A®eB)

Fcopys = copyf 4

Fdela = delf 5

forall A, B € Cand F preserves structure isos, i.e. FAx = Ar A and similarly for p, o,
and o.

— Composition and identities are given by composition of functors and the identity
functors, respectively.

The full subcategory of small Markov categories is denoted MarkovCatgyg)i.

2.4 Banach Categories

After having introduced the necessary preliminaries, we are now in the position
to introduce our main subject of study: Banach categories. The terminology is
novel. A Banach category is a triple consisting of a Markov category, an SMCC,
and a lax monoidal functor from the Markov category to the SMCC. For example,
FinStoch and finite dimensional vector spaces form a Banach category, as noted in
Section [3.3.1} Azevedo de Amorim [I5] uses these triples to give semantics to his
PPL unifying linear languages and Markov kernel languages, observing that there
are many models of interest. For instance, he observes that Banach categories often
arise from Kleisli categories [40] and Eilenberg-Moore algebras [25]] of monoidal
monads, with a canonical lax monoidal functor between them. As pointed out ear-
lier, a prominent such monad is the Giry monad [29] whose Kleisli category is just
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Stoch. Motivated by the fact that there are many natural Banach categories, we pro-
ceed to give a general treatment of them. The name is justified by the fact that the
SMCC of a Banach category is often some kind of closed normed vector space, i.e.
a Banach space (see e.g. the examples in Sections and particularly the
latter).

Definition 2.27 (Banach Category) A Banach category is a triple (C,F, £) where C
is a Markov category, L an SMCC, and ¥ : € — £ a lax monoidal functor that is faithful.

The requirement that F is faithful comes from the fact that F is faithful in the inter-
esting examples, as noted by Azevedo de Amorim [[15]. Banach categories do form
a category, which we will denote BanCat.

Definition 2.28 (Banach Category) The category BanCat of all Banach categories is
defined as follows:

o The objects of BanCat are Banach categories.

o A morphism f : (C,F, L) — (C,F,L') is a pair f = (G, H) where G is an arrow in
MarkovCat and H is an arrow in SMCCCat such that the following diagram com-

mutes:
ez
o [
e’ L’

— Composition is defined componentwise, i.e. (G',H') o (G, H) := (G'oG,H o H).
— The identity on (C,F, £) is given by id (¢ ¢ ) = (ide,id g ).

The full subcategory of BanCat consisting of Banach categories where F is full is denoted
BanCatg.

Considering the category of all Banach categories is justified by the fact the the ful-
lification of a Banach category, our main theorem, gives rise to a functor on the cate-
gory of Banach categories (Proposition[4.30]), which opens up potential future work
to study the properties of this functor, see Section[5.3] Another example morphism
in BanCat is from the Banach category consisting of FinStoch and finite dimensional
vector spaces to the Banach category of Stoch and regularly ordered Banach spaces
(see Sections and for the examples): Both functors are just the inclusion
functors which preserve the respective structures strictly.



Chapter 3

A Graphical Language for Banach Categories

In this chapter, we give an overview of Banach categories in view of string diagrams.

First, we motivate this approach by studying the example of convex spaces where
string diagrams allow for an easy to parse presentation of the definitions involved
(Section 3.1)). Then, we study lax monoidal functors diagrammatically and also
give a brief outlook to colax monoidal functors (Section[3.2). This chapter is roun-
ded up by the discussion of two examples: FinStoch and finite dimensional vector
spaces as well as Stoch and regularly ordered Banach spaces (Section[3.3)).

3.1 Motivation: Diagrammatic Description of Convex Spaces

We now investigate convex spaces in light of string diagrams. Convex spaces (Def-
inition can be seen as a generalisation of real or convex vector spaces. The
motivation for this investigation is two-fold: Firstly, this small example nicely high-
lights how string diagrams can be used keep an overview of abstract definitions,
and secondly, the SMCC of a Banach category is often some kind of category of
Banach spaces, which admit a convex structure. In the future, one could add con-
vexity conditions to the definition of a Banach category to see whether this yields
interesting properties (see Section[5.3]).

Recall the notion of convex subsets of R™. A set U C R™ is called convex if for all
x,y € Uand A € [0, 1], it holds that Ax + (1 —A)y € U. Geometrically, this means that
the straight line connecting x and vy is fully contained in U.

The notion of a convex space is based on this concept, but far more general. Stone
was the first to axiomatically characterise convex subsets of vector spaces [59],
which ultimately led to the modern definition of convex spaces. We follow the
notation by Fritz [26]], who also outlines the complicated history of convex spaces.

A convex space is a set 8 together with a family of functions {cc) : 8§ x 8§ = 8}xcjo,1)
such that certain natural properties hold. Here, the functions cc) model convex
combinations. For instance, if U C R™ is a convex set, then ccy (v, w) := Av+(1—A)w



28 A Graphical Language for Banach Categories

gives rise to a convex space.

Definition 3.1 (Convex Space, cf. Fritz [26, Definition 3.1]) Let S be a set and let
{cea : 8 X 8 = 8)\cjo,1) be a family of functions. The pair (8,{cca}r) is a convex space if
the following properties hold:

o Unit law:
CCo (X) U) =X

e Idempotency:
ccr(x,x) = x

o Parametric commutativity:

CCA (X»U) = CC]*?\(U)X)

o Deformed parametric associativity:

cealcen(x,y),2) = ccs5 (%, ccply, z)),

where A = A and

i {A]ﬁ;ﬁ’ A1

0 otherwise, i.e. if A = =1

All these axioms are natural, except for deformed parametric associativity. How-
ever, it is easily seen to be a key property of the example of convex sets mentioned
above, which motivates this axiom. Further, the choice that it = 0if A = n = 1is
arbitrary, one could set {i to any number from [0, 1].

Convex sets are not the only examples of convex spaces. Even more, there are con-
vex spaces that are not even subsets of a real or convex vector space.

Example 3.2 (Two-Point Space, cf. Fritz [26, Example 5.1]) The pair ({1, 2},{cca}r)

is a convex space, where
1 ifA=0
2 otherwise.

cca(1,2) :—{

In the example above, the values cc) (2, 1) are determined by parametric commuta-
tivity.

Fritz distinguishes three types of convex spaces: Geometric ones which are sub-
sets of a vector space, combinatorial ones in which, for all points x, y, the function
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cca(x,y) is constant for A € (0, 1), and mixed ones that combine both. Example
is the minimal nontrivial example for combinatorial convex spaces.

As one might expect, convex spaces form a category. Arrows in this category are
convex maps, which will be defined below. To ease notation, we write Ax+ (1 —A)y
for ccy (x,y) in the following and call a set § a convex space if the convex combina-
tion operation can be inferred from the context.

Definition 3.3 (Convex Map, cf. Fritz [26, Definition 3.2]) Let S and 8’ be two con-
vex spaces. A function f : 8 — 8' is a convex map if

fAXx + (1 = A)y) = Af(x) + (1 = A)f(y)
orall x,y € Sand A € [0, 1], i.e. f commutes with the convex combination operation.
Y P

Definition 3.4 (ConvSpc, cf. Fritz 26, Definition 3.2]) The category ConvSpc con-
sists of convex spaces and convex maps.

Checking that ConvSpc is indeed a category is routine. It turns out that the con-
dition in Definition [3.3| can be represented diagrammatically in a way that makes
the point of the equality immediately clear. We are not aware that the following
diagrammatic descriptions appear in the existing literature.

For this, a diagrammatic version of the convex combination operation is needed.
This is achieved by having a node labelled As for all A € [0, 1], where § is the under-
lying set of the convex space. The node labelled Ag has two inputs and one output,
as demonstrated in the following example:

8

8 8

Two parallel wires in this diagram simply represent the cartesian product of sets.
The property that f: 8§ — 8’ is a convex map can then be represented diagrammat-

ically as follows:
S/
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The above diagram immediately brings the point across: f commutes with the con-
vex combination operation.

One can also think of formalising the conditions of Definition 3.1} but this requires
copying, swapping, and delete morphisms. Since convex spaces are sets with Carte-
sian product structure, they clearly have copy and swap operations, which are given
by the maps x — (x,x) and (x,y) — (y,x), respectively. The delete morphism
8§ — {x}is given by x — =. In fact, ConvSpc is even a Markov category since Set
is.

The unit law can be written as the following equality:

S S
8 8 IS

Here, the wire on the right represents the delete operation. The other wire on the
right of the equals sign denotes the identity. The law of idempotency requires copy-
ing and can be represented as follows:

S

S S

In the diagram above, the node where one wire enters and two wires exit denotes
the copy operation. The law of parametric commutativity can be written as follows,

wherey =1—A:
S S
] 8 8 8

The swap operation is represented by the crossing of two wires. Finally, deformed
parametric associativity can be phrased as follows, where A, i are as in Defini-
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tion 3.1}

S S 3 S S S

That is, convex spaces can be described entirely in terms of diagrams. In the fu-
ture (see Section[5.3)), one may investigate whether it is sensible to require that the
SMCC of a Banach category has some kind of convex structure, motivated by the
fact that these categories are often categories of Banach spaces (which are convex
spaces).

3.2 Diagrammatic Description of Banach Categories

Lax monoidal functors (Definition[2.22]) come with coherence morphisms relating
the monoidal structures of their domain and codomain categories, and it is possible
to characterise these maps diagrammatically. In the same spirit, and also motivated
by the full diagrammatic description of convex spaces, one can ask whether the
lax monoidal functor in a Banach category has additional properties that can be
captured in terms of diagrams. In particular, one could investigate how the CD
structure interacts with the coherence morphisms of the lax monoidal functor. For
the remainder of this chapter, fix a Banach category consisting of a Markov category
(€, ®e, Ie, copy, del), an SMCC (D, ®p, Ip,—o), and a lax monoidal functor F: ¢ — D
with coherence morphisms ¢ : Ip — Fle and px,y : FX®p FY = F(X®e Y).

Interaction of CD structure and coherence morphisms. Unfortunately, it turns
out that the CD structure and the coherence morphisms of F do not interact suffi-
ciently well. For example, one might hope that, up to coherence or structure mor-
phisms, there is a diagrammatic representation of Fcopyx where one wire enters
F’s functor box and two wires exit, i.e. some diagram of the following shape:

FXl JFX

F
X

However, this is not possible: The morphism depicted in the above diagram has
type FX — FX ®p FX, while Fcopyy has type FX — F(X ®¢e X). The coherence
morphism py,z : FY ®p FZ — F(Y ®¢ Z) cannot be postcomposed as it goes in the
wrong direction. Also, there are not any other methods at hand to turn F (X ®¢ X)
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into FX ®p FX. That is, the only diagrammatic way to appropriately represent
F copyy is as follows:

‘F(X®CX)

ﬂ

Fx

A similar issue occurs with Fdelx : FX — Fle. There is no reasonable way to turn
this into a morphism of type FX — Ip, for a symmetric reason to the one outlined
above. So the only diagram one gets is

Fle

ﬂ

FX.

One can also investigate colax monoidal functors, where the coherence morphisms
go in the other direction.

The case of colax monoidal functors. The issues in the previous paragraph can
be avoided when F is colax monoidal, i.e. pux,y has type F(X ®c Y) = FX ®p FY
and ¢ has type FIe — Ip. This is because ix,x o Fcopyy and ¢ o delx have types
FX = FX®p FXand FX — Ip, respectively, which can be represented as follows:

FXl JFX

and
7 al

Fx Fx

As usual, the coherence morphisms are omitted in the diagram and I is repre-
sented without wire.

