
The Undecidability of Contextual Equivalence of PCF2 –
Towards a Mechanisation in Coq
Final Bachelor talks

Fabian Brenner
Advisors: Yannick Forster, Dominik Kirst
Supervisor: Prof. Gert Smolka
August 23, 2024

Programming Systems Lab
Saarland University

Programming Computable Functions and full abstraction

▶ Programming Computable Functions (PCF): simply typed λ-calculus with N and
recursion

Full abstraction problem for PCF
Is there a fully abstract model of PCF that is ”concrete and independent of syntax”?

▶ Such a model would permit to decide contextual equivalence of finitary fragments
of PCF.

▶ Is contextual equivalence of finitary fragments of PCF decidable? (Jung,
Stoughton, 1993)

1

Loader’s result

Theorem (Loader, 2000)
Contextual equivalence of PCF2 is undecidable.

▶ Negative answer to full abstraction problem
▶ Surprising result: In related calculi, contextual equivalence decidable
▶ Proof well-known to be difficult and intransparent:

”the proof is long and technical, and consists of intricate syntactic arguments”
(Longley, Normann, 2015)

2

Synthetic Undecidability in Coq

▶ Introduced by Forster, Kirst, and Smolka in 2019
▶ Undecidability defined relative to Halting problem for Turing machines

Lemma
▶ Halting problem for Turing machines is undecidable
▶ If P ≤m Q and P is undecidable, Q is undecidable

Definition (Many-one reductions)
For predicates P : X → P, Q : Y → P:
P ≤m Q iff ∃f : X → Y . ∀x . P x ↔ Q (f x) ∧ f is computable

▶ Independent of concrete model of computation
▶ Our work is based on Coq Library of Undecidability Proofs (Forster et al., 2020)

3

PCF2 and contextual equivalence

Definition (PCF2)
Extension of simply typed λ-calculus

T1, T2 : ty ::= B | T1 → T2

s, t, u : tm ::= λx .s | s t | x | if s then t else u | true | false | ⊥
Operational semantics

if true then t else u ≻ t |
if ⊥ then t else u ≻ ⊥ | . . .

Definition (Contextual equivalence)
Two terms Γ ⊢ s, t : A are contextually equivalent (Γ ⊢ s ≡c t : A) iff for all
contexts C : (Γ, A)⇝ (∅,B) and values v , we have that C [s] ⇓ v ←→ C [t] ⇓ v

4

Observational preorder

Observational preorder
▶ For closed boolean terms, ≤b is defined by

s ≤b t := s ⇓ ⊥ ∨ (∃v . v ∈ [true, false,⊥] ∧ s ⇓ v ∧ t ⇓ v).

▶ Inductively lifted to arbitrary closed well-typed terms:
s ≤c t : B := s ≤b t

s ≤c t : A→ B := for all a, b with ∅ ⊢ a : A, ∅ ⊢ b : A and a ≤c b : A,

it holds that s a ≤c t b : B.

▶ Lifted to arbitrarily typed terms:
Γ ⊢ s ≤o t : A := Γ ⊢ s, t : A and for all substitutions σ of closed terms for

free variables in s, t, it holds that s[σ] ≤c t[σ] : A
5

Observational equivalence

Definition (Observational Equivalence)
Γ ⊢ s ≡o t : A := Γ ⊢ s ≤o t : A ∧ Γ ⊢ t ≤o s : A

▶ Agrees with contextual equivalence
▶ Proof involves two unmechanised result about PCF2:

Lemma
▶ Church-Rosser property holds for PCF2

▶ Boolean normal forms are computable for PCF2

6

Proof of Loader’s theorem

Theorem (Loader 2000)
Contextual equivalence (CE) of PCF2 is undecidable.

CE(s, t, A) := ∅ ⊢ s ≡c t : A
SR: String rewriting

SR ≤m SATIS ≤m PS ≤m RPS ≤m CE

Actual reductions proven:

SR ≤m SATIS ≤m PS ≤m RPS RPS ≤m CE

▶ Main difficulty lies in first reduction

7

String Rewriting (SR)

▶ Decision problem going back to Thue
▶ Mechanised in Coq by Forster, Heiter, and Smolka
▶ Finite alphabet of symbols Σ, finitely many rewriting rules R : L(L(Σ)× L(Σ))

(e, f) ∈ R
d1ed2 ⇒R d1fd2 , a ⇒∗

R a ,

a ⇒∗
R b b ⇒R c
a ⇒∗

R c .

Reachability problem: SRR(a : L(Σ), b : L(Σ)) := a ⇒∗
R b

Lemma (Davis)
There exist rewriting rules R such that the following problem is undecidable:

SR(a : L(B), b : L(B)) := SRR(a, b).

8

Encoding of words

T (a) := B→ · · · → B︸ ︷︷ ︸
2|a|+2

→ B

Definition (Word encoding)
Let v ∈ [true, false]. Enc : L(B)→ tm is a v -encoding iff for all words a, it holds that
∅ ⊢ Enc(a) : T (a) and Enc(a) only returns ⊥ or v .

Example
▶ Constv (a) s1 . . . s2|a| i j = v
▶ Let a = a1 . . . an.

