
Saarland University
Faculty of Mathematics and Computer Science

Bachelor’s Thesis

A Formal Completeness Proof
for test-free PDL

Author:
Joachim Bard

Advisor:
Dr. Christian Doczkal

Supervisor:
Prof. Dr. Gert Smolka

Reviewers:
Prof. Dr. Gert Smolka
Dr. Christian Doczkal

Submitted: 01st February 2017

ii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath:

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent:

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 01st February, 2017

Abstract

In this thesis we give a formalization of test-free PDL based on results from the lit-
erature using the proof assistant Coq. We show soundness and completeness for a
Hilbert system. In order to show completeness we use Hintikka sets and pruning.
Pruning is a method yielding finite models for satisfiable formulas. For unsatisfiable
formulas pruning yields abstract refutations. We obtain completeness of the Hilbert
system by translating abstract refutations to proofs in the Hilbert system. As corol-
laries, we also obatin the small model property, plus that satisfiability, validity and
Hilbert provability of a formula are decidable.

iii

Acknowledgements

Foremost, I would like to thank my advisor Christian Doczkal for his guidance and
patience. I am very grateful for his advice, support, and especially for improving my
understanding of the given literature.

Moreover, I would like to thank my supervisor Prof. Gert Smolka, who taught me
basically everything, I know about computational logic. I am also thankful for the
possibility to write this thesis.

I would like to thank Prof. Smolka and Christian for reviewing my thesis.

I want to thank my family, friends and fellow students for their great advice and
support. Special thank goes to Yannick for proofreading this thesis.

v

Contents

Abstract iii

1 Introduction 1

2 Test-free PDL 3
2.1 Syntax . 3
2.2 Models . 4
2.3 Hilbert System and Soundness . 4

3 Demos and Pruning 7
3.1 Demos . 7
3.2 Subformula Closure . 9
3.3 Pruning and Refutations . 11

4 Hilbert Refutations 13
4.1 Translation of R1 . 13
4.2 Translation of R2 and Completeness 14

5 PDL 19

6 Conclusion 21

Bibliography 23

vii

Chapter 1

Introduction

Propositional dynamic logic (PDL) was introduced by Fischer and Ladner [3]. PDL
is a generalization of modal logic and is used to reason about regular programs α via
the modality [α]s. The meaning of the formula [α]s is that whenever one executes the
program α in a state, formula s will hold upon termination. One also defines a dual
modality 〈α〉s = ¬[α]¬s. This dual modality states that there is a terminating execu-
tion of α, such that s will be true afterwards. Programs consist of atomic programs,
concatenation (α;β), nondeterministic choice (α + β) and iteration (α∗), as well as
tests (?s, where s is a formula). In addition to this regular PDL one does examine
also restrictions and extensions. For the former it is common to remove iterations [6]
or tests [7], because those give rise to some complexity. Popular extensions include a
converse modality [5], nominals [4], or intersection of programs [1].

In this thesis we will give a formal completeness of a Hilbert system for test-free PDL.
Completeness means we can establish a Hilbert proof for every formula, that is true
on all states of all models. We will show the stronger result that for every formula
s either yields a Hilbert proof of ¬s or a model of bounded size satisfying s. This
result is called informative completeness. In addition to completeness, we also obtain
the existence of small models, plus decidability of validity, satisfiability and Hilbert
provability for test-free PDL.

We state the basic definitions, including the Hilbert system, in chapter 2. The used
Hilbert system is a variant of the one presented in [5]. We show soundness, i.e. every
fomula provable in the Hilbert system is true on all states of all classical models.
Classical models are a special class of models that are needed to show soundness
constructively [2].

In chapter 3 we start from the subfomula closure [3] of a given fomula s. We construct
a model, which satisfies all satisfiable subsets of that closure. This model, that we call
demo, is built via pruning [8]. We begin by enumerating all maximal Hintikka subsets.
Those subsets are connected by transitions, such that none of these transitions lead
to a contradiction with a formula of the form [a]s. Still there can be subsets which

1

2 CHAPTER 1. INTRODUCTION

contain formulas that violate a certain condition. Such subsets are one after another
removed. Each removed subset is accompanied with an abstract refutation. The
abstract refutation resembles the violated condition. So all unsatisfiable subsets are
refuted.

The abstract refutations are translated into the Hilbert system in chapter 4. The
essential part here is to dualize Kozen’s and Parikh’s ”Lemma 1” of [7] to make
it constructive. In combination with results from chapter 3 we obtain informative
completeness.