However, in most examples of interest for this thesis, the functor is lax and not
colax. Further, there is no reason why the above observation should be useful, for
instance by yielding a Markov structure on D. Therefore, colax functors are not
studied further in this thesis.
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Interaction with the braiding. Another natural question to ask is whether there
is any diagrammatic representation of Fox y, where o is the braiding of C. One
might expect a diagram of the following shape (up to coherence morphisms):

FY | FX
<
FX 'FY

Observe that Fox y has type F(X®e Y) = F(Y®e X). Using px,y, this can be turned
into a morphism (Fox,y) o ux,y : FX®p FY = F(Y ®¢ X). However, since p is not
iso, this cannot be turned into a morphism of type FX ®p FY — FY ®p FX, i.e. the
diagram above is not valid in general. But if F is strongly monoidal, then u is iso
and u\_()]x o (Fox,y) o ux,y has the desired type, i.e. the diagram above is valid.

In the general lax case, the only diagrammatic representation one gets is the one
corresponding to (Fox,y) o ux,y, which can be written as follows:

‘F(Y®e X)

ix ey

Parallel composition: Merging functor boxes. Letf:X; - X, andg:Y; = Y,
be C-morphisms. Are Ff ®p Fg and F(f ®¢ g) equal up to structure or invertible
coherence morphisms, i.e. does the following equality of diagrams hold?

FXz FY> FX2 FY2

f] 9] _ ][9]
7 F 7 (3.1)

F Xy FYq FX71 'FYq

This is, in a slightly more general case, discussed by Mellies [50, Section 4]. The
result is that the above equality holds when F is strongly monoidal. It follows from
the following observation: Since ua g : FA®p FB — F(A ®¢ B) is natural in both A
and B, the following square commutes:
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FXi ®p FYq m) F(X7 ®¢ Y7)
JFT’@DFQ lF(f®cg)

HX5,Y,

FXo ®@p FY2, —— F(X2 ®e Y2)

Thatis, F (f®e g) o 1x,,v, = Hx,,v, o (Ff®p Fg). Since p is a natural isomorphism, it
holds that F (f®e g) = ux,,v, o (Ffe@pFg)o H;Jm . As string diagrams are operating
modulo structure isos and invertible coherence morphisms, Equation (3.1]) holds.

It is reasonable to require that ¢ : Iy — Fle is iso since this is the case in many
examples, see also Section 3.3} However, this is not the case for p, see the example
in Section [3.3.2]

Refinement of description if functoris full. If Fis a full functor, then forall X,Y e
€, the mapping F : €(X,Y) — D(F X, FY) is surjective. In other words, forall f: FX —
FY, there exists g : X — Y such that F g = f. This does not rely on any monoidality
assumptions at all. In diagrams, this can be depicted as follows:

FY FY

L[
P 7 E

FX FX

3.3 Examples of Banach Categories

Banach categories have important applications in categorical probability theory
and beyond, as noted by Azevedo de Amorim [15]. In what follows, two exam-
ples are outlined, the first is a specialisation of the second to the finite case.

3.3.1 Stochastic Matrices and Finite Dimensional Vector Spaces

FinStoch is the Markov category of finite sets and stochastic matrices, see Defini-
tion There is a strong monoidal functor to the category of finite dimensional
vector spaces (denoted FinDimVectr), which is an SMCC. Recall that an arrow
m : X — Yin FinStoch is just a stochastic matrix with entries m(y[x)xex,yev-

Definition 3.5 Define a functor F : FinStoch — FinDimVectg as follows:
e On objects, FX := RX.

e Onarrows m:X — Y, define Fm: RX — RY as

(Fm)(f)(y) =) mlyk) - f(x).

xeX
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It is routine to check that Fm : RX — RY is indeed a linear map and that F respects
identities and composition. Therefore, F is a functor.

Recall that R is the monoidal unit of FinDimVectgr, while {*} is the monoidal unit of
FinStoch. There is a trivial linear map € : R — F{x} = R™*} which is even iso. For the
coherence morphism px y : R*X @ RY — RX*Y it suffices to define a bilinear map
Yx,v : RX x RY — R**Y thanks to the universal property of the tensor product.

The map yx,y is defined as follows:
vx,v(f,9)(xy) = fx) - gy)

It is easily checked that yx v is bilinear and natural in X, Y. A routine application of
the universal property of the tensor product shows that also pix,y is natural in X, Y.

We are now in the position to prove that F is strong monoidal.
Proposition 3.6  The functor F from Definition |3.5|is strong monoidal.

Proof For associativity, thanks to the universal property of ®, it suffices to show
that the following diagram commutes, where a((f, g), h) := (f, (g, h)):

(RX x RY) x RZ —2— RX x (RY x R%)

ly xid iid Xy

RXXY XRZ RX XRYXZ

I ,

RXxY)xz __Foxyz  pXxx(YxZz)

Recall that ax v,z is an arrow in FinStoch, i.e. a stochastic matrix. Its definition is

1, ifX] =X2,Y1 =Yz, and Z1 =22
ax,v,z((x1, (Y1, z1)l((x2,Y2),22))) = ,
0, otherwise

Hence, by definition,

(Fax,v,z)(f)(x1, (y1,21))

= > ax,v,z((x1, (1,20 ((x2,Y2), 22)) - F((x2,y2), 22)
(x2,Y2),2z2)E(XXY)x Z

(
=f((x1,Y1),21)

From this observation it is routine to check that the diagram commutes.
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For the|left coherence diagram) it suffices to show that the following diagram com-
mutes, where s(r,f) :==1- f:

R x RX X4, R o gX

[ [
RX = R{*}XX
X

If (r,f) € R x RX, then (e x id)(r,f) = (g, ), where g(x) = r. Further, v, x(g, f) is
the map given by (x,x) — g(x) - f(x) = v - f(x). Now Ax is an arrow {*} x X — X in
FinStoch such that

1, ifx; =x2

Ax (x11(x,x2)) ={

0, otherwise,

so it is easy to check that (FAx) (v x(g,f))(x) =7 - f(x), i.e. the square commutes.

Verifying theright coherence diagram|is similar.

For strong monoidality, note that ¢ is trivially iso. Further, for all X, Y, it holds that
dim(R* ® RY) = dim(ker(ux,y)) + dim(range(px,y)) by standard linear algebra.
Also, dim(R* @ RY) = dim(RX) - dim(RY) = |X] - [Y|. Consider the functions hy y, :
X xY = Rfor (x,y) € X x Y, where

. (x’y/)—{] ifx=x"andy =y’
xy\XHY )=

0 otherwise.

By basic linear algebra, the collection {hy y}xex,yey is a basis of RX*Y_ Tt is clear
that each h, , is in the image of yx,y and hence in the image of pux, y. Since pux y is
a linear map, this means that px v is surjective.

In other words, dim(range(ux,y)) = [X| - [Y]. Since also [X]| - [Y| = dim(ker(ux,y)) +
dim(range(ux,y)), this necessarily means that dim(ker(px v)) =0, i.e. pux,y is injec-
tive and hence iso. O

Note that F is faithful, but far from being full. Any linear map not represented by a
stochastic matrix is not in its image, for instance the constant zero map.

Variations of this example. One can consider variations of this example where
one restricts the set morphisms in FinDimVecty to a smaller class. If one restricts to
just the positive maps preserving the unit ball, then F becomes full. Differently, if
one restricts to the positive maps of 1-norm exactly 1, then F is not full, as witnessed

by the linear map represented by (2) 1/ g) with respect to the standard basis.
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3.3.2 Markov Kernels and Regularly Ordered Banach Spaces

The example above can be generalised to continuous probability leading to a lax
monoidal functor with domain Stoch. This functor is standard in the literature,
see e.g. Azevedo de Amorim [[I5]. The codomain of this functor will again be a
category of vector spaces, namely regularly ordered Banach spaces with regular
linear functions (RoBan for short). To formally define RoBan (in Definition[3.11)), a
few preliminary definitions are needed. We follow the development of Dahlqvist
and Kozen [[10], the key definition is the one of a regular ordered normed vector
space [13,160].

Definition 3.7 (Ordered Vector Space) An ordered vector space is a R-vector space
(V, +,0) with a partial order < such that the following conditions are satisfied:

e Forallu,vyw eV, it holds that u <v=u+w <v+w.
e Forallu,v € Vand A > 0, it holds that u < v = Au < Av.

Definition 3.8 (Ordered Normed Vector Space) An ordered normed vector space
is an ordered vector space (V,+, 0, <) with a norm || - || such that V* :={v|v > 0} is closed
with respect to the topology generated by || - ||.

For example, R™ with the euclidean norm and the order v < w iff vi < wj forall i
is an ordered normed vector space.

Definition 3.9 (Regular Ordered Normed Vector Space) A regular ordered nor-

med vector space is an ordered normed vector space (V,+,0,<, || - ||) such that, for all
v,w €V, both
—w<v<w= v < [wl]
and
VIl = inf{[[ul|| —u<v <ub
In this case, || - || is called a lattice norm.

A routine argument shows that also R™ with the ordering mentioned above is a
regular ordered normed space.

Recall that a Banach space is a normed vector space which is complete with respect
to its norm, which then gives a meaning to the term regular ordered Banach space.
Since R™ with the euclidean norm is complete, R™ with the euclidean norm and the
ordering mentioned above is a regular ordered Banach space. Even more, any finite
dimensional vector space can be turned into a regular ordered Banach space.

There is also a notion of morphisms between regular ordered normed vector spaces.
First, a positive linear map is a linear map f : (V,+,0,<) — (W,+/,0', <) is such
that 0 < vimplies 0 <’ f(v), used in the definition below:
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Definition 3.10 (Regular Operator) Let V and W be reqular ordered normed vector
space spaces. A linear map f : V. — W is a regular operator if f is the difference f = g—h,
where g, h are positive linear maps.

For example, for a stochastic matrix M € R™*™, the linear map v — Mv is posi-
tive, hence regular. Regular ordered Banach spaces and regular operators form a
category, which is called RoBan.

Definition 3.11 (RoBan, cf. Dahlqvist and Kozen [10]]) The category RoBan is de-
fined as follows:

o Objects of RoBan are reqular ordered Banach spaces.
o A morphism in RoBan is a regular operator.
— Composition is given by composition of functions.
— Identities are identity functions.
There is also a tensor product & on RoBan turning RoBan into an SMCC, its mono-
idal unit is R and its relevant universal property is that there exists a positive bilin-

ear map|® : V x U — V&U such that for all positive bilinear maps f: V x U — W,
there exists a unique positive linear map f : VU — W such that:

Vxu—25vau
\J?
f
w

A particular regular ordered Banach space is important to define the lax monoidal
functor from Stoch to RoBan: Given a measurable space (X,Zx), a finite signed
measure on this space is a map v : Zx — R such that v is o-additive and v(0)) =
0. The set of all signed measures on (X, Zx) becomes a vector space by pointwise
addition, and can even be shown to be an object of RoBan.

