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Abstract

The focus of this thesis lies on better formalization techniques for the higher-order
process calculus HOcore.

HOcore allows different definitions of bisimilarity. They are usually given in a com-
positional manner, however, proofs about HOcore in the literature do not make use of
their compositional structure. Looking at bisimilarity from a coinductive perspective,
we follow the work of Damien Pous by using his notion of compatible functions to
achieve compositional proofs for the soundness of up-to techniques and for closure
properties of bisimilarity. As some closure properties of components depend on one
another, we introduce the notion of conditional closedness as a criterion applicable to
bisimilarities respecting these dependencies. Using de Bruijn indices, we avoid any
side-conditions about disjointness of free variables. We introduce transitions which
produce a context for each unguarded variable. By this means, we can analyze tran-
sitions of substituted processes in an elegant way, avoiding structural congruence and
the separate treatment of guarded and unguarded variables.

We apply these techniques to HOcore and show soundness of the up-to-bisimilarity
technique as well as substitutivity and congruence of IO bisimilarity. The resulting
proof architecture, which is formalized in the proof assistant Coq, provides a better
understanding of the different components and their dependencies.
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Chapter 1

Introduction

In this thesis, we focus on improved formalization techniques for higher-order pro-
cess calculi, using the example of HOcore [6]. Forming the theoretical basis for the
implementation of concurrent systems, process calculi allow the specification of com-
munication between multiple processes operating in parallel. The characteristic of a
higher-order process calculus like HOcore is that processes themselves are commu-
nicated between processes. This is a difference to first-order process calculi like the
π-calculus [9] where channels (i.e. links between processes) are interchanged. Despite
offering more modeling convenience, higher-order calculi do not add expressivity as
they can be encoded in first-order calculi [13].

In order to handle higher-order substitutions (variables may be substituted by
processes containing variables), we use de Bruijn indices to represent variables. In
HOcore, processes are defined as follows

A,B ::= a〈A〉 | a.A | x | A ‖ B | Ø

Processes can communicate by sending (a) and receiving (a) via channels. The com-
munication behavior of a process is observable through labeled transitions, e.g. the

transition a〈A〉 a〈A〉−−−→ Ø indicates that the process a〈A〉 can send a process A via
channel a, thereby transitioning to Ø (the empty process).

Two processes A and B are regarded as equivalent if they are bisimilar, this means
intuitively that for each transition that A can make, B must be able to simulate this
transition and vice versa. However, defining bisimilarity for a higher-order calculus
is not straightforward: If we require that the capability of performing a transition

like
a〈A〉−−−→ must be shared by bisimilar processes, we are overdiscriminating because a

transition
a〈B〉−−−→ with bisimilar processes A and B can be seen as equivalent behavior,

too.
In this thesis, we look at bisimilarity from a coinductive perspective: It is the

greatest fixed-point of a monotone function over relations, which we call its functional.
For different types of transitions we require different conditions, which leads to a
functional consisting of multiple components. Each component of a bisimilarity is
defined by a simulation functional, consider for example the functional describing
higher-order input simulations.

sho in(R) := {(A,B) | ∀ a,A′. A a−→ A′ ⇒ ∃B′. B a−→ B′ ∧ (A′, B′) ∈ R}
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For a functional of bisimilarity, one can take the symmetric version of the intersection
of the components’ simulation functionals [11]. As we will focus on IO bisimilarity,
consider the composed definition of its functional as an example.

←→sio :=
←−−−−−−−−−−−−−−−−−→
sho out ∩ sho in ∩ svar cxt =

sho out ∩ sho in ∩ svar cxt ∩
sho out ∩ sho in ∩ svar cxt

Despite the compositional structure of bisimilarity in HOcore, proofs about HOcore
in the literature [6, 7] do not make use of it. This marks the starting point of our
work.

Related work

HOcore was introduced by Lanese et al. when they studied the “expressiveness and
decidability of higher-order process calculi” [6]. All results we have formalized for
this thesis have been shown in their work through paper proofs.