In chapter 5 we will discuss, which problems need to be overcome to extend the
approach presented in chapters 3 and 4 to full PDL.

Related Work

Fischer and Ladner [3] use quotient models to show that each satisfiable formula
has a small model satisfying it. Pruning was developed by Pratt [8] to show that
satisfiability is decidable in EXPTIME. He also states the Hintikka conditions we
use. An elegant completeness proof was found by Kozen and Parikh [7]. Doczkal’s
PhD thesis [2] presents a Coq formalization of K and K∗. Both logics are sublogics of
test-free PDL. The notions of informative completeness and abstract refutations are
taken from there. We also reuse libraries for finite sets, pruning and propositional
Hilbert proofs. The main difference is that there a demo consists of sets containing
only literals. Literals can be seen as elementary formulas. A support relation is used
to check, if such a set satisfies a general formula. While pruning can be phrased
in terms of a support relation, we were unable to translate the resulting abstract
refutations to proofs in the Hilbert system. Instead of literal sets and support we use
Hintikka sets.

Contribution

To the best of our knowledge, we are the first to provide a formalization of test-free
PDL together with its main results. We obtain these results by combining pruning
with abstract refutations and tranlating abstract refutations into the Hilbert system.

Chapter 2

Test-free PDL

In this chapter we first state syntax and semantics for test-free PDL. We use a Hilbert
system which is a variant of the one from [5]. We show soundness of this Hilbert
system on classical models. That means every formula s, which can be proven in the
Hilbert system, is true on all states of all classical models. The notion of a classical
model is due to Doczkal [2]. This special class of models is needed to show soundness
constructively.

2.1 Syntax

We define the syntax for test-free PDL:

s, t ::= x | ⊥ | s→ t | [α]s (x : N)

α, β ::= a | α;β | α+ β | α∗ (a : N)

On top of this mimimal syntax we define derived operators:

¬s := s→ ⊥
> := ¬⊥

s ∨ t := ¬s→ t

s ∧ t := ¬(s→ ¬t)
〈α〉s := ¬[α]¬s

We call formulas of the form x variables and programs of the form a atomic. Atomic
programs correspond to one-step computations. Sequential programs α;β are exe-
cuted by first executing α and then β. For programs like α + β one can choose to
execute α or β. Iterated programs α∗ execute α several times, including 0. Intuitively
[α]s means, that whenever one executes program α in a state w, which terminates in
state v, v satisfies formula s. Thus 〈α〉s requires a terminating execution of α ending
in a state where s holds.

3

4 CHAPTER 2. TEST-FREE PDL

2.2 Models

Formulas are interpreted on transition systems, we call models. A model M consists
of

• the type of states |M|,

• a transition relation
a⇒ on these states for each atomic program a

• and a labeling Λ, which relates variables to states.

The transition relation w
a⇒ v states, that v is reachable from w by executing a.

Λxw means, that the variable x holds at the given state w. For a model M we lift
the transition relation for atomic programs to general programs:

w
α;β⇒ v := ∃u.w α⇒ u ∧ u β⇒ v

w
α+β⇒ v := w

α⇒ v ∨ w β⇒ v

w
α∗⇒ v := w(

α⇒)∗v

(
α⇒)∗ is the reflexive, transitive closure of

α⇒. Since this closure is defined inductively,
we get an induction principle. We say v is α-reachable from w, if w

α⇒ v holds.
α-reachability corresponds to the execution of α. Using this notion of reachability we
define the semantics of a formula on a state w of a model:

w � x := Λxw

w � ⊥ := ⊥
w � s→ t := w � s→ w � t

w � [α]s := ∀v. w α⇒ v → v � s

We can now define classical and finite models. On classical models we know that
w � s ∨ w 2 s for all states w and all formulas s. This instance of excluded middle
is needed to show soundness of the Hilbert system constructively ([2]). For finite
models we demand that the transition relation and the labeling are decidable. Also
finite models consist only of a finite number of states, hence the name finite. Because
of the decidability requirements, finite models are also classical.

We say a model satisfies a fomula s, if there is a state of the model where s holds.
A formula s is satisfiable, if there is a satisfying classical model. If all states of all
classical models fulfill a formula s, then we call s valid.