Definition 3.12 (cf. Azevedo de Amorim [[15, Theorem 12]) Define a functor F of
type Stoch — RoBan as follows:

o On objects, F (X, Zx) is the reqular ordered Banach space of finite signed measures on
(X) x )

e On arrows, a Markov kernel f : Ly x X — [0,1] is sent to the regular operator
Ff:F(X,Zx) — F(Y,Zy), where

(FF(v)(A) := J N f(Alx) v(dx).

LA positive bilinear map f : VxU — W is a bilinear map such thatv > 0and u > 0 imply f(v,u) > 0.
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Observe how nicely this definition extends the finite case from Definition by
using an integral instead of a sum.

Azevedo de Amorim verifies that this is indeed a well-defined lax monoidal func-
tor. The definition of the coherence morphisms is sketched in the following. The
morphism ¢ : R — F({x},{0,{x}}) is trivial as a signed measure v on ({x},{0,{x}}) is
uniquely determined by the value v({x}) € R. To define the coherence morphism
H(X,Zx),(Y,5y) - F (X Yx)®F (Y, Zy) — F(X x Y, Zx ® Zy), one uses the universal prop-
erty of ®, by which it suffices to define a positive bilinear map F (X, Zx) x (Y, Zy) —
F(X XY, Zx ® Zy), which is just given by the product measure, i.e. (v,v) = v@v. To
prove that the coherence diagrams commute, one uses the universal property of ®
by which it suffices to verify these diagrams on pure tensors (similar to how it is
done for FinStoch in Proposition 3.6)).

As opposed to the finite case with FinStoch, the functor F : Stoch — RoBan is not
strong monoidal, as p is not iso, as pointed out by Azevedo de Amorim [[15] as well
as Dahlqvist and Kozen [10] (but it is essentially an observation from functional
analysis).

Two final remarks: F is not full, as for instance the zero maps are not in its im-
age. Furthermore, one can show that there is an [SMCC morphism|from the finite
dimensional vector spaces to RoBan. In particular, one can show that there is a
morphism of Banach categories from the Banach category with FinStoch and finite
dimensional vector spaces to the Banach category of Stoch and RoBan.




Chapter 4

Fullification of a Banach Category

In this chapter, we prove that a Banach category can be fullified in the following
sense: For any Banach category (C,F, £) such that € is small, there exists Banach
category (G, F,£) and a strict monoidal functor between SMCCs q : £ — £ such
that F is full such that the following diagram commutes:

G%L

b

This result is the main contribution of this thesis. It is subject to Corollary

We first give an overview over a related construction to fullify Cartesian functors
between Cartesian categories (Section 4.1)), which contains lots of ideas that were
reused in the fullification proof presented in this thesis. We then give an overview
of required background material needed to define the fullification: Comma cate-
gories (Section [4.2]), multicategories (Section[4.3)), as well as Day convolution and
Kan extensions (Section [£.4)). In Section [4.5, we define the fullification and prove
that Fis indeed full, and in Sectlonwe show that the fullification can be equipped
with the required monoidal structure.

To only understand the definition of the full functor, but not the argument why it is
lax monoidal, Section [4.4] can be skipped. Also, Section [4.1]is not an essential read
but recommended to understand where our fullification construction originates
from.

4.1 Previous Work: Fullification of Cartesian Functor

In work on definability in the A-calculus, a construction to fullify Cartesian functors
arose in work by Alimohamed [[1]] and later Katsumata [39]], inspired by previous
work due to Jung and Tiuryn [37] (see also related work in Section 5.3)). Roughly
speaking, they prove the fullification result we are aiming for in the special case
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where the monoidal structure is given by actual products in the sense of Defini-
tion[2.3] The fullification construction presented in this theses borrows many ideas
from Alimohamed and Katsumata, and it is therefore important to shed some light
on Alimohamed and Katsumata’s main technical points. We follow the compre-
hensive outline given by Katsumata [[39].

Let L be a small category with finite products (called Cartesian category), C a
small category with finite products, finite Coproductﬂ and exponentialf] (called
bi-Cartesian closed category, short bi-CCC [44]]), and F : L — € a functor strictly
preserving finite products (called strict Cartesian functor). Katsumata then de-
fines a bi-CCC K¢, a full strict Cartesian functor Def : L — K, as well as a bi-CC
functor (i.e. a functor preserving finite (co)products and exponentials) q : K — C
such that the following diagram commutes:

L Def Kr
\‘ lq

C

The category K is obtained from a pullback construction (see Definition[2.5)) as fol-
lows. Katsumata defines a poset Ctx; as the finite lists of objects in L, i.e. (Obj(L))*.
The ordering is given by L < L’ iff L is a prefix of L', i.e. L = [Ay,...,An]Jand L’ =
A1, .o, An, Angty ..oy Angml] for some m > 0. Ctxp is then treated as a category.
An object of Ctx, i.e. a list of L-objects, can be seen as an L-object by simply taking
the Cartesian product of its elements. This gives rise to a functor | — | : Ctx; — L°P,
where
\[A],...,An” = A7 X+ X Aqn.

On the empty list, |[J| is a terminal object of L. The unique arrow in Ctx; from
A1, ..., Anlto [Ag,. .., An, Anga,y ..oy Angml is sent to a morphism of type

Al X XA XAps1 X X Angm — A1 X - X Aq,
which just “strips off” the last m components using the projection morphisms.
Kr is then the pullback of the following diagram:
e —, [Ctxq, Set] «P— Sub([Ctxy, Set])

Here, Hr C := C(F| — |, C). Further, Sub([Ctxp, Set]) is the category of subobjects of
presheaves on Ctx;, and p is the corresponding subobject fibration. Subobjects are

1A coproduct is defined like a product, but with all arrows reversed.

2Exponentials can informally be thought of as in Cartesian categories.
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a categorical generalisation of subsets, see e.g. Jacobs [135, Section 1.3]. See also Kat-
sumata for more background on the involved categories and for further references.

The pullback diagram is then as follows:

Kr —— Sub([Ctx, Set])

qj [v
C — [Ctxp, Set]

Using a technical construction, Katsumata defines a functor Def : L — K¢. They also
prove (in Proposition 2) that Def is full and satisfies F = q o Def, i.e. the following
diagram commutes:

L K¢ —— Sub([Ctx, Set])

S

€ — > [Ctxq, Set]
F

This way, Katsumata proved their desired fullification result.

In this thesis, we do not work with Cartestian categories, but with the more general
case of monoidal categories. Still, the rough proof strategy is similar. However, in-
stead of a pullback construction, we employ a glueing construction with a comma
category [45]], as described by Hyland and Schalk [133, Section 4]. Further, in addi-
tion to Alimohamed and Katsumata, we conjecture that our fullification construc-
tion has a universal property, see the first point of future work in Section[5.3

4.2 Comma Categories

Comma categories are a standard construction in category theory, first developed
by Lawvere in his 1963 PhD thesis (only published in 2004) [45, p. 36]. In the
following, the development of Borceux is followed [2, Section 1.6], with slightly
different notation.

Definition 4.1 (Comma Category, cf. Borceux [2, Definition 1.6.1]) Let A, B, C be
categories and F : A — C, G : B — C functors. The comma category of F and G, written
F | G, is defined as follows:

o Objects of F | G are triples (A, f,B), where A € A,B € B,and f € C(FA,GB).

e Morphisms of F | G from (A,f,B) to (A’,g,B’) are pairs (a,b) such that a €
A(A,A), b € B(B,B’), and the following diagram commutes:

FA —+ GB

S

FA' —— GB’
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— Composition and identities in F | G are componentwise, i.e. (a’,b’) o (a,b) =
((1/ o a,b’ o b) and id(A,f,B) = (idA,idB).

The objects of the comma category F | G, whereF: A — Cand G : B — C, are triples
of two objects from A and B, respectively, and a morphism FA — G B. It turns out
that there are canonical projection functors F | G - Aand F | G — B.

Proposition 4.2 (cf. Borceux [2, Proposition 1.6.2]) Let A, B, C be categories and F :
A — €, G : B — Cfunctors. There are functors U:F| G —- A, V:F| G — B, anda
natural transformation « : Fo U = G o'V, i.e. the diagram below commutes:

A

g

FLG

_u,
\% ¥

B G

The functor U is just the projection, i.e. U (A, f,B) = Aand U (a,b) = a. V is defined
analogously. The components of o are x(a ¢ ) = f.

As with many constructions in category theory, comma categories come with a
universal property. The universal property of comma categories allows to define a
unique functor into the comma category from two functors into A and B, respec-
tively, subject to existence of a natural transformation as detailed below.

Proposition 4.3 (cf. Borceux [2, Proposition 1.6.3]) In the setting of Proposition[4.2]
let D be a further category with functors W : D — Aand V' : D — B. Also, let
B:Fol = GoV beanatural transformation.

There exists a unique functor W : D — F | G such that the pasting diagrams below are
equal:

u/
p Y. FIG Y5 ua
v 7 lF = vl &z lF
BTG BTG

The functor W can be defined explicitly as WD := (U’ D, 5, V' D) on objects and
Wd:=(U'd,V’'d) on arrows.

In the definition of the fullification of a Banach category (D, F, £) (Section[4.5), the
full functor will be obtained from Proposition 4.3|and the comma category used
will have A := £, B := € := [MCat(D)°P, Set], where MCat(D) is a multicategorical
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construction explained below. The functor G is the identity, and F will be a nerve-
like construction.

4.3 Multicategories

In ordinary category, morphisms have a single domain object. In many real-world
examples, however, morphisms may take several arguments, think of bilinear maps
for instance. The notion of multicategories, due to Lambek [42], addresses this
issue and provides a categorical framework to handle morphisms whose domain
consists of multiple objects.

The theory of multicategories is vast in its own right, and a multicategory is not a
special case of a category. However, any multicategory can be transformed into a
monoidal category, as observed by Hermida [30} Section 7]. Based on the construc-
tion of this transformation, one can define MCat(€), see below.

The definition of MCat(€) involves partitions of finite sets. The following notation is
used: If P is a partition of {1,...,n} into m (possibly empty) sets Q1, ..., Qm, write
Qi = {h(1,1),h(2,1),...,h(ji, 1)} = {h(k,1) |k = 1,...,ji}. The number h(k,1) is the
k-th element of the i-th set in the partition. If Q; = ), then j; = 0. We then simply
write P = {h(k,1) [k =T,...,ji}{";.

Definition 4.4 Let (C,®, 1) be a monoidal category. The category MCat(C) is defined as
follows:

o Objects of MCat(C) are finite lists of objects in € (including the empty list).

o A morphism f: [Aq,...,An]l — [B1,...,Bml isa pair f = (P, [f1,...,fm]), where
P ={h(k,i) |k =1,...,ji}I*, isa partition of {1, ... ,n}and each f; is a C-morphism
of type

fiiAn,y) @ @ Angi) — Bi
Ifji =0, then f; has type I — By. The partition P is called the signature of f.
- Iff : [A],...,An] — [B1,...,Bm] and ' : [B],...,Bm] — [C],...,Ce]

are morphisms with signatures {h(k,i) |k = 1,...,ji}I*,; and {W(k,i) |k =
1,...,i5¥_,, respectively, then (f' o f); is defined as in the diagram below:

i=17
An(1,n(1,1)) 5
. h (1,1
LINIEIRS (1,1)
Ah(jh/“‘i),h’(],i))i . f’ Ci.
1
An(1,W (1,1)) — 5
h/ /’
oy, >0
ARGy, (75,1) —
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— The identity id(a, . A, 01 [A1,...,Anlis given by [ida,,...,ida ]

The composition in MCat(€) works as follows: The morphism (f’ o f); needs to have
codomain C;. The morphism f} also has codomain Cj, so it can be applied, and
the new goal is to produce an object of type By/(1,1) ® -+ ® By 1) Using fr(1 1),
it is possible to obtain By, (; i), using fy/(2,;) one gets By/(;,;) and so forth. This
construction ultimately yields the morphism (f' o f); := f{ o (fr/(1,1) @ -+ @ frr(jr 1))

It is helpful to consider a few edge cases of the definition of MCat(€): There are no
MCat(€)-morphisms of type [A1,...,An] — [, wheren > 0, as {1,...,n} cannot be
partitioned into 0 sets. An MCat(€)-morphism of type [| — [A1,...,Anlforn > 0is
a list [fy,...,fn], where f; : I — A;. This follows immediately from the definition.