There is already a formalization of “HOcore in Coq” by Maksimović et al. [7],
which includes more results than we have given (coincidence of different bisimilarities,
decidability, axiomatization). Their formalization techniques mainly differ in that
they use the locally named approach for variable-binding and do not have a clear
separation of proofs for different bisimilarity components. Another major difference is
that in their formalization, substitutions are not performed in parallel, which requires
lemmas about the irrelevance of the order of variable instantiation.

Parrow et al. have given a formalization of higher-order psi-calculi [10], which is
based on Nominal Isabelle [18], a named-variable framework for Isabelle. They do
not use higher-order substitutions, because variables are not substituted by processes,
but by so-called handles which can then activate processes.

Our work is heavily relying on definitions and results of an order-theoretic study
of up-to techniques as presented by Pous [11]. There, he shows how his notion of
compatibility, which is closely related to Sangiorgi’s notion of respectfulness [14], can
be used to achieve compositional correctness1 results for up-to techniques. As an
accompaniment of a recent paper [12], Pous also gives a formalization of complete
lattice theory in Coq2. Using Sangiorgi’s notions of respectfulness and progressions
[14], Hirschkoff gives a formalization of the (first-order) π-calculus in Coq based on
de Bruijn indices [3].

Contribution

To our knowledge we seem to give the first formalization of a higher-order process
calculus which makes use of the compositional structure of bisimilarity. Following
the work of Pous [11], we use the notion of compatibility to achieve compositional
proofs for the soundness of up-to techniques and for closure properties of bisimilarity.
As some closure properties of components depend on one another, we introduce the
notion of conditional closedness as a criterion applicable to components respecting
these dependencies.

1We prove soundness [14] of up-to techniques, which implies correctness [11].
2We have not used the formalization for our development, because we have been only aware of it

lately due to its recency.
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Higher-order calculi require a special treatment of variable-binding, because the in-
stantiation of free variables through a substitution must happen in a capture-avoiding
way. In the named-variables setting of [6], side-conditions are used to require disjoint-
ness of variables. For the locally-named approach of [7], processes are accompanied by
a well-formedness predicate ensuring the separation of local and global variables. We
employ de Bruijn indices in combination with parallel substitutions, thereby avoiding
both side conditions and well-formedness conditions. To see how this makes lemmas
less clumsy, consider the example of substitutivity of transitions. The original lemma
of [6] is stated as follows.

If A
a〈B〉−−−→ A′ with free variables in C̃ disjoint from the variables in A, B and x̃, then

A{C̃/x̃} a〈B{C̃/x̃}〉−−−−−−−→ A′{C̃/x̃}

Because instantiation of de Bruijn indices is capture-avoiding, we do not need to
impose disjointness and can formulate the lemma as follows, using a substitution
denoted by σ.

If A
a〈B〉−−−→ A′, then A[σ]

a〈B[σ]〉−−−−−→ A′[σ]

To analyze transitions of substituted processes, e.g. the output transition A[σ]
a〈B〉−−−→

A′, we need to distinguish between a transition which A is already able to perform
and one which is caused by a process substituted for an unguarded variable of A.
The analysis is needed for the proof of substitutivity of bisimilarity, stating that if
A∼B, then also A[σ]∼B[σ]. For the proof given in [6], there is a case analysis on the
substituted variables, namely on whether they are guarded or unguarded, followed
by reasoning via structural congruence. By introducing transitions which produce
a context for each unguarded variable of a process, we obtain an elegant inversion

lemma for a transition of the form A[σ]
a〈B〉−−−→ A′, stating that A can either perform

an input transition or a variable context transition. By this means, we avoid the
separate treatment of guarded and unguarded variables through different lemmas.
Additionally, as contexts preserve the structure of the original process, we avoid
arguing about structural congruence.



Chapter 2

The Process Calculus

As our object of study, we choose the HOcore process calculus which was introduced
by Lanese et al. [6]. HO stands for higher order, core denotes that it only includes
a core set of constructs needed to establish higher-order communication.

For higher-order (process) calculi, a special role is accorded to variable-binding.
This is because variables can be substituted for processes containing variables again,
which obliges one to avoid their capturing. We use de Bruijn indices, to represent
variables and to instantiate them in a capture-avoiding way [2].