2.3 Hilbert System and Soundness

In this section we state the Hilbert system for test-free PDL and prove it sound ac-
cording to our semantics. The given Hilbert system (figure 2.1) is essentially from

2.3. HILBERT SYSTEM AND SOUNDNESS 5

K ` s→ t→ s

S ` (u→ s→ t)→ (u→ s)→ u→ t

DN ` ¬¬s→ s

N ` [α](s→ t)→ [α]s→ [α]t

` [α]s→ [β]s→ [α+ β]s

` [α+ β]s→ [α]s

` [α+ β]s→ [β]s

` [α;β]s→ [α][β]s

` [α][β]s→ [α;β]s

` [α∗]s→ s

` [α∗]s→ [α][α∗]s

` s→ t ` s
` t MP

` s
` [α]s

Nec

` u→ [α]u ` u→ s

` u→ [α∗]s
SI

Figure 2.1: Hilbert system for test-free PDL

[5] with some simplifications, since we don’t need axioms for derived operators. The
axioms K, S,DN and the modus ponens rule (MP) are well known from classical propo-
sitional logic. The normality axiom N allows us to apply modus ponens after doing
some compution α. If a formula is always true, then it is clearly true after execution
of a program. This is the statement of the necessity rule Nec. The star-induction rule
SI is to be seen as follows. Provided we have an invariant u, that implies s and also
carries over by running program α. That invariant guarantees, that after executing
α several times s still holds. All other axioms give us the ability to reason about all
kinds of programs.

We can now prove our first theorem, namely soundness. Soundness states, that each
Hilbert provable formula is true on all states of all classical models.

Theorem 2.3.1 (Soundness). If ` s, then w � s for all classical models M and all
states w of M.

Proof. The proof follows by induction on ` s. In the case for ` ¬¬s → s we need
exactly our additional assumption of classical models. The case for the star-induction

6 CHAPTER 2. TEST-FREE PDL

rule concludes by a nested induction on (
α⇒)∗. �

We will show that Hilbert provablity and validity coincide. One direction is sound-
ness (theorem 2.3.1). The other direction, from validity to a Hilbert proof, is called
completeness. Completeness will be established across the next two chapters.

Chapter 3

Demos and Pruning

In this chapter we build a small model which satisfies all satisfiable finite sets C
of a given universe. This model, called demo, is constructed iteratively. First we
enumerate all finite sets of possible combinations of subformulas and their negations.
For this we use the Fischer-Ladner closure [3]. Then we connect those sets with as
many transitions as possible. By possible we mean that the adding of an transition
does not lead to a contradiction with a fomula of the form [a]s. Now there might be
sets C that contain formulas of the form ¬[α]s. These formulas put a condition on
the fragment of α-reachable sets. If that condition is not fulfilled, we have to remove
C. We repeat that process until we cannot remove any clause. This construction of a
demo is called pruning and was developed by Pratt [8]. Additionally we accompany
each removed clause C with an abstract refutation. That abstract refutation states
the reason for removing C. So this construction yields either an abstract refutation
for C or a small model that satisfies C.

3.1 Demos

For convenience we annotate our formulas s with signs, i.e. s+ or s−. Each annotated
formula sσ can be transformed back into a formula by adding an extra negation for
a negative sign:

bs+c := s bs−c := ¬s

Also we define the reverse σ of a sign σ:

s+ := s− s− := s+

7

8 CHAPTER 3. DEMOS AND PRUNING

We call finite sets of signed formulas clauses. A clause C is a Hintikka set, if it has
the following properties:

⊥+ /∈ C
sσ ∈ C → sσ /∈ C

s→ t+ ∈ C → s− ∈ C ∨ t+ ∈ C
s→ t− ∈ C → s+ ∈ C ∧ t− ∈ C
[α;β]sσ ∈ C → [α][β]sσ ∈ C

[α+ β]s+ ∈ C → [α]s+ ∈ C ∧ [β]s+ ∈ C
[α+ β]s− ∈ C → [α]s− ∈ C ∨ [β]s− ∈ C

[α∗]s+ ∈ C → s+ ∈ C ∧ [α][α∗]s+ ∈ C
[α∗]s− ∈ C → s− ∈ C ∨ [α][α∗]s− ∈ C

The first two requirements guarantee, that C is locally consistent. The ones concern-
ing programs correspond to unfolding these programs by one step. These Hintikka
conditions are taken from [8]. For Hintikka clauses C we have:

(¬¬s)σ ∈ C → sσ ∈ C

This automatic removal of double negations is the reason for using signed formulas.
We call a Hintikka set maximal according to a set of formulas F , if it contains each
formula s ∈ F positively (s+) or negatively (s−).