An arrow between singleton lists [A] and [B] is just a singleton list [f], where f : A —
B is a morphism in €. The identity on [A] is just [ida], and [f] o [g] = [f o g] (all these
hold by definition). This is phrased formally in the following proposition.

Proposition 4.5 Let (C,®, 1) be a monoidal category. C is a full subcategory of MCat(C)
under the subcategory embedding C — [C], f — [f].

Proof Immediate from the definitions. O

The category MCat(C) can be endowed with a strict symmetric monoidal structure
by simply concatenating the respective lists.

Definition 4.6 Let (C,®,1) be a monoidal category. Define a strict monoidal structure
®mcat(e) on MCat(€) as follows:

e Onobjects, [A1,...,Anl @mcat(e) [B1y.. -y Bml :==[A1,...,An,B1,..., Byl

e Onarrows, [f1,...,fnl ®mcat(e) [91y -y Iml = [f1,. .y fny g1y ooy gl

Verifying that this is indeed a (strict) symmetric monoidal structure is routine.
4.4 Day Convolution and Kan Extensions

To prove that the fullification is lax monoidal (Section [4.€]), we employ a folklore
glueing construction, following Hyland and Schalk’s [133, Section 4] development.
They define a monoidal structure on certain classes of comma categories. We em-
ploy their construction, and for it to be applicable in the setting of this thesis, a
monoidal structure on the category [MCat(€)°P, Set] is needed, where € is monoidal.

Day [14] defines a monoidal structure on the presheaves of a given monoidal cat-
egory. This construction is called the Day convolution product. There is also a
version for functors € — Set, but this is not needed in this thesis. The definition
below is taken from Perrone [54, Definition 5.6], with the slight observation that
all presheaves on a small category are small [51]].
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Definition 4.7 (Day Convolution) Let (C,®,1) be a small monoidal category and let
P, Q : €% — Set be presheaves on €. The Day convolution of P and Q, written P®p,y Q :
C°P — Set, is defined as the following coend:

Y,Zee
(P ®pay Q)(X) ::J PYXxQZxCXY®Z)

The definition above uses a coend (denoted by the integral sign), which are origi-
nally due to Yoneda [61]]. For this thesis, the definition of coends was not unfolded,
but an equivalent formulation of the Day convolution was used that avoids coends,
see below. However, to understand coends, the interested reader is referred to the
vast literature in the field, for instance the recent textbook account by Loregian [46]].
The coend appearing in the definition of Day convolution can be seen as generali-
sation of the separating conjunction [57,134]] from the logic of bunched implications
and separation logic [56]].

Proposition 4.8 (cf. Loregian [46] Proposition 6.2.1 and Remark 6.2.4]) Fixasm-
all (symmetric) monoidal category (C,®,1). Then the tuple ([C°P, Set], ®pay, C(—,1)) is a
(symmetric) monoidal closed category.

For the proof of the monoidality of the fullification construction, we need to define
arrows in [C°P, Set] with domain P ®p,, Q for some P, Q. This is inconvenient given
the intricate definition of the Day convolution. However, it suffices to define an
arrow out the Cartesian product of P and Q (details below), which is much easier.
The arrow with domain P ®p,, Q is then obtained via a universal property. This is
achieved via the Kan extension characterisation of the Day convolution.

Kan extensions [38]] have a rich theory and they concern extending functors in a
universal way. Relevant for this thesis are left Kan extensions.

Definition 4.9 (Left Kan Extension, cf. Riehl [|58, Chapter 6]) Let C,&,D be cate-
goriesand F: € — &,K : € — D functors. A left Kan extension of F along K is a functor
Lank F : D — & alongside a natural transformation n : F = (Lank F) o K such that for
all functors G : D — & with natural transformation v : F = G o K there exists a unique
natural transformation Lang = G making the following pasting diagrams equal:

ce—F ¢ e —F/> &
Lang F ]\
NYU % - NnU/alﬁG
D D

There is also the notion of a right Kan extension, which is exactly like a left Kan
extension, with the exception that the natural transformations go in the other di-
rection. For a general account of left (and right) Kan extensions, see e.g. Riehl [58,
Chapter 6], who also points out how to compute them.



4.4. Day Convolution and Kan Extensions 47

For a category € and presheaves P, Q : €°P — Set, the presheaf P x Q : €°PxC°P — Set
is defined as (P x Q)(X,Y) := PX x QY on objects and (P x Q)(f,g) :==Pfx Qgon
arrows. Day convolution can be phrased as a particular left Kan extension.

Proposition 4.10 (cf. Loregian [46 Proposition 6.2.3]) Let (€, ®, I) bea small mono-
idal category and P, Q : C°P — Set presheaves on C.

The presheaf S := P ®pay Q is a left Kan extension of P x Q along ®, as illustrated by the
pasting diagrams below:

(GOP x (°P PxQ Set ©OP x (°P PxQ = Set
S
x} v % _ NP,QU /Hy
o cor "k

The natural transformation np g : PxQ = P ®pay Q o ® is called the universal
natural transformation of the Day convolution.

Propositionis immensely useful when it comes to proving that the fullification
is lax monoidal: Instead of defining natural transformations out of a Day convolu-
tion, it suffices to define natural transformations out of Cartesian products, which
is much easier.

Furthermore, the operation of ®p,, on arrows as well as the structure isos of ®@p,y
can be phrased with this Kan extension characterisation. We were unable to find an
explicit construction of the structure isos of ®p,y or the operation of ®p,, on arrows
in the literature, although the Kan extension characterisation of ®p,, is well-known.
We provide such an explicit construction below.

For the operation of ®p,, on arrows, let P,Q,S, T : €°° — Set be presheaves and
o:P = Q,B:S = Tnatural transformations. Then « ®pay B : P ®pay S = S @pay T
is defined to be the unique natural transformation such that the following pasting
diagrams are equal:

PXS
GOP x @°P ﬂocXB Set COP x @°P
QXT
® nar/ QepyT ©
cop

Also, the monoidal structure isos of ®p,, can be phrased with the help of the Kan
extension characterisation. The right unitor pp : P ®pay €(—,1¢) = P, where P :
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C° — Set, is obtained by applying the universal property of ®p,, to the natural
transformation 0 : P X €(—, I¢) = P o ®, which is defined as follows:

Ox,v(p, f) = (P (px o (idx ®f)))(p)

Note that px o (idx ®f) has type X® Y — X. Hence, P (px o (idx ®f)) is a function of
type PX — P (X®Y), and since p € P X, we have (P (px o (idx ®f)))(p) € P(X®Y). It
is routine to check that 0 is natural. The right unitor pp : P®p,, C€(—, I¢) = P is then
the unique natural transformation making the following pasting diagrams equal,
where S := P ®pay C(—, Ie):

eop x @op P X C oP x @O Set

\BU / - e Itﬂy

The left unitor Ap : C(—,I¢) ®pay P = P can be characterised in a similar fashion.
One uses the natural transformation p: €(—, Ie) X P = P defined as

ux,y(f,p) == (P (Ax o (f ® idx))) (p).

Also, the associator ap g g : (P ®pay Q) ®pay R = P ®@pay (Q ®@pay R) can be obtained
in this way. One applies the universal property to

vp,Q,R: (PXQ)XR=PX(QXR) = PX((Q&pay R) 0 ®) = (P @pay (Q ®pay R)) 0 &,

where v is defined in the only possible way and ®(X,Y.Z) := X ® (Y ® Z). Since the
transformation v is indexed by three components, the universal property needs to
be applied twice.

The computations above are justified by the standard fact that Kan extensions can
be computed as coends (see e.g. Mac Lane [48, Chapter X]), and that the coends
corresponding to the structure isos of ®p,, as well as the operation of ®p,, on mor-
phisms are given by the Kan extensions provided above. Making this formally pre-

cise is
4.5 Definition of the Fullification

In the previous sections, all the required preliminaries to define the fullification
were introduced. We are therefore now in the position to define it. Since this con-
struction involves several categories and functors, we first give an overview over
the entire construction. Then, we explain their roles and provide the proofs. The
main result is Corollary [4.17}

For a start, let (€, ®¢,Ic), (£,®c,1c) be monoidal categories, and F : € — £ a lax
monoidal functor. Fis not assumed to be full. An overview over the construction is
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w \\\A

e Y [MCat(€)°P, Set] (id L Nm(F)) —5 [MCat(C)°P, Set]
A - u 3= Lia
Lt MCat (€)%, Set] £ — 5 [MCat(€)°P, Set]

Figure 4.1: Overview of the fullification construction

given in Figure[.1} The functor W is what will be the full functor. It will be obtained
from the universal property of the comma category (Proposition[4.3). The functors
U and V are the projections out of the comma category (see Proposition 4.2)). The
triangle of F, W, and U is the triangle seen in the chapter introduction. Y is a version
of the Yoneda embedding adapted to MCat(C) (explained below). Lastly, N (F) is
the nerve of F in a version adapted to MCat(€), also explained below.

The course of action is as follows:

o First, we explain the definitions of Y and Ny (F). In particular, it will turn out
that Y is fully faithful, just as the ordinary Yoneda embedding.

e Then, we define a natural transformation 3 as in the left diagram in Figure[4.1]

o Afterwards, we use the universal property of comma categories to define the
functor W.

e Lastly, we verify that W is full, which will rely on fullness of Y.

Definition 4.11 Let (C, ®e¢, I¢) be a monoidal category. Y : C — [MCat(C)°P, Set] is the
following functor:

e On objects, Y C := MCat(C)(—, [C]).

e Onarrows f : C — D, Yf is postcomposition by [f] : [C] — [D] (here, [f] is the
singleton list whose only element is f)

Proposition 4.12 Y is a fully faithful functor.

Proof LetJ: € — MCat(€) be the subcategory embedding. By Proposition 4.5, the
embedding J is full and faithful (the latter as it is an embedding). A little calcu-
lation shows that Y = Y o J, where Y : MCat(€) — [MCat(€)°P, Set] is the Yoneda
embedding. Then Y is a fully faithful functor as composition of fully faithful func-
tors. O

Now that we have an understanding of Y, we draw our attention towards N, (F),
the multicategorical nerve of F.
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Definition 4.13 (Multicategorical Nerve) Let (C,®¢,le) and (£,®.,1) be mono-
idal categories and F : € — £ lax monoidal. Define a functor Npm (F) : £ — [MCat(C)°P, Set]
as follows:

e On objects, N\m(F)L:= L(F—® -+ ® F—, L) (see below).
e Onarrows g:L — L', Nm(F) g is postcomposition by g.