2.1 Syntax

HOcore is made up of three disjoint sets of syntactic objects, namely processes (defined
below), channels (distinct constants) and variables (represented by de Bruijn indices
in N). We use the letters A,B,C to range over processes, a, b, c to range over channels
and x, y, z to range over variables. The set of processes Pr is defined inductively
by the following grammar.

A,B ::= a〈A〉 Output process

a.A Input-prefixed process

x Variable

A ‖ B Parallel composition

Ø Empty process

An output process a〈A〉 can send a process A through channel a. Its counterpart,
an input-prefixed process of the form a.A, can receive a process from channel a and
then continue with A. The input prefix of the form “a.” is the only variable-binding
construct of the calculus and binds a free variable of A in a way which is described
in the following paragraph.

We represent variables by de Bruijn indices. The position of a de Bruijn index,
more specifically how deep it is nested within binders (i.e. within input prefixes), is
relevant to determine the binder it refers to. For a de Bruijn index x, let n be the
number of its enclosing binders. If x < n, then x refers to the (x + 1)-th enclosing
binder and represents a bound variable. If x ≥ n, then x represents the free
variable (x−n). Note the difference between a free variable and an index representing
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it; e.g. in the process a.1, the index 1 represents the free variable 0. A special type of
free variable occurrences are unguarded variable occurrences. A variable occurrence
is unguarded if it is not prefixed by an input prefix and not contained within an
output process.

Finally, processes can operate in parallel when combined through parallel compo-
sition (A ‖ B) and there is the empty process Ø which cannot proceed. Among other
missing constructs like replication, choice and output prefixes, which are familiar e.g.
from the π-calculus [9], note that there is no restriction operator. This has as a con-
sequence that communication cannot be encapsulated (and therefore not be hidden
from external observers).

2.2 Substitions

Substitutions are an integral part of a higher-order process calculus as they are used
to instantiate variables by concrete processes and are therefore essential to implement
communication. Substitutions (written σ, τ) are functions substituting free vari-
ables for processes, i.e. they are of type N→ Pr. Because every variable is assigned
to a process, all variables can be instantiated in parallel, as we describe further down.
We call substitutions that replace variables for variables renamings (written ξ, ζ).

The great advantage of de Bruijn indices in comparison to named variables is
that there is no need for α-conversion. Inlining a process into another one through
substitution requires only shifting of free variables of the process to be inlined, which
can be seen as a local adjustment.

In our Coq development, we use the Autosubst library [15] to deal with binders and
substitutions. Autosubst is based on the σ-calculus [1], which is a rewriting system for
parallel substitutions. For now, we define the formal constructs for substitutions as
presented in [15] and refer to Chapter 9 for more details on how Autosubst facilitates
reasoning about substitutions.

We define the identity and shift renamings:

id(x) := x

↑ (x) := x+ 1

We can take the view that a substitution σ is an infinite list σ(0), σ(1), ... This moti-
vates the definition of a cons operation.

(A :: σ)(x) =

{
A if x = 0

σ(x− 1) else

The notation A[σ] stands for the instantiation operation: Every occurrence of a
free variable x in A is replaced by σ(x) in parallel (this is why we speak of parallel sub-
stitutions). We define instantiation together with composition of two substitutions
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a〈A〉 a〈A〉−−−→ Ø Out a.A
a−→ A

In
x

x−→ 0
Var

A
a〈C〉−−−→ A′ B

a−→ B′

A ‖ B τ−→ A′ ‖ B′[C] SynL
A

a−→ A′ B
a〈C〉−−−→ B′

A ‖ B τ−→ A′[C] ‖ B′ SynR

A
a〈C〉−−−→ A′

A ‖ B a〈C〉−−−→ A′ ‖ B OutParL
B

a〈C〉−−−→ B′

A ‖ B a〈C〉−−−→ A ‖ B′ OutParR

A
a−→ A′

A ‖ B a−→ A′ ‖ B[↑] InParL
B

a−→ B′

A ‖ B a−→ A[↑] ‖ B′ InParR

A
τ−→ A′

A ‖ B τ−→ A′ ‖ B SynParL
B

τ−→ B′

A ‖ B τ−→ A ‖ B′ SynParR

A
x−→ A′

A ‖ B x−→ A′ ‖ B[↑] VarParL
B

x−→ B′

A ‖ B x−→ A[↑] ‖ B′ VarParR

Figure 2.1: Transitions

and the up-operator ⇑ in a mutually recursive manner.