For C,D ∈ S we define reachability in S, which is very similar to our reachability on
models:

C
a
 S D := RaC ⊆ D (RaC := {s | [a]s ∈ C})

C
α;β
 S D := ∃E ∈ S.C α

 S E ∧ E
β
 S D

C
α+β
 S D := C

α
 S D ∨ C

β
 S D

C
α∗
 S D := C(

α
 S)∗D

RaC is called the request of C, because it contains all formulas, that need to be
fulfilled by all a-successors of C. Our definition is arranged such, that we don’t miss
a potential a-successor by taking every request fulfilling clause D as successor. So we
connect the clauses in S by an a-transition if and only if that transition does not lead
to a contradiction to a formula of the form [a]s.

Definition 3.1.1 (Demo). We call a finite set of maximal Hintikka clauses S a demo
if:

(D�) If C ∈ S and [α]s− ∈ C, then ∃D ∈ S. C α
 S D ∧ s− ∈ D.

3.2. SUBFORMULA CLOSURE 9

Such a demo S supports a clause C, if it contains a superset D of C.
Written: S . C := ∃D ∈ S.C ⊆ D

A demo S can be seen as a model in the following sense:

|MS | := S

C
a⇒ D := RaC ⊆ D

ΛxC := x+ ∈ C

Every state C of this model should satisfy each contained signed formula sσ ∈ C. In
order to get that result we show two simple lemmas.

Lemma 3.1.2. C
α⇒ D ↔ C

α
 S D

Proof. In both directions the proof works by induction on α. �

Lemma 3.1.3. If [α]s+ ∈ C and C
α
 S D, then s+ ∈ D.

Proof. This follows easily by induction on α and construction of
α
 S . �

Lemma 3.1.4. For every formula s we have MS , C � bsσc, whenever sσ ∈ C.

Proof. The proof goes by induction on s. In the case for [α]s+ one uses the lemmas
3.1.3 and 3.1.2. The case for [α]s− uses the demo condition to obtain a reachable D,
which contains s−. This suffices to complete the proof. �

3.2 Subformula Closure

The subformula closure contains in addition to all trivial subformulas also some formu-
las, which are obtained by unfolding occuring programs according to the semantics.
This closure was introduced by Fischer and Ladner ([3]), hence the name Fischer-
Ladner closure. It can be computed as shown below, where sub s recurses on s and

10 CHAPTER 3. DEMOS AND PRUNING

sub� [α]s on α. Therefore sub and sub� are structural recursive.

subx := {x}
sub⊥ := {⊥}

sub s→ t := {s→ t} ∪ sub s ∪ sub t

sub [α]s := sub s ∪ sub� [α]s

sub� [a]s := {[a]s}
sub� [α;β]s := {[α;β]s} ∪ sub� [α][β]s ∪ sub� [β]s

sub� [α+ β]s := {[α+ β]s} ∪ sub� [α]s ∪ sub� [β]s

sub� [α∗]s := {[α∗]s} ∪ sub� [α][α∗]s

subF :=
⋃
s∈F

sub s

A set of formulas F is subformula closed, if it satisfies the following conditions:

• If s→ t ∈ F , then {s, t} ⊆ F .

• If [a]s ∈ F , then s ∈ F .

• If [α;β]s ∈ F , then {[α][β]s, [β]s, s} ⊆ F .

• If [α+ β]s ∈ F , then {[α]s, [β]s, s} ⊆ F .

• If [α∗]s ∈ F , then {[α][α∗]s, s} ⊆ F .

We define a subformula universe U of a subformula closed set F as

U :=
⋃
s∈F
{s+, s−}.

We show now some basic facts about the Fischer-Ladner closure.

Fact 3.2.1.

• s ∈ sub s

• |sub s| ≤ |s|

• sub s is subformula closed

• |U | ≤ 2|F |

Because of those facts, we can construct a subformula universe U , using the Fischer-
Ladner closure. Its size is bounded, i.e. |U | ≤ 2|s|.

3.3. PRUNING AND REFUTATIONS 11

C ⊆ U coref S S 7 C

ref C
R1

[α]s− ∈ C S ⊆ S0 coref S @D ∈ S.C α
 S D ∧ s− ∈ D

ref C
R2

coref S := ∀C ∈ S0 \ S. ref C

Figure 3.1: Abstract Refutations

3.3 Pruning and Refutations

We fix a subformula closed set of formulas F and its corresponding universe U . The
goal of pruning is to build a demo. To that end we start with the set of all maximal
Hintikka sets S0. Then we check the demo condition (D�) on all finitely many clauses
C ∈ S. If this check is fulfilled, then we found a demo. Otherwise we remove a clause
C violating the demo condition and start the check again. Since our Hintikka system
is finite, we eventually stop removing clauses. Then there is no clause contradicting
to the demo condition and thus we computed a demo. This process of checking and
removing clauses is called pruning [8]. Doczkal formalized a general pruning method
for his PhD thesis [2], which I reuse in my own formalization.