The functor Ny (F) is called the multicategorical nerve of F. Here, for each L € L, the
presheaf L(F — @, - - @, F—, L) : MCat(€)°P — Set is given as follows:

o [t sends objects [Aq,...,An] to L(FA1 ®c - @5 FAn, L). The empty list is mapped
to L(1g,L).

o [t sends a morphism f : [Aq,...,An]l — [B1,...,Bm] toa function H : L(FB; @
Qg FBm,L) = L(FA1 ®g --- ®¢ FAn, L), where H is defined as in the diagram

below:
FARGam EB
. 1
. f -
F B FARG, : F
: L H . L
’ — : h
FBm FAwG,m) EB
FARG. m) : fm m
Jm, M
F

Itis clear that Ny (F) preserves identities and composition, the argument is the same
as for the ordinary Yoneda embedding. It is also easy to see that L(F —®¢ --- @
F—, L) is indeed a presheaf for all L € £: The identity on a list [By, ..., Br] is sent to
the transformation H which operates as depicted in the following diagram:

FBy FBy

FB,

ids,
L H [F] ol L

FBm

FBm

idg FBm

I

Since F is a functor, it is clear that H is the identity transformation. £L(F—®¢ --- ®¢
F—, L) also respects composition. This is straightforward to figure out using the
definition of composition in MCat(€), but extremely tedious to write down formally.

We now have all the required terminology to construct the fullification. The first
step is to define a natural transformation 3 : Y = Nm (F) o F (see Figure . This
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is relatively straightforward.

Bx: Y X = MCat(€)(—, XI) = (Nw(F) o F)X = £(F— @ - @ F—, FX)
(Bx)vy,.... v - MCat(C)([Yy,..., Yul, [X]) = L(FY; ®g -+ ®@¢ FYn, FX)

Yi— (Bx) vy, Yul FY1 —
: X _— : f >—1—FX
Y, FYn F

Recall that morphisms in MCat(€) of type [Y1,...,Yn] — [X] are singleton lists,
which is reflected in the diagram above by using the brackets. It turns out that
B is well defined (i.e. for all X, Bx is a natural transformation), and that B x itself is
natural in X. This is subject to the subsequent two lemmas.

Lemma 4.14 3 is well-defined, i.e. for all X, Bx is a natural transformation.

Proof We show that for all X € €, the mapping px is a natural transformation.
This is subject to the following naturality square, where Y = [Yy,...,Yn], Z =
Z1,...,Zy],and [f1,...,fn]: Z — Y.

gl Flg

MCat(€)(Y, XI) — X% £(FY; @4 - @¢ F Yo, FX)

7O[f1,...,fn]J/ lH

XJZ

[glo[f1,...,fn] —— F(lglo[f1,...,ful]) = H(Flg])

To prove that the square commutes, it suffices to verify that H(F[g]) = F([g] o
[f1,...,fn]). Let{h(k,1)[k =1,...,ji}i*; be the signature of [fy,...,fn]. The equa-
tion H (F[g]) = F([g] o [f1,..., fn]) is depicted below:

FZna FZy 1,1
(11— N Y, (1) — P
Flngn T FZng,n_—
: FX : FX
. g —f g . g N
FZ FZ
h(1,m) FY. n(1m)— Y.
FZnGom | | m FZnGom | | fm
jm,m F F jm,m F

Both sides are equal by the last diagram equality given in Section[2.2] O
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Lemma 4.15 3 is a natural transformation.

Proof It needs to be shown that $x is natural in X, i.e. that the following square
commutes, where X,Y € Cand f: X — Y.

YX X L(F— g @ F FX)

[f]ofl l(F flo—

YY —— L(F—@g - g F-FY)
To prove this, let Z = [Z,,...,Z,] be an object of MCat(C), and fix [g] : Z — [X]. It
suffices to show (Bvy)z([f] o [g]) = (Ff) o (Bx)z(lg]). In diagrams, after applying the
definition of p and noting that [f o g] = [f] o [g], this equality looks as follows:

F Z] X F Z] F X
] —FY = ] ] FY
FZn e FZn 7] =
Both sides are equal since functors preserve composition. O

We now know that B : Y = Nm(F) o F is natural. Consider again the diagram
in Figure Ultimately, the universal property of the comma category (Proposi-
tion [4.3)) is to be applied to obtain the functor W, which will be the candidate for
the fullification. It turns out that we are already in the position to do so: Apply-
ing Proposition to F, Y, and B yields a functor W : € — id | Ny (F) such that
F=WolU,Y=VoW,and B = ot x W.

Explicitly, W is defined as follows: WX = (MCat(C)(—, [X]), Bx, FX), where X € €,
and Wg = (Yg,Fg) for g: X — Yand X,Y € C. The final step of the argument is to
prove that W is full. The proof below mostly relies on the Yoneda lemma.

Theorem 4.16  The functor W is full.

Proof LetX,Ye Cand f: WX — WY. Weneed to find g : X — Y such that W g = f.

By definition, WX = (MCat(C)(—, [X]), Bx, FX) and WY = (MCat(C)(—, [Y]), By, FY).
Since f is an arrow in the comma category, there exist

a: MCat(€)(—, [X]) = MCat(C)(—, [Y])

and b : FX — FY such that f = (a,b). AsY is full by Proposition there exists
g : X — Y such that Y g = a. To conclude the proof, it suffices to show that Fg = b
since then Wg = (Y g,Fg) = (a,b) = f, which was claimed.
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As (Y g,b) = (a,b) = f is a morphism in the comma category, the following square
commutes:
MCat(€)(—, [X]) _Bx, LF-—®g - ®g F—FX)

l lbof

MCat(C)(—, )*>L(F Qg Qg F=FY)

In particular, this implies commutativity of

MCat(@)([X], [X ]) L(FX,FX)
ol Jo-
MCat(€)(IX], IV)) 5 L(FX,FY)

Observe that trivially [idx] € MCat(C)([X], [X]). Commutativity of the square above
then implies that
(By)xi([gl e lidx]) = bo (Bx)x)(Hdx]).

Since [g] o [idx] = [g 0 idx], we also have the equality

(By)xa(lg eidx]) = b o (Bx)x ([idx]). (41)
After unfolding the definition of 3, Equation can be depicted as follows:

FX ; X FY FX ; FX FY

idx 9] - idx b }— (42)
F [F]
Since F is a functor, it respects identities and composition, so Equation (4.2) can be
reduced to:

FX| o | FY _ FX FY
9] = bl

F

This is to say that F g = b, as claimed. O

The development of this section is succinctly summarised in the following corollary.

Corollary 4.17 Let (C, ®¢, le) and (£,®¢, 1) be monoidal categories. Further, let F :
C — L be lax monoidal. Then, there exists a category L, a full functor F : € — £, and a
functor q : L — £ such that the following triangle commutes:

SENY;
\lq
F
L

C
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Proof Set £ :=id | N (F). Let q :id | Nm(F) — £ be the projection out of the
comma category (see Proposition . Let F: @ — id | Nm(F) be the functor
defined using the universal property of the comma category applied to Y, F, and .
The equality F = q o F holds by definition, and fullness is Theorem O

4.6 Lax Monoidal Structure of the Fullification

In the previous section, a lax monoidal functor between two monoidal categories
was fullified, but we did not yet verify that the fullification is again a lax monoidal
functor. In the following we prove that the fullification of a Banach category (C, F, £)
is a Banach category as well, assuming that € is small.

The high-level architecture of our argument is as follows (for reference, consult
again Figure [.1)):

e Wereview a method to give a monoidal structure on the comma category id |
Nm (F). Itis called “glueing” and the construction is folklore. In the present
thesis, we follow the development of Hyland and Schalk [133} Section 4] who
describe glueing.

e We instantiate the glueing construction to the setting depicted in Figure
This will involve proving that Ny (F) : £ — [MCat(C)°P, Set] is lax monoidal
(Lemma , which is difficult because the monoidal structure on the pre-
sheaves in [MCat(C)°P, Set] is given by the relatively technical Day convolu-
tion.

e Using the monoidal structure of id | Ny (F), we prove that the full functor
W is lax monoidal as well (Theorem 4.26)). This is still technical, but slightly
easier than proving lax monoidality of N (F).

e Finally, we wrap everything up and prove the fullification result in Corol-

lary

Let (€, ®¢,Ie), (D,®D,Ip) be symmetric monoidal categories, and G : ¢ — D a
lax monoidal functor with coherence morphisms ¢ and pa g. Consider the comma
category id | G together with the projections V and U:

It turns out that id | G has a canonical symmetric monoidal structure.
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Lemma 4.18 (cf. Hyland and Schalk [33, Proposition 25]) id | G admits a sym-
metric monoidal structure given by

(A) f) B) & (A/) f/> B/) = (A @D A/) UB,B’ © (f @D f/)) B ®e B/)
on objects and (a,b) ® (a/,b') := (a ®p a’,b ®e b’) on arrows. The monoidal unit is
(I'D) €, IG)'

Lemma 4.19 (cf. Hyland and Schalk [33, Proposition 25]) The projections V :id |
G — Dand U :id | G — € are strict monoidal with respect to the monoidal structure

given in Lemma

Even stronger, id | G is also monoidal closed, subject to certain conditions.

Lemma 4.20 (cf. Hyland and Schalk [33} Proposition 26]) Let further €, D have a
closed symmetric monoidal structure and let D have pullbacks. Then id | G is symmetric
monoidal closed with respect to the monoidal structure from Lemma Further, U and
V are functors between SMCCs as in Definition

This construction will now be applied to Figure[4.1] The relevant part for the glue-
ing construction is the following subdiagram of Figure

(id | Nm(F)) —X— [MCat(€)°P, Set]

ui = lid
C - L Nl [MCat(C)°P, Set]

From now on, we will freely use the notation from the above diagram. In addi-
tion to the setting of Section 4.5, we suppose that £ is symmetric monoidal closed.
The SMCC-structure on [MCat(C)°P, Set] is given by the Day convolution (Defini-
tion[4.7). Notice that since € is small, then so is MCat(€).

To make Lemmas and applicable, the following things need to be estab-
lished: Pullbacks in [MCat(C)°P, Set] and lax monoidality of the nerve Ny, (F). The
former is standard, the latter the meat of this section.

It is a standard result in category theory that limits of presheaves over small cate-
gories are computed pointwise, see for instance the textbook account by Borceux [2}
Corollary 2.15.4]. Since pullbacks are limits of a particular shape, [MCat(€)°P, Set]
has pullbacks.

