
Nameless Formalization of HOcore in Coq
Initial Bachelor Seminar Talk

Lukas Convent
Advisor: Tobias Tebbi

Supervisor: Prof. Dr. Gert Smolka

March 18, 2016

1

Nameless Formalization of HOcore in Coq

• HOcore is a process calculus
• Modelling concurrent systems
• others: CCS, π-Calculus

• . . . with binders
• Processes can receive and deliver values
• e.g. a〈R〉 ‖ a(x).P

τ−→ Ø ‖ P{R/x}
• We aim at nameless formalization (De Bruijn indices) of

HOcore and some proofs about it in Coq

2

What is special about HOcore?

CCS
• No value passing, only synchronization

• start!.P ‖ start?.Q
τ−→ P ‖ Q

π-Calculus
• Channels passed as values, Turing-complete

• chgCh〈n〉.P ‖ chgCh(x).x〈msg〉.Q τ−→ P ‖ n〈msg〉.Q

HOcore (Higher-Order)

• Processes passed as values, Turing complete

• exe2〈P〉 ‖ exe2(x).(x ‖ x)
τ−→ Ø ‖ (P ‖ P)

3

Previous work

Lanese, Pérez, Sangiorgi, Schmitt: On the Expressiveness
and Decidability of Higher-Order Process Calculi.
Proceedings of LICS’08

Maksimovi, Schmitt: HOCore in Coq.
Interactive Theorem Proving, Vol. 9236, 2015

4

HOcore Processes

Example

exe2〈P〉 ‖ exe2(x).(x ‖ x)
τ−→ Ø ‖ (P ‖ P)

exe2〈P〉 ‖ exe2.(0 ‖ 0)
τ−→ Ø ‖ (P ‖ P)

De Bruijn

P,Q ::= a〈P〉 a〈P〉 Output process

| a(x).P a.P Input prefixed process

| x x ∈ N Process variable

| P ‖ Q P ‖ Q Parallel composition

| Ø Ø Empty process

• After transmission: Terminate (Ø-process)
• All channels are global

5

HOcore transitions (1)

De Bruijn

a〈P〉 a〈P〉−−−→ Ø
Out

a〈P〉 a〈P〉−−−→ Ø

a(x).P
a−→ λx .P

In
a.P

a−→ P

P
a〈R〉−−−→ P ′ Q

a−→ λx .Q ′

P ‖ Q
τ−→ P ′ ‖ Q ′{R/x}

SynL
P

a〈R〉−−−→ P ′ Q
a−→ Q ′

P ‖ Q
τ−→ P ′ ‖ Q ′[R :: id]

Example

exe2〈P〉 exe2〈P〉−−−−−→ Ø
Out

exe2.(0 ‖ 0)
exe2−−→ 0 ‖ 0

In

exe2〈P〉 ‖ exe2.(0 ‖ 0)
τ−→ Ø ‖ (P ‖ P)

SynL

6

HOcore transitions (2)

De Bruijn

ParTauL
P

τ−→ P

P ‖ Q
τ−→ P ′ ‖ Q

ParOutL
P

a〈R〉−−−→ P ′

P ‖ Q
a〈R〉−−−→ P ′ ‖ Q

P
a−→ λx .P ′ x /∈ fv(Q)

P ‖ Q
a−→ λx .(P ′ ‖ Q)

ParInL
P

a−→ P ′

P ‖ Q
a−→ P ′ ‖ Q[↑]

7

Bisimulation & Bisimilarity

Bisimulation in CCS

Bisimulation R :⇔ P

P'

Q

Q'

𝓡

𝓡

𝛼 𝛼

∧ P

P'

Q

Q'

𝓡

𝓡

𝛼 𝛼

Bisimilarity in CCS

P ∼ Q :⇔ ∃ Bisimulation R. (P,Q) ∈ R

• In CCS, bisimulation demands identical actions
⇒ But for HOcore we want: a〈P ‖ Q〉.Ø ∼ a〈Q ‖ P〉.Ø

• There are several options for a definition of bisimilarity

• A straightforward one is IO-Bisimilarity

8

IO Bisimilarity
R is an IO Bisimulation if the following properties hold:

P

P'

Q

Q'

𝓡

𝓡

a〈P''〉 a〈Q''〉
𝓡

P

P'

Q

Q'

𝓡

𝓡

a(x) a(x)

Does this suffice? No, it is not yet a congruence:

We want: 0 � 3

because: a〈P〉 ‖ a.0 � a〈P〉 ‖ a.3

Use Variable Bisimilarity:

Rem
x

x−→ Ø
ParRemL

P
x−→ P ′

P ‖ Q
x−→ P ′ ‖ Q

P

P'

Q

Q'

𝓡

𝓡

x x

9

Inductive vs. Coinductive Definitions (1)

nil ∈ S
x ∈ N xs ∈ S

x :: xs ∈ S

Rule functional

F(S) = {nil} ∪ {x :: xs |
x ∈ N∧
xs ∈ S }

Finite Lists Lfin =
Least fixed-point of F

Least set which is closed under
the rules:

Lfin = {nil} ∪ {x :: xs |
x ∈ N∧

xs ∈ Lfin}
= F(Lfin)

Finite and Infinite Lists Lω =
Greatest fixed-point of F

Largest set which is closed under
the rules:

Lω = {nil} ∪ {x :: xs |
x ∈ N∧
xs ∈ Lω }

= F(Lω)

Which fixed-point?

{finite lists overN} ... {finite and infinite lists overN}
10

Inductive vs. Coinductive Definitions (2)

nil ∈ S
x ∈ N xs ∈ S

x :: xs ∈ S

Rule functional

F(S) = {nil} ∪ {x :: xs |
x ∈ N∧
xs ∈ S }

Finite Lists Lfin =
Least fixed-point of F

Inductive Definition by F

Finite and Infinite Lists Lω =
Greatest fixed-point of F

Coinductive Definition by F

Fixed-Point Theorem of Knaster-Tarski

If F is monotone,

Least fixed-point of F

= ∩ {T | F(T) ⊆ T }

= ∩ { Pre -fixed-points}

Greatest fixed-point of F

= ∪ {T | T ⊆ F(T) }

= ∪ { Post -fixed-points}
11

Formalizing Bisimilarity

Rule Functional of Bisimilarity ∼

F(B) = {(P,Q) |
∀P′.P −−→ P′ ⇒

∃Q′.Q −−→ Q′ ∧ P′ B Q′ ∧
∀Q′.Q −−→ Q′ ⇒

∃P′.P −−→ P′ ∧ P′ B Q′}

∼

∼ = Greatest fixed-point of F

= ∪ {B | B ⊆ F(B) } = ∪ {Bisimulations B }

Proof technique for ∼

If B ⊆ F(B) and (P,Q) ∈ B
then (P,Q) ∈ ∼

12

Bisimulation-up-to Relations
R is a bisimulation-up-to-U if:

P

P'

Q

Q'

𝓡

𝛼 𝛼

U U
P'' Q''𝓡

Sound up-to relation U for F

U is a sound up-to relation for F if :

For any R ⊆ F(U ◦ R ◦ U) = F(RU)

we have R ⊆ ∼

13

Bisimulation-up-to-Bisimilarity

U is a sound up-to relation for F if:

For any R ⊆ F(U ◦ R ◦ U) we have R ⊆ ∼

∼ is a sound up-to relation for ∼

Let R be a bisimulation-up-to-∼ rel.: R ⊆ F(∼ ◦ R ◦ ∼)

R ⊆ R∼ = ∼ ◦ R ◦ ∼ ∼ is reflexive

⊆ ∼ ◦ F(R∼) ◦ ∼ Assumption

= ∼ ◦ F(∼ ◦ R ◦ ∼) ◦ ∼ Def. up-to

=F(∼) ◦ F(∼ ◦ R ◦ ∼) ◦ F(∼) ∼ is FP of F
⊆F(∼ ◦ ∼ ◦ R ◦ ∼ ◦ ∼)

F(A) ◦ F(B) ⊆ F(A ◦ B)

=F(∼ ◦ R ◦ ∼) ∼ is transitive

=F(R∼) ⊆ ∼ 14

Conclusion & Outlook

• De Bruijn indices allow an easy method to get around
α renaming

• Regarding bisimilarity as a greatest fixed-point of a functional
makes general proofs about bisimilarity possible

• Next steps:
• Relating (different?) bisimilarities to each other
• How can proofs be done in a compositional way in Coq? (Paco

Library)
• Other properties of bisimilarities (decidability)

Thank you!

15

References

Lanese, Pérez, Sangiorgi, Schmitt: On the Expressiveness
and Decidability of Higher-Order Process Calculi.
Proceedings of LICS’08

Pérez: http://www.cs.unibo.it/∼perez/talks/coplas.pdf

Maksimovi, Schmitt: HOCore in Coq.
Interactive Theorem Proving, Vol. 9236, 2015

Sangiorgi: Presentation on Bisimulation and Coinduction:
http://www.fing.edu.uy/inco/eventos/SEFM2011/cursos/

Davide.pdf

16