(a〈A〉)[σ] = a〈A[σ]〉
(a.A)[σ] = a.(A[⇑ σ]) (σ ◦ τ)(x) = σ(x)[τ ]

x[σ] = σ(x)

(A ‖ B)[σ] = A[σ] ‖ B[σ] ⇑ σ = 0 :: (σ◦ ↑)
Ø[σ] = Ø

Note that by using ⇑, instantiation under a binder preserves the 0 indices (since they
are bound) and shifts all other indices up.

Instead of writing A[B :: id], we use the shorthand notation A[B].

2.3 Transitions

Transitions represent the observable behavior of processes by relating a source process
via an observable action to a target process. Our definition of HOcore has four
types of transitions, namely output transitions, input transitions, τ -transitions and
variable context transitions. They are defined inductively by the inference rules in
Figure 2.1. By including variable context transitions, our definition of HOcore differs
from the ones in [6, 7]. A further elaboration on the differences of definitions is given
in Chapter 8.

An output process of the form a〈A〉 can send a process A on channel a and is
stuck afterwards (Out). An input-prefixed process of the form a.A can signal that it
is ready to receive a process via channel a (In). Note that an input transition strips



2.3. Transitions 7

off a binder: Occurrences of the free 0 variable in A are ready to be replaced by an
incoming process.

If there is an outputting process A and an inputting process B operating in par-
allel on the same channel, they can synchronize (SynL and SynR). Synchronization
as defined by SynL (and analogously by SynR) means that both processes evolve
according to their transitions, with the emitted process C being handed over to the
target process B′ of B: This results in the process B′[C], having all occurrences of
the free 0 variable in B′ replaced by C and all other free variables lowered, so that
they are at the same level as the free variables in A′.

A process can make a variable context transition for each unguarded variable
occurrence, thereby producing a context. We define a context (written C) as a
process which contains exactly one free 0 variable, representing the context’s hole. A
context C can be filled by instantiating it with a special kind of substitution: Filling C
with a process A results in C[A]. The combination of encoding contexts as processes
and producing them via variable context transitions provides for an elegant handling
of substituted processes. We go into more detail about this in Section 6.2.

Transitions can happen below the parallel operator according to the ParL and
ParR rules. Noticeable about the InParL and VarParL rules (and analogously for
their ParR-counterparts) is that for the composed target process, the free variables
of the passive process B are shifted up. This is needed because the target process A′

has introduced new 0 variables (exactly one in case of VarParL) and shifted up all
other variables, requiring an alignment of the variables of the passive process B.

The set of processes Pr, transitions and the observable actions together form
a labeled transition system (LTS), which corresponds to an infinite directed graph
connecting processes via their transitions. We point out this structure because bisim-
ulations are commonly defined on LTS.

2.3.1 Substitutivity and Preservation of Renaming

If a process A can make an output, an input or a τ -transition, then so can A[σ]. For
variable context transitions, this holds only for renamings ξ.

Lemma 2.1

A
a〈B〉−−−→ A′

A[σ]
a〈B[σ]〉−−−−−→ A′[σ]

A
a−→ A′

A[σ]
a−→ A′[⇑ σ]

A
τ−→ A′

A[σ]
τ−→ A′[σ]

A
x−→ A′

A[ξ]
ξ(x)−−→ A′[⇑ σ]

Proof By induction over the transition. �

If a renamed process A[ξ] can make an output, an input, a τ - or a variable context
transition, then so can A.

Lemma 2.2

A[ξ]
a〈B〉−−−→ C

∃B′, C ′. A a〈B′〉−−−→ C ′

B = B′[ξ] C = C ′[ξ]

A[ξ]
a−→ C

∃C ′. A a−→ C ′

C = C ′[⇑ ξ]

A[ξ]
τ−→ C

∃C ′. A τ−→ C ′

C = C ′[ξ]

A[ξ]
x−→ C

∃C ′, y. A y−→ C ′

C = C ′[⇑ ξ