The more intricate part is proving lax monoidality of Ny (F). This boils down to
defining arrows ¢ : MCat(C)(—, [I) = Nm(F) Iz and ux,y : Npm(F) X @pay Nm(F) Y =
Nm(F) (X®, Y), natural in X and Y.
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It is straightforward to define e: For all nonempty lists [A1,...,An] = A, the hom-
set MCat(C)(A, [I) is empty, so the component ¢4 : MCat(C)(A,[]) = L(FA1®¢ - Q¢
FAn,Ig) is trivial to define. Furthermore, the hom-set MCat(C)([],[]) is a single-
ton, and its only element is the identity on []. Define ¢f(id})) := id;, (recall that
(Nm(F)Iz) [ =£(Iz,1z)). Naturality of € is almost trivial. The only nontrivial case
for the naturality square is to show that for alln > 0and f: [] — [A4,...,A,] the
following diagram commutes:

€n

MCat(C)(l, ) L(lg,1c)
MCat(€) (0| |
MCat(C)([A1,.., Anl, 1) gt B(FAL @ - ©g FAR, 1))
But since there are no morphisms of type [| — [A1,..., A,], it follows that ¢ isindeed

natural.

The definition of u, however, poses a hurdle since it involves Day convolution,
which is defined in terms of coends, a concept not touched in this thesis. To miti-
gate this issue, we employ the Kan extension characterisation of the Day convolu-
tion (Proposition#.10]). Using this fact, it suffices to define a natural transformation
Yx,v i NM(F) XX Nm(F)Y = Npm(F) (X®2 Y) 0 ®mcat(e), natural in X and Y, which is
much simpler (justification follows). Note that y will be a natural transformation
whose components are again natural transformations.

Given A := [Aq,...,An] and B := [By,...,By] in MCat(C), define (yx,v)a,s as fol-
lows:
(Yx,¥)aB: L(FAT ®c - ®c FARX) X L(FBy ®g - ®g FBm, Y)
= L(FA1 ®g - @ FAL®c FB1®g - ®c FBm, X®2 Y)
(f,9) —f@cg
As usual, the notation f ® . g is to be understood up to composition with the struc-

ture isos of £. The subsequent two lemmas assert that y is well-defined (i.e. for all
X,Y, vx,y is a natural transformation), and yxy itself is natural in X, Y.

Lemma 4.21 vy is well-defined, i.e. for all X,Y, yx,v is a natural transformation.

Proof Let A := [Aq,...,An], B := [By,...,Bn], C := [Cq,...,Ck], as well as D :=
[D1,...,D¢ be MCat(C)-objects. Further, let [f,...,fn] : C — A and [g1,...,gm] :
D — B be morphisms. Naturality of yx vy is subject to the following square, where
FA denotes FA; @ - ®¢ FAR:

LFA,X) x S(FB,Y) 4% 0 (FA @, FB,X @, Y)
L([ﬁ,...,fn},X)XL([g1,...,gm},Y)l lL([fH>-'-)fn)g1v~--v9m]>X®LY)

Yx,v)e,p

L(FC,X) x S(FD,Y) VS c(FCoe FD, X @ Y)
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Recall that by definition, it holds that
[fb---)fn] ®MCat((?] [917---)9771] = [fh---»f‘n»g])---)gm]'

To prove commutativity of the square above, let (a,b) € L(FA,X) x L(FB,Y). The
path along the left and bottom arrows of the square is depicted on the left hand
side of the following diagram, the one along the top and right arrows on the right
side of the following diagram.

FC FC
S I I LY MEY T [ FA
: 1 . 1
FChiy,n T FChiin 7
: X
. a
FC FC
R(n) — ; FAL h(1,n) : FA,
FCh : n FCh : »
h(jn,m) F h(jn,m) ’? oy
= a®,c b £
FDy FDy
R (1,1) : " FB, h/(1,1) : . FB,
FDh/(j’w]) i ’T ' y FDh/(j/],1) : ’?
) b
FDyy F Dy
h(1,m) : ; FBm h(1,m) , ; FBm
FDh/(j/m‘nﬂ ’ = F FDh/(j/m,nﬂ . = F
Both sides are equal by definition of string diagrams. That is, yx,y is natural. a

Lemma 4.22 v is a natural transformation.

Proof Let X,Y,W,Z be L-objects and f : X — W, g : Y — Z be L-morphisms. To
prove that v is a natural transformation, the square below needs to commute:

Nt (F) XX Nm(F) Y 255 Ny (F) (X @2 Y) 0 @micat(e)

fofxgofl J/(f®ﬁ g)o—

NM(F) WX NMm(F) Z 225 N (F) (W @5 Z) 0 @pmcarce)

To prove that this square commutes, let A = [A;,...,A,], B := [By,...,Bm] be
MCat(C)-objects. It suffices to show that the square below commutes, which is triv-
ial by functoriality of ® . O
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((l,b) f (1®Lb

(vx,v)aB

LFAX) x L(FB,Y) — Y4 | r(FA @, FB,X®, V)
(fo—JX(go—)l l(f@mg)o—
L(FA,W) x L(FB,Z) — W2 pEa o, FB,W o, Z)

(foa,gob) ——— (foa)®g (gob) = (f®g g)o(a®cb)

We are now in the position to apply Proposition For all X,Y € £, there exists
a unique natural transformation px,y : Npm(F) X ®pay Nm(F)Y = Nm(F) (X ®@¢ Y)
such that YX,Yy = (],lx’y * ®MCat(€)) o E,x’y, where £X,Y : NM(F)XYNM(F)Y 4
(NM(F) X ®pay Nm(F)Y) o ®@mcate) is the universal natural transformation from

Proposition @}

It is, however, not yet clear that pux v is natural in X and Y, which is required to
qualify as a coherence morphism. Proving this naturality is subject to the next
lemma. After that, we will verify the coherence conditions in Lemma which
will finish the proof that N4 (F) is lax monoidal.

Lemma 4.23 x y is natural in X and Y.

Proof Let X,Y,W,Z € £ and fix f : X - W as well as g : Y — Z. Naturality of u is
subject to the following square:

Nt (F) X @pay Nm(F) Y =25 Ny (F) (X @2 Y)
(fo—J®Day(gof)l J(f@mg)o—
NM(F) W ®pay Nm(F) Z —— Nm(F) (W R Z)

Hw,z

To prove that the square above commutes, it is helpful to recall how (fo—)®p,y, (go—)
is defined. The natural transformation (f o —) ®p,y (g o —) is the unique natural
transformation making the following diagram commute (abbreviating ®mcat(e) as
®):

N (F) XK NM(F) Y =255 (N (F) X ®@pay N (F)Y) 0 @
(fO*)X(QO*)J l(fof)@)oay(gof)*@
Nm(F)W X Nm(F) Z —— (Nm(F) W®Day Nm(F)Z)o®

Ew,z



4.6. Lax Monoidal Structure of the Fullification 59

Consider the following diagram:

N (F) XX Ny (F) Y =2 (N (F) X @pay N (F) V) 0 @ 228 Ny (F) (X @2 Y) 0@

(fOfJX(QO*)J J{(fo—)®oay(go—)*® J{((f@mglo—)*@
NM(F)W X Nm(F) Z z—> (NM(F)W ®pay Nm(F) Z) 0 @ —— Nm(F) (W ®g Z)o®
w,Z Hw,z*®

The left square commutes by definition of (f o —) ®pay (g o —). Also, the outer
rectangle commutes by the definition of u (since yx,y = (ux,v * ®) o &{x,y and
Yw,z = (kw,z * ®) o &w,z) and the fact that yx v is natural in X, Y by Lemma
Now, observe the following: The paths along the top and then down as well as the
path along &x vy, then down, and then right are both equal. This follows from the
previous observations by just chasing arrows.

Formally, this is to say that the following natural transformations are equal:
((f®e g)o—)*®) o (ux,y *®) o &xy
= (uw,z *®) o ((fo—) ®pay (go—) *®) 0 Ex vy

Using that whiskering and composition of natural transformations commute, one
obtains the following equality:

(ux,yo (f®eg glo=))*®)o&x,y = ((hw,z o ((fo—) ®pay (g0 —))) *®) 0 Ex v

By the Kan extension characterisation of the Day convolution (Proposition the
uniqueness part), one obtains

ux,yo (f®g g)o—) =uw,z o ((fo—) ®pay (go—)),

i.e. that the desired naturality square for p (see the beginning of the proof) com-
mutes. That is, ux,y is natural in X, Y, as claimed. O

The current goal is to prove that Ny (F) is lax monoidal. So far, we have defined ar-
rows ¢ : MCat(€)(—,[1) = Nm(F) Iz and UX,y : Nm (F) X®DayNM(F) Y = Nm(F) (X®g
Y), where x v is natural in X and Y. To show that N, (F) is lax monoidal, it now
suffices to verify the coherence diagrams for ¢ and ux,y (see Definition [2.22)). This
is subject to the next lemma. In its proof, the Kan extension characterisation of the
Day convolution is again very useful.

Lemma 4.24 Ny, (F) is lax monoidal.

Proof It suffices to verify that ¢ and ux,y satisfy the coherence conditions.
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We start with the [left coherence diagram) which is as follows, where X € C:

Nm (F) X ®pay MCat(€)(—, 1) X N (F) X
idN)v[(HX@Day'sl Tpxof (4.3)
M (F) X ®@pay Nm (F) Lg i Nm(F) (X @z Lg)

Now, by definition, id;,, (r) x ®pay¢ is unique such that the following diagram com-
mutes (abbreviating ®mcat(e) as ®):

N (F) XX MCat(€)(—, ) — (Nm(F) X @pay MCat(€)(—,0)) o ®
lidNM(F)X X € i(idNM(F)X®Day£)*® (4~4-)

NMF)XXNM(F) Ig ———— (NMm(F) X ®pay Nm(F) Ig) o ®

Ex,1,
Here, n and &x 1, are the universal natural transformations as in Propositionm

Similarly, px,, (F) x is the unique natural transformation such that the following di-
agram commutes, where O, (r) x is as in the paragraph below Proposition .10}

N (F) XX MCat(€)(—, 1) —— (Nm(F) X @pay MCat(€)(—, 1)) o
leM(F)X*‘g} (4-5)
NM(F) Xo %)

O (F)X

Our goal is to show that Diagram commutes. By the Kan extension characteri-
sation of ®p,y, it suffices to show that

(P (F)x *®)omn = ((px 0 —) *®) o (ux,1, * ®) o ((id,, (F) x @Day€) * ®) oM.
Now, using Diagrams[4.4/and [4.5] it is enough to show that
Onp(F)x = ((pPx 0 =) * ®) o (ux,1, * ®) 0 Ex,1, © (idan,, (F) x XE)-

Recall that, by definition of px 1, itholds that (ux 1, *®)o&x 1, = vx,1,. Therefore,
it now sulffices to show the following equality:

Ony (F) x = ((px 0 =) * ®) o yx,1, © (idny, (F) x XE)

On other words, we need to prove that the following diagram commutes:

Nm (F) X x MCat(€C)(—, ) —> Nm(F)Xo®
(idovy, (Fy x Xa)J{ T(PXO*]*Q@ (4'6)
NM(F)XYNM(F) I TIL) NM(F) (X@L IL)O®
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Note how this diagram does not mention Day convolution anywhere, unlike Dia-
gram 4.4 which we started with. Using the Kan extension characterisation, all Day
convolutions were eliminated from the proof goal.

Finally, to show that Diagramcommutes, recall that MCat(C)(B, []) = @® whenever
B # [I, so Diagram 4.6 trivially commutes when B # [] is plugged into the second
component. So the only interesting case is where B = [|, which is subject to the
following square, where [A1,...,An] = A € MCat(€)and FA:=FA1Q; - Q¢ FAn:

L(FA,X) x MCat(€)([, ) —"%, £(Fa,X)

(idy, (F)x XS)A,U\L Tpxo—
LFAX) x L(Ig,1p) ——— L(FAX®g 1)

(Yx,12 )1

By applying the definitions of ¢, y and 8y, (r) x, one straightforwardly but tediously
computes that this square commutes.