Complementing pruning, we want to give an abstract refutation calculus in figure
3.1. These refutations serve as reason, that S does not satisfy a clause C. Rule R2
mirrors exactly the demo condition (D�). Therefore it gives the reason for removing
C from S. It is also possible, that C is not a maximal Hintikka clause. But C might
be extended to a maximal Hintikka clause D ∈ S. In order to be unsatisfied by S,
such a D ∈ S should not exist. Thus we have rule R1, which transfers the refutations
to arbitrary clauses. Additionally we call S corefutable, if all so far removed clauses
C are refutable.

Lemma 3.3.1. Every demo is corefutable.

Proof. This is due to the fact, that we only remove refutable clauses. �

Theorem 3.3.2 (Pruning Completeness). Let C ⊆ U . Then either C is refutable,
or there exists a finite model with at most 22|F | states, satisfying C.

Proof. We do a case analysis whether the demo supports C. If so the demo gives
us the desired model by lemma 3.1.4 and fact 3.2.1. Otherwise we can refute C by
definition and using the fact that our demo is corefutable 3.3.1. �

The previous theorem 3.3.2 will yield completeness, if we can translate abstract refu-
tations into the Hilbert system. This translation will be shown in the next chapter.

Chapter 4

Hilbert Refutations

In this chapter we want to prove our main result, namely completeness of the Hilbert
system. This means we have to provide a Hilbert proof ` s for every valid formula
s. We will show a stronger result, yielding either a Hilbert proof for ¬s or a small
model that satisfies s. Completeness is then obtained as a corollary. Using the last
theorem from the previous chapter we just have to translate abstract refutations into
the Hilbert system. The essential part of that proof is to dualize Kozen’s and Parikh’s
”Lemma 1” of [7].

4.1 Translation of R1

A Hilbert refutation of a formula s means, we can show ` ¬s. Therefore S corefutable
means, ∀C ∈ S0 \ S. ` ¬C. Recall that S0 is the set of all maximal Hintikka clauses
of a subformula universe. If a clause C occurs in the Hilbert system, it should be
read as

∧
sσ∈Cbsσc.

In order to translate rule R1 of the abstract refutation calculus (figure 3.1) into the
Hilbert system, we first show some basic lemmas.

Lemma 4.1.1. ` C → ({s+} ∪ C) ∨ ({s−} ∪ C)

Proof. Works by propositional reasoning, because we can show ` s ∨ ¬s. �

Lemma 4.1.2. Every maximal clause C ⊆ U , that is not a Hintikka clause, can be
refuted.

Proof. We do case analysis on a formula sσ ∈ C that contradicts the Hintikka condi-
tions. In each case we have tσ

′
/∈ C for a direct subformula t of s. Maximality yields

tσ
′ ∈ C. Then the goal ` ¬C follows by propositional reasoning and using the axioms

from figure 2.1. �

We prove now a connection of arbitrary clauses and clauses of a corefutable set S.

13

14 CHAPTER 4. HILBERT REFUTATIONS

Lemma 4.1.3. Let S be corefutable. For each clause C ⊆ U from our universe, we
have ` C →

∨
{D ∈ S | C ⊆ D}

Proof. It suffices to show ` C →
∨
{D ∈ S0 | C ⊆ D}, because S is corefutable. Now

we extend C with formulas using lemma 4.1.1 as long as the clause is not maximal.
This yields a maximal clause E ⊇ C, such that ` C → E. If E is a Hintikka clause,
then E ∈ S0 and so ` E →

∨
{D ∈ S0 | C ⊆ D}. If E is not a Hintikka clause then

lemma 4.1.2 will solve the goal. �

We show now that rule R1 of the abstract refutation calculus (figure 3.1) can be
translated into the Hilbert system.

Lemma 4.1.4. Let S be corefutable. Every clause C ⊆ U , that is not supported by
S, can be refuted.

Proof. We have to show ` C → ⊥. By lemma 4.1.3 we know ` C →
∨
{D ∈ S |

C ⊆ D}. Since C is not supported by S, the big disjunction is empty and therefore
equivalent to ⊥. �

4.2 Translation of R2 and Completeness

We first show some useful axioms and rules, which can be derived in the Hilbert
system.