Wordv (a) s1 s ′
1 . . . s|a| s ′

2|a| i j =

v ∀k. sk ⇓ ak ∧ s ′
k ⇓ ak

⊥ otherwise

9

Encoding of rules

Term F encodes rule (e, f) with respect to v-encoding Enc:

▶ ∅ ⊢ F : T (e)→ T (f)
▶ For all words d1, d2, F simulates behavior of Enc(d1fd2) with only knowing

arguments representing f and behaviour of Enc(d1ed2)

Example
For the rule (e, f) and the Wordv encoding, we have

F g s1 s ′
1 . . . s|f | s ′

2|f |i j =

v ∀k. sk ⇓ fk ∧ s ′
k ⇓ fk ∧ g e1e1 . . . e|e|e|e|⊥⊥ ⇓ v

⊥ otherwise

10

Equivalence between SR and SATIS

Recap (SR)
SR(a, b) := a ⇒∗

R b

▶ Choose E as set of Loader’s 32 mostly technical word enodings.

Definition (SATIS)

SATIS(a, b) := ∃t. w0, r1, . . . , r|R|, x1, . . . , x2|b|+2 ⊢ t : B ∧
∀Enc ∈ E . t satisfies b w.r.t. Enc, a, and R

Theorem (Equivalence between SR and SATIS)
∀a b. SR(a, b) ↔ SATIS(a, b)

▶ Induces a reduction SR ≤m SATIS

11

Satisfiability of words

Recap (SATIS)

SATIS(a, b) := ∃t. w0, r1, . . . , r|R|, x1, . . . , x2|b|+2 ⊢ t : B ∧
∀Enc ∈ E . t satisfies b w.r.t. Enc, a, and R

Let R = [(e1, f1), . . . , (eN , fN)].
Definition (Satisfies)
It is said t satisfies b with respect to Enc, a, and R iff
t is a normal term with w0 : T (a), rk : T (ek)→ T (fk), xl : B ⊢ t : B such that

x1, . . . , x2|b|+2 ⊢ t[Enc(a), F1, . . . , FN , x1, . . . , x2|b|+2] ≥o Enc(b) x1 . . . x2|b|+2 : B

where Fk is any rule encoding of of (ek , fk).

12

Correctness proof of reduction - Forward direction

Theorem (Forward direction)
If SR(a, b), then SATIS(a, b).

▶ Around half a page in Loader’s paper
▶ Construct t by induction on derivation of b
▶ No properties of E needed, any set of encodings would work

13

Correctness proof of reduction - Backward direction

Theorem (Backward direction)
If SATIS(a, b), then SR(a, b).

▶ Around 13 pages in Loader’s paper
▶ A priori, one does not know which form t has
▶ If t is in the form of terms constructed in the forward direction, proof is fairly

straightforward
▶ Intricate technical arguments necessary to manipulate the structure of t (5

structural simplifications)
▶ Makes use of specifc enodings in E

14

Contributions

SR ≤m SATIS ≤m PS ≤m RPS ≤m CE

▶ Turned Loader’s proof into a reduction chain
▶ Mechanised PCF2 as well as observational and contextual equivalence in Coq
▶ Mechanised all but first reduction in Coq
▶ Presented remaning reduction on paper, with several nontrivial details Loader left

out, serving as basis for future mechanisations
▶ Provided insightful examples and technical observations

Remark: Attempted to mechanise forward direction of equivalence between SR and
SATIS in Coq (unfinished due to lack of time)

15

Future Work

Fill gaps in mechanisation:

▶ Show remaning results about PCF2 (Church-Rosser property, computability of
boolean normal forms)

▶ Show existence of rule encodings
▶ Complete mechanisation of equivalence between SR and SATIS

Connect this work to Coq Library of Undecidability Proofs: Mechanise undecidability of
SR for some fixed rewriting rules

16

References i

17

Coq Mechanisation

▶ Preliminaries: ∼ 150 loc
▶ Results about PCF2: ∼ 700 loc
▶ Observational and contextual equivalence: ∼ 700 loc
▶ Definition of decision problems: ∼ 100 loc
▶ Undecidability result: ∼ 50 loc

SR ≤m SATIS ≤m RPS ≤m RPS ≤m CE

▶ Orange reduction: ∼ 700 loc
▶ Blue reduction: ∼ 100 loc
▶ Green reduction: ∼ 200 loc

Overall: ∼ 500 loc specification, ∼ 2200 loc proofs
(Unfinished forward direction of remaing reduction: additional ∼ 300 loc) 18

Encoding of rules

Definition (Rule encoding)
Term F encodes rule (e, f) w.r.t. Enc iff ∅ ⊢ F : T (e)→ T (f), it is ≤o-minimal s.t.
for all a = d1ed2, and b = d1fd2, it holds that

Γ ⊢ F (λy1 . . . y2|e|i j.Enc(a) x1 . . . x2|d1|y1 . . . y2|e|z1 . . . z2|d2|i j)y ′
1 . . . y ′

2|f |i
′ j ′

≥o Enc(b)x1 . . . x2|d1|y ′
1 . . . y ′

2|f |z1 . . . z2|d2|i ′ j ′

with Γ := x1, . . . , x2|d1 , y ′
1, . . . , y ′

2|f |, z1, . . . , z2|d2|, i ′, j ′

▶ F simulates behavior of Enc(b) with less information provided by arguments
Example
For the rule (e, f) and the Wordv encoding, we have

F g s1 s ′
1 . . . s|f | s ′

2|f |i j =

v ∀k. sk ⇓ fk ∧ s ′
k ⇓ fk ∧ g e1e1 . . . e|e|e|e|⊥⊥ ⇓ v

⊥ otherwise 19