In summary, zooming out to the big picture, the left coherence diagram|for N, (F)
holds. We still need to prove theright coherence and associativity diagrams|

The proof for theright coherence diagram|is totally analogous to the proof for the
left diagram.

For the associativity diagram, we again use the Kan extension characterisation of
the Day convolution to eliminate all Day products from the diagram. This yields
the following diagram, where ® : MCat(€) x MCat(€) x MCat(€) — MCat(€) is a
three-fold version of ® (since ® is strict, the concrete definition of & is irrelevant):

((f,g),h)—(f,(g,h))

(NMF) XX Nm(F) Y) X Nm (F) C Nm(F) A X (Nm(F) BX Nm (F) C)

VX,YXidNM(F)Zl J/idNM(F)X XYv,z
NM(F) (X®c Y)o®) X Nm(F) Z NMF) XXNMm(F) (Y@, Z) o ®)
VX@LY,Z\L J/YX,Y@LZ
Nm(F) (XRY) Qg Z)o® - Nm(F) (X®@g (YR Z))o®

(ax,v,z0—)*®

One can prove that this diagram commutes by faithfully applying all the definitions
involved.

In summary, the coherence diagrams for N, (F) are true, i.e. Ny (F) is lax monoidal.
O

Now that Ny (F) is lax monoidal, the glueing construction can be applied to Fig-
ured.1] Thanks to Lemmas and one obtains the following:
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e The functors U : id | Npm(F) — L and V :id | Npm(F) — [MCat(@)°P, Set] are
strictly monoidal, they are even SMCC morphisms as in Definition [2.21]

e The comma category id | Ny (F) is a symmetric monoidal closed category
with tensor product ®; given as follows:

- On objects, (P) S)X) ®J, (Q) C) Y) = (P ®Day Q) X,y © (6 ®Day C)) X Qg Y)
— On arrows, (8,f) ®; (¢, g) := (8 ®pay (, f ®¢ g).
— The monoidal unit is (MCat(C)(—, [1),¢,1¢).

Ultimately, the aim is that in Figure the functor W : € — id | Nm(F) is lax
monoidal. Recall that, by definition, WC = (YC,p¢,FC) (where B as in Fig-
ure . Since the monoidal structure on id | N4 (F) is defined componentwise,
lax monoidality of W will follow straightforwardly from lax monoidality of Y and
F. The latter functor is lax monoidal by assumption, and Y is lax monoidal by a
similar argument to lax monoidality of Ny (F).

Lemma 4.25 The functor Y : € — [MCat(€)°P, Set] is lax monoidal.

Proof The proof follows exactly the same strategy as the proof that Ny (F) is lax
monoidal.

1. One defines ¢ : MCat(€)(—,[]) = YIe and yx,y : YXXYY = Y(X®ec Y)o
®Mcat(e), Where v is natural in X,Y. Both definitions are analogous to the
ones used to prove that Ny, (F) is lax monoidal.

2. By applying the Kan extension characterisation of ®p,, to yx,y, one obtains
ux,vy : YX®pay YY = Y (X®¢ Y). While each px v is a natural transformation,
it is not yet clear that  itself is natural in X, Y.

3. Using the universal property of the Day convolution, one verifies that u is
natural in X and Y, similar to Lemma

4. Again using the universal property of the Day convolution, one verifies that ¢
and p satisfy the coherence conditions by reducing the coherence diagrams to
the ones only mentioning , just as it is done in Lemma These reduced
diagrams then commute by prudently applying all the definitions. O

We are now finally in the position to show that the full functor W is lax monoidal.
Theorem 4.26  The functor W : € — id | Nm (F) is lax monoidal.

Proof Recall that, by definition, WX = (Y X, Bx,FX), where X € €, and Wg =
(Yg,Fg) for g: X — Yand X,Y € C. Further, the monoidal structure ®, is defined
componentwise, as explained above.
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The coherence morphisms for W will therefore also be defined componentwise.
Letef : I — Fle and pf y : FX®g FY — F(X @ Y) be the coherence morphisms
for F, and ¢¥ : MCat(@)(—, 1) = YI¢ as well as p{x YX ®pay YY = Y (X ®cY)
the coherence morphisms of Y. Also, let eNm o MCat(@)(—,[1) = Nm(F)Ig and
ui\f’\;(‘ : Nm(F) X @pay NM(F)Y = Nm(F) (X ®e Y) be the coherence morphisms of
N (F).

To define ¢ : IidiNM(F] = (MCat(C)(—, D),ﬁNM, Iz) — (Ylg, ﬁIG,FI@) = Wlg, one
sets e = (e¥,eF). To prove that this is indeed a morphism in the comma category

id | N (F), the following square needs to commute:

MCat(€)(—,[) =My L(F —@p--- @p F—, I¢)

aYl LC,FO,

MCat(—, lle]) —— £(F — @ -+ @z F—Fle)
e

This follows by carefully applying all the definitions involved.
Next, we define ux,y : WX ® WY — W (X ®¢ Y). Unfolding the definition of W
shows that x y needs to have type

(YX ®pay YY, HQ'\A( o (Bx ®pay BY), FX®@c FY) = (Y (X®cY), Bxaey, F(X®e Y)).

Set px,y = (pi,Y, u;Y). To prove that this is indeed a morphism in the comma
category, we need to show that the following square commutes:

Nm
(Bx®payBy)
Y X ®pay YY XX B @@ F— FX @ FY)

F
ug{wl J”XNO*

YX®RcY) ————— > L(F—Qz - Qs F—,F(X®ecY))

BxeeY

The commutativity of the square above follows by first using the universal property
of the Day convolution to replace ®p,, by X (similar to how it was done in the
proofs of Lemmas and [4.24)), and then applying the definitions to check that
the modified diagram commutes. The verification is long and arduous, but no new
insights are needed.

The next step is to show that ux,y is natural in X, Y, i.e. that the following square
commutes, where X, Y,A,BeCand f: X -+ A,g:Y — B:

WXo, WY 2% W(XgeY)
Wi, W gl lwu@wg) (4.7)
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The fact that the square above commutes is induced from the naturality of both
u}E‘Y and u;)Y in X,Y as well as the fact that the monoidal structure on id | N (F)
is given pointwise. Concretely, unfolding some of the definitions in Diagram
yields the following diagram:

(H;{( Y)H;:(Y)
WXe WY : : W(X®eY)
(Yf®Dang>Ff®/LFg)J/ J(Y(f@@eg)f(f@eg))
(HA,BaHA,B)

And routine calculations show that the square above commutes, using that both
ux y and pf y are natural in X, Y.

The last step to prove that W is lax monoidal is to verify the coherence conditions
for e and px,y. Asin the proof that ux vy is natural in X, Y, one reduces the coherence
conditions for W to the coherence conditions for Y and F.

It follows that W is lax monoidal. O

It is worth summarising the results of this section. All the relevant functors and
natural transformations are depicted in the following pasting diagrams:

I Y

w S~4

e —X5 [MCat(€)°P, Set] (id L Nm(F)) —% [MCat(C)°P, Set]
o - u s
Lm) [Mcat(e)op)set] vy W [MCat(€)°p,Set}

e In Section[4.5] it was shown that W is a full functor (this is Theorem 4.16)).
e In Lemma it was verified that N, (F) is a lax monoidal functor.

e Using the standard fact that [MCat(C)°P, Set] has pullbacks and that Ny (F) is
lax monoidal, Lemmas and [4.20]yield that id | N (F) admits a symmet-
ric monoidal closed structure with tensor product ®; and that U and V are
functors between SMCCs as in Definition 2.211

e Thanks to Theorem the functor W is lax monoidal with respect to @, .

These results give rise to the following, final theorem.

Theorem 4.27 Let (C, ®e, L) be a small symmetric monoidal category, (L, ®5,1¢,—oz)
an SMCC, and F : € — £ a lax monoidal functor.
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There exists an SMCC (£, ®z, 1z, —07z), afull lax monoidal functor F: € — £ and functor

q: £ — £ between SMCCs as in Definition such that the following triangle commutes:

e -T2
N

L
Proof In the notation of the paragraph above, pick £ := id | N (F), set F := W,
and set q := U. The required properties are then all satisfied.

O

In particular, the theorem above holds when € has a Markov structure.

Corollary 4.28 Let (C,F, L) be a Banach category such that C is small.

There exists a Banach category (,F, L) and a functor q : L — £ of SMCCs as in Defini-
tion such that F is full and the following triangle commutes:

(LN

W

The smallness condition in the corollary above seems restrictive: FinStoch is not
small (if the collection of all finite sets was a set, say X, then {X} is also a finite
set, from which one can obtain a contradiction). Also, Stoch is not small, so one
cannot fullify the examples from Section It is future work (see Section [5.3)) to
prove the fullification result under weaker assumptions. We also give a brief hint
on a method to still fullify FinStoch using Corollary 4.28]in Section 5.3} leaving the
technical details as future work and noting that this method does not apply to Stoch.

It turns out that the mapping from Banach categories to full Banach categories un-
derlying Corollary is functorial, provided that one fixes the Markov category
@, as described below.

Definition 4.29 (BanCat(@)) Let € be a Markov category. The category BanCat(C) is
the following subcategory of BanCat:

e Objects of BanCat(C) are Banach spaces whose Markov category is C.

e A BanCat(C)-morphism (C,F, L) — (€, F,L’) is a BanCat-morphism of the form
(ide, G).

The category BanCaty (C) is defined similarly.
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With this definition at hand, it is possible to show that the fullification is functorial
for fixed €.

Proposition 4.30 Let C be a small Markov category. The fullification construction gives
rise to a functor F : BanCat(€) — BanCatg, (C).

Proof On objects, define F(C,F L) := (6, F, L), following the notation of Corol-
lary The key part is to define the operation of F on arrows. This reduces
to the|universal property|of comma categories|

Let (C,F L), (C,F,L’) be Banach categories and (ide,G) : (C,F, L) — (G, F,L') a
morphism in BanCat(€). Thatis, G : £ — £’ is a functor strictly preserving the
SMCC structure (see Definition [2.21)) and the following triangle commutes:

The goal is to define a BanCatful(G)N-morAEhism F(ide,G) : (6, F, L) — (6,15,5),
which means defining a functor G : £ — £’ strictly preserving the SMCC structure
such that the following triangle commutes:

G—>L

\J

Recall that both £ and £’ are comma categories. In particular, we can apply the
universal property of comma categories (Proposition . to define G, which will
be done in the following. To keep track of all the categories and functors involved,
consider the diagram below:

Ve

IMCat(€)°P, Set] «¥'— 7/ D Z -V, [MCat(€)°P, Set]
1dl u q'J \ / lq lid
L' = L

[MCat(€)°, Set] ¢ F\/ N [MCat( )°P, Set]

G

To apply the universal property of the comma category £, we need to define func-
tors S : £ — [MCat(C)°P,Set] and T : £L — L’ together with a natural transformation
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0:S = Nm(F)oT. WesetS :=V (see the diagram above). Further, we define
T := G o q. For the natural transformation 6, recall that objects of £’ are triples
(P, ¢, L), where P : MCat(C) — Setis a presheaf, L € £,and ¢ : P = Ny (F) L anatural
transformation. The components of ((x,, .. x,) have type

PX1,..., Xnl = L(FXy ®g - - @ FXn, L)
To define 6, observe that 6p . 1 ) needs to have type
V(P L) =P = Nm(F)(GL) =Nm(F) (G(q(P, (1))
Going one level down the hierarchy, (6(p ¢ 1))(x,,...,x,.] Needs to have type
PXi,...,Xn] = L/(F X1 ®g -+ @2 F Xn, GL).
Observing that G o F =V, it suffices to define a function of type
PX1,...,Xn] = L/(G(FX1) ®gr -+ @2/ G (FXp),GL).