Lemma 4.2.1.

(1) ` [α]s→ [α]t and ` 〈α〉s→ 〈α〉t, if ` s→ t

(2) ` ¬〈α〉⊥

(3) ` 〈α〉s→ [α]t→ 〈α〉(s ∧ t)

(4) ` ¬[α]s→ 〈α〉¬s

(5) ` [α]s ∧ [α]t→ [α](s ∧ t)

(6) ` 〈α〉(s ∨ t)→ 〈α〉s ∨ 〈α〉t

Proof. All of them are proven easily. �

Bevor we translate the rule R2 of the abstract refutation calculus (figure 3.1), we
show some basic lemmas.

4.2. TRANSLATION OF R2 AND COMPLETENESS 15

Lemma 4.2.2. If S ⊆ S0 is corefutable, then `
∨
C∈S C

Proof.

`
∨
C∈S

C

⇐ `
∨
{C ∈ S | ∅ ⊆ C}

⇐ ` ∅ → {C ∈ S | ∅ ⊆ C} and ` ∅

The resulting goal is proven by lemma 4.1.3 and the fact that the empty clause ∅ is
equivalent to >. �

Lemma 4.2.3. Let S ⊆ S0 be corefutable. Then ` ¬
∨
C∈AC →

∨
C∈S\AC holds for

all subsets A ⊆ S of S.

Proof. By lemma 4.2.2 we get some C ∈ S and we have to show ` C → ¬
∨
C∈AC →∨

C∈S\AC. If C ∈ A, we contradict to ¬
∨
C∈AC. Otherwise we conclude by propo-

sitional reasoning. �

Lemma 4.2.4. Given two different clauses C 6= D from S ⊆ S0. Then ` C → ¬D.

Proof. We have the two cases for C * D and D * C. Since both are symmetrical,
we can w.l.o.g. assume C * D. So there must be a sσ ∈ C, such that sσ /∈ D. But
then sσ ∈ D, because D is maximal. Therefore C and D are contradictory. �

The next lemma is the dualized version of Kozen’s and Parikh’s ”Lemma 1” in [7].
Thus it relies on maximality.

Lemma 4.2.5. Let S ⊆ S0 be corefutable. For each two clauses C,D ∈ S from S,

where C
α
6 S D, we know ` C → [α]¬D.

Proof. By induction on α.

Case a: Since RaC * D, there is a s+ ∈ RaC, such that s+ /∈ D. We have
[a]s+ ∈ C. s− ∈ D follows by maximality of D.

` C → [a]¬D
⇐ ` C → ¬〈a〉D
⇐ ` [a]s→ 〈a〉¬s→ ⊥
⇐ ` 〈a〉(¬s ∧ s)→ ⊥ by lemma 4.2.1(3)

⇐ ` ¬s ∧ s→ ⊥ and ` ¬〈a〉⊥ by lemma 4.2.1(1)

The remaining goal is proven by propositional reasoning and lemma 4.2.1(2).

16 CHAPTER 4. HILBERT REFUTATIONS

Case α;β: For each E ∈ S we have C
α
6 S E or E

β

6 S D.

` C → [α;β]¬D
⇐ ` C → [α][β]¬D
⇐ ` C → (〈α〉¬[β]¬D)→ ⊥

⇐ ` C → 〈α〉((
∨
E∈S

E) ∧ 〈β〉D)→ ⊥ by lemma 4.2.2

⇐ ` C → 〈α〉(
∨
E∈S

(E ∧ 〈β〉D))→ ⊥

⇐ ` C →
∨
E∈S

(〈α〉(E ∧ 〈β〉D))→ ⊥ by lemma 4.2.1(6)

⇐ ` C → 〈α〉(E ∧ 〈β〉D)→ ⊥ for all E ∈ S

If C
α
6 S E, then we have to show ` [α]¬E → 〈α〉(E ∧ 〈β〉D)→ ⊥ by induction

hypothesis for α. By lemma 4.2.1(1) it suffices to show ` [α]¬E → 〈α〉E → ⊥,

which is easily proven. If E
β

6 S D, then we have to show ` 〈α〉(E∧〈β〉D)→ ⊥.
It suffices to show ` E → 〈β〉D → ⊥ by lemmas 4.2.1(1) and 4.2.1(2). By
induction hypothesis we get ` [β]¬D → 〈β〉D → ⊥, which is easily proven.

Case α+ β: We have C
α
6 S D and C

β

6 S D.

` C → [α+ β]¬D
⇐ ` [α]¬D → [β]¬D → [α+ β]¬D by IH for α and β

This is an instance of an axiom in figure 2.1.

Case α∗: Let I := {E ∈ S | C α∗
 S E} be the set of all reachable clauses from C.

Note that D /∈ I. We have to show C → [α∗]¬D. So we use the star induction
rule with u :=

∨
E∈I E as invariant.

• ` C → u, since C ∈ I.

• ` u → ¬D follows by lemma 4.2.4, because every E ∈ I is different from
D /∈ I.

4.2. TRANSLATION OF R2 AND COMPLETENESS 17

• ` u→ [α]u, since for all E ∈ I we have:

` E → [α]u

⇐ ` E → (〈α〉¬
∨
G∈I

G)→ ⊥

⇐ ` E → (〈α〉
∨

G∈S\I

G)→ ⊥ by lemma 4.2.3

⇐ ` E → (
∨

G∈S\I

〈α〉G)→ ⊥ by lemma 4.2.1(6)

⇐ ` E → 〈α〉G→ ⊥ for an arbitrarily G ∈ S \ I
⇐ ` [α]¬G→ 〈α〉G→ ⊥ by IH using E for C

and G for D

The remaining goal is proven by propositional reasoninig.

�

Using the lemma above we prove that rule R2 of the abstract refutation calculus
(figure 3.1) can be translated into the Hilbert system.

Lemma 4.2.6. Let S ⊆ S0 be corefutable and C ∈ S, such that [α]s− ∈ C. Then C

is refutable, whenever @D ∈ S.C α
 S D ∧ s− ∈ D.

Proof. Let X := {D ∈ S | {s−} ⊆ D} be the set of all clauses that contain s−. We
first show:

` C → [α]
∧
D∈X

¬D

⇐ ` C →
∧
D∈X

[α]¬D by lemma 4.2.1(5)

⇐ ` C → [α]¬D for all D ∈ X

This holds by the previous proven lemma 4.2.5, because s− ∈ D and C
α
6 S D.

Secondly we proof:

` C → 〈α〉
∨
D∈X

D

⇐ ` ¬[α]s→ 〈α〉
∨
D∈X

D

⇐ ` ¬s→
∨
D∈X

D by lemmas 4.2.1(4) and 4.2.1(1)

18 CHAPTER 4. HILBERT REFUTATIONS

Lemma 4.1.3 closes that proof.

Using these two Hilbert proofs, we can refute C:

` C → ⊥

⇐ ` 〈α〉
∨
D∈X

D → [α]
∧
D∈X

¬D → ⊥

⇐ ` 〈α〉(
∨
D∈X

D ∧
∧
D∈X

¬D)→ ⊥ by lemma 4.2.1(3)

⇐ ` (
∨
D∈X

D ∧
∧
D∈X

¬D)→ ⊥ by lemmas 4.2.1(1) and 4.2.1(2)

Propositional reasoning closes the proof. �

Lemma 4.2.7. Every abstract refutation can be translated into a Hilbert refutation.

Proof. By lemmas 4.1.4 and 4.2.6, we can translate abstract into Hilbert refutations.
�

We show now the main theorem.

Theorem 4.2.8 (Informative Completeness). For every formula s we have ` ¬s or
there is a finite model with at most 22|s| states satisfying s.

Proof. We use our pruning completness theorem 3.3.2 with sub s for the subformula
closed set F and {s+} for C. By lemma 4.2.7 we translate the abstract into a Hilbert
refutation. �

Corollary 4.2.9 (Completeness). If s is valid, then ` s.

Proof. By informative completeness 4.2.8 for ¬s we have two cases to consider. The
case ` ¬¬s yields ` s by the double negation axiom (DN) and modus ponens (MP).
If there is a model satisfying ¬s, then we contradict to the assumption that s is
valid. �

Using soundness (theorem 2.3.1) we can also show several decidabilty results and the
small model property.

Corollary 4.2.10 (Decidability). For each formula s, satisfiability, validity and
Hilbert provability are decidable.

Corollary 4.2.11 (Small Model Property). Every satisfiable formula s is satisfied
by a model with at most 22|s| states.

Chapter 5

PDL

In the previous chapters we examined test-free PDL. Now the natural question arises,
whether the presented techniques also work, when dropping this restriction. We will
discuss in this chapter, which problems need to be overcome to extend the approach
to full PDL. Also nothing from this chapter is part of the formalization.

First we define formulas and programs of PDL:

s, t ::= x | ⊥ | [α]s (x : N)

α, β ::= a | α;β | α+ β | α∗ |?s (a : N)

We call programs of the form ?s tests. Note that we can define implications using
tests:

s→ t := [?s]t

Due to [α]s, formulas depend on programs. And also programs depend on formulas
because of ?s. Thus we cannot seperate the definition of formulas from the definition
of programs. This mutual dependency leads to the fact that definitions have to
treat formulas and programs in parallel. For example, the definition of models and
reachability cannot be seperated:

w
?s⇒ w := w � s

w � [α]s := ∀v. w α⇒ v → v � s

For simplifications we omit the other cases. Observe that the execution of ?s does not
change the state. Therefore w � [?s]t is equivalent to w � s → w � t. This justifies
the definition of implication.

The mutual dependency does not only appear in definitions but can also occur in
proofs. If we want to show a statement using induction on a formula, then we have to
show the case for [α]s. For test-free PDL one often proves this by a nested induction
on α. This will not work for full PDL. But we can prove the original statement

19

20 CHAPTER 5. PDL

and the lemma at once. Then the induction hypothesis will be available for each
subexpression, no matter if it is a formula or a program. However it will increase the
technicality of the proofs.

Beside that technicality we are very confident that the presented approach can be
extended to full PDL. In chapter 3 we build a demo using pruning. Since Pratt [8]
used pruning on full PDL, we should be able to include tests in the definition of the
demo. The crucial part of the translation of abstract refutations into the Hilbert
system (chapter 4) was the dualized version of ”Lemma 1” of [7]. Kozen and Parikh
state that their completeness proof also works for full PDL.

Overall the main problem will probably be, how well Coq behaves on mutual inductive
definitions. It might be interesting to analyze, in what degree Coq is suited for such
definitions.

Chapter 6

Conclusion

We gave a formalization of test-free PDL and showed soundness and completeness of
a Hilbert system. Completeness was obtained from demos and pruning. Pruning was
completed by abstract refutations. Those abstract refutations were translated into
the Hilbert system. Additionally this construction yielded the small model property,
and also that satisfiability, validity and Hilbert provability are decidable.

All results (except for chapter 5) were carried out in the proof assistant Coq. The
development1 consits of about 1000 lines, not inlcuding any library. Nearly half of
them are specifications and the rest of them being part of proofs. It was compiled
using Coq 8.5 and the Ssreflect2 library version 1.6. We could also reuse Doczkal’s
libraries [2] on finite sets, pruning and Hilbert proofs.

1Available at https://www.ps.uni-saarland.de/~bard/bachelor.php
2Ssreflect can be found at http://math-comp.github.io/math-comp/

21

https://www.ps.uni-saarland.de/~bard/bachelor.php
http://math-comp.github.io/math-comp/

Bibliography

[1] Ryszard Danecki. Nondeterministic propositional dynamic logic with intersec-
tion is decidable. In Computation Theory - Fifth Symposium, Zaborów, Poland,
December 3-8, 1984, Proceedings, pages 34–53, 1984.

[2] Christian Doczkal. A Machine-Checked Constructive Metatheory of Computation
Tree Logic. PhD thesis, Saarland University, Mar 2016.

[3] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. J. Comput. Syst. Sci., 18(2):194–211, 1979.

[4] Mark Kaminski. Incremental Decision Procedures for Modal Logics with Nominals
and Eventualities. PhD thesis, Saarland University, Feb 2012.

[5] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press,
2000.

[6] Dexter Kozen. A representation theorem for models of *-free PDL. In Automata,
Languages and Programming, 7th Colloquium, Noordweijkerhout, The Netherland,
July 14-18, 1980, Proceedings, pages 351–362, 1980.

[7] Dexter Kozen and Rohit Parikh. An elementary proof of the completeness of PDL.
Theor. Comput. Sci., 14:113–118, 1981.

[8] Vaughan R. Pratt. Models of program logics. In 20th Annual Symposium on
Foundations of Computer Science, San Juan, Puerto Rico, 29-31 October 1979,
pages 115–122, 1979.

23

	Abstract
	Introduction
	Test-free PDL
	Syntax
	Models
	Hilbert System and Soundness

	Demos and Pruning
	Demos
	Subformula Closure
	Pruning and Refutations

	Hilbert Refutations
	Translation of R1
	Translation of R2 and Completeness

	PDL
	Conclusion
	Bibliography