This is now straightforward: First use (A, A, to get from P[Xq,...,X;] to the
hom-set L(FX; ®; -+ ®¢ FXn,L), and afterwards use the operation of G on mor-
phisms to get from L(FX; ®¢ -+ @z FXn, L) to L/(G (FX1) @z -+ @4 G (FXn),GL),
observing that G strictly preserves tensor products, i.e. GA®; GB = G (A ®, B)
for all A, B.

It is routine to verify that 0 is a well-defined natural transformation V = N (F') o
G o q. From the universal property of the comma category, we obtain the de-
sired functor G. The fact that G strictly preserves the SMCC structure follows from
its definition (see paragraph below Proposition and the fact that both V (by
Lemma as well as T o q (as composition) strictly preserve the SMCC struc-
ture.

The fact that F is functorial, i.e. that it respects identities and compositions, follows
by prudently applying all the definitions involved. O



Chapter 5

Conclusion

In this thesis, we investigated and gave a name to Banach categories, motivated by
the fact that they can be used to nicely give semantics to probabilistic programming
languages that combine higher-order functionality and non-linearity via a modal-
ity [15]]. This is usually considered a highly technical and subtle task, as witnessed
by Ehrhard and colleagues [12} 21} 18] as well as Dahlqvist and Kozen [10]].

Using the well-known calculus of string diagrams [53} 7, 50], which gives a con-
venient method to reason about morphisms in monoidal categories, we analysed
how in a Banach category (C, F, £), the Markov structure on C interacts with the lax
monoidal structure of F. We found out that strong monoidal functors have even
better graphical properties (Section[3.2). To motivate this diagrammatic analysis,
we gave a graphical description of convex spaces [59,26], highlighting that the di-
agrams provide a concise and easy to parse method of reasoning (Section3.1]).

Motivated by the fact that the semantics of Azevedo de Amorim’s programming
language [[15]] behaves better when the lax monoidal functor is full, we proved that
Banach categories can be fullified in the following sense: For any Banach category
(C,F, £) such that € is small, there exists another Banach category (6,F,£) and a
functor q : £ — £ such that F is full and the following diagram commutes:

B N
\ iq
F
L
This is subject to Corollary and the main contribution of the thesis. Lots of
time and effort was spent on understanding and dealing with the Day convolution.
We even proved that this construction is functorial. To only obtain the functors F

and q as well as the category £, but not any monoidality results, the assumption
that € is small is not needed (Corollary 4.17)).

¢
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5.1 Note on the use of MCat(C)

The fullification of a Banach category (€, F, £) relied on the use of MCat(€) (Def-
inition [4.4)), which is relatively intricate. In particular, the multicategorical nerve
Nm(F) : £ — [MCat(€)°P, Set] (Definition [4.13)) turned out to be difficult to handle
in the proofs as a result.

To only obtain the full functor, i.e. the result claimed in Corollary these tech-
nicalities can be avoided by replacing all occurrences of MCat(C) by €. Instead of
the multicategorical nerve, one can use the ordinary nerve of F. This is a functor
N(F) : £ — [€°P, Set] defined as N(F) L := L(F—, L) on objects. However, one cannot
prove that N(F) is lax monoidal with respect to the Day convolution, making it im-
possible to show the main theorem of the present thesis (Corollary [4.28)). With the
generalisation obtained by using MCat(C), however, the result becomes provable.

5.2 Related Work

Fullification of a Cartesian functor. There is work on fullifying Cartesian func-
tors from Cartesian categories to closed bi-Cartesian categories. Roughly speaking,
this setting is a special case of a Banach category where the monoidal products are
given by actual products in the sense of Definition[2.3] The mentioned related work
arises in the scope of the A-definability problem, which concerns the definiabil-
ity of semantic elements in the simply-typed A-calculus [6]]. Alimohamed [[I]] was
first to study the setting outlined above, working in A-calculus with only function
types, extending previous work by Jung and Tiuryn [37] who approach the same
problem, but only account for Henkin models, not Cartesian categories in general.
Katsumata [39] later extended Alimohamed’s construction to also allow for sum-
types, a subtly more difficult problem. The rough setup of both fullification con-
structions is similar, and Katsumata additionally gives a comprehensive overview
the construction, which is summaried in Section 4.1

Notably different to the fullification construction presented in this thesis is that
Alimohamed and Katsumata use a pullback instead of a comma category. We be-
lieve that it is possible to use pullbacks to also fullify Banach categories. We have,
however, opted for comma categories as we conjecture that the fullification con-
struction given in the present thesis admits a universal property, see future work
(Section 5.3)).

Languages for Banach categories. Azevedo de Amorim [15]] introduces a proba-
bilistic programming language that can be interpreted by Banach categories. Aze-
vedo de Amorim does not use the term “Banach category”, but instead refers to
tuples of Markov categories, SMCCs and lax monoidal functors between them.

Azevedo de Amorim’s language consists of two levels: One level is a higher-order
linear language interpreted by an SMCC, and the other level is a Markov kernel
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language interpreted by a Markov category. The lax monoidal functor is used to
mediate between both levels. The language can be understood as follows: Vari-
ables of ground type in the linear level range over probability distributions, and
can hence be used only once. On the other hand, variables of ground type in the
Markov kernel language range over values that were already sampled from a dis-
tribution, which can therefore be copied freely. Translation from the linear level to
the Markov level can be seen as sampling from a distribution. One uses a distri-
bution from the linear level, samples from it, and the resulting sample can then be
used in the Markov language.

Further, Azevedo de Amorim studies three models of his language. The first is
a Banach category which can be seen as a generalisation of the Banach category
FinStoch — FinDimVectg given in Section to the countably infinite case, using
so-called probabilistic coherence spaces [[12]]. The second one is Stoch — RoBan
which we outlined in Section The last example uses Eilenberg-Moore alge-
bras [25]] over monoidal monads as SMCC and corresponding Kleisli categories [40]]
as Markov category. The latter construction is motivated by the fact that Markov
categories often arise from Kleisli categories, as noted by Fritz [27, Section 3]. For
example, Stoch arises as Kleisli category of the Giry monad [29] (see e.g. Cho and
Jacobs [5, Example 2.5]).

Banach spaces and probabilistic programming languages. The key motivation
for the term Banach category is drawn from the fact that the SMCC in a Banach cate-
gory is often some kind of category of Banach spaces, i.e. normed vector spaces
that are closed. This goes far back to the early years of probabilistic program-
ming languages, where Kozen [41]] gave semantics to an imperative probabilistic
first-order language using Banach spaces of measures. More recently, Dahlqvist
and Kozen [[10] give an extensive treatment of semantics for a higher-order linear
languages whose models are given as certain categories of Banach spaces. Ulti-
mately, they define the category RoBan (see Definition [3.11)), which turned out to
be a versatile model for higher-order linear languages, also used as part of a model
to Azevedo de Amorim’s [[15] language. In particular, RoBan is appealing since
ordered Banach space have a rich theory having been studied for multiple decades.

Dahlqvist and Kozen also consider Banach lattices, which form a non-closed sub-
category of RoBan. Banach lattices have long been used to give semantics to prob-
abilistic languages that are not higher order, for instance by Kozen in 1981 [41]].
Recently, Azevedo de Amorim, Witzman, and Kozen [[16] observed that a subcat-
egory of Banach lattices, namely perfect Banach lattices with positive linear func-
tions of norm at most one, nicely generalises probabilistic coherence spaces to the
continuous case, and can be used as the SMCC of a Banach category.
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5.3 Future Directions

Fullification as adjunction. We have seen in Proposition that the fullifica-
tion is a functor J : BanCat(C) — BanCatgq(C). There is also the obvious forgetful
functor U : BanCatgq(€) — BanCat(€). We conjecture that JF is right adjoint to
U. This would give rise to bijections between the hom-sets BanCat(C)(UA,B) =
BanCaty,(C)(A,F B), natural in A and B. This is motivated by the fact that in many
settings there are adjunctions involving forgetful functors, for instance between free
functors and forgetful functors.

Smallness of the Markov category. Our main result (Corollary 4.28) relies on
the Markov category being small. This severely limits the applicability of Corol-
lary and even the Banach category with FinStoch as Markov category cannot
be used since FinStoch is not small: The objects of FinStoch are finite sets, and it
is clear that the set of all finite sets is not a set (if it was as set, say X, then {X}
is also a finite set which easily leads to a contradiction). One can study the full
subcategory FinStochy of FinStoch where the objects are sets of the form {1,...,n}
for n € N. It is clear that FinStochy is small, and one does not lose any generality
by working with FinStochy instead of FinStoch (in fact, FinStoch and FinStochy are
equivaleniﬂ). However, when moving on to the more interesting case of continuous
probability, i.e. Stoch, then there is no way of “smallifying” the category without
losing a significant amount of generality. In the future, it would be interesting to
analyse whether there exist weaker sufficient conditions for the fullification. This
would reduce to analysing sufficient conditions for the coend in the Day convolu-

tion (Definition[4.7)).

Kan extension and Day convolution. Speaking of Day convolution (®pa,y), it
turned out that it was rather difficult to work with the Kan extension characteri-
sation (Proposition[4.10). On the one hand, this characterisation is extremely con-
venient as it can be phrased in basic categorical terms, unlike the conend formula-
tion. On the other hand, however, the operation of ®p,, on arrows, or the monoidal
structure isos of ®p,y, are not stated with respect to the Kan extension characterisa-
tion in the literature (to the best of our knowledge). It would be a small, yet helpful,
contribution to the field to formally phrase the opereation of ®p,, on arrows and
its monoidal structure isos with respect to the Kan extension characterisation. It
will certainly help newcomers to understand the Day convolution more easily.

2-categorical perspective. Also, many of the concepts touched in this thesis are
examples of 2-categories [49] 4} [17], where one has a second level of morphism.
That is, 2-categories have objects, morphisms between objects (1-morphisms), and
asecond level of 2-morphisms between 1-morphisms. Think of categories, functors,
and natural transformations. See e.g. Johnson and Yau [36] for a contemporary

IThere is a formal notion of equivalence of categories, see e.g. Borceux [2]].
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overview. One could study the results of this thesis from a 2-categorical perspective
and investigate how the results fit within the scope of 2-category theory.

Convex Spaces. In many examples of Banach categories, the SMCC is some kind
of category of Banach spaces, so in particular a category of normed vector spaces.
As mentioned in the section on convex spaces (Section , normed vector spaces
are examples of convex spaces. One may wish to understand whether there are
any interesting additional properties if one considers Banach categories where the
SMCC additionally admits a convex structure.
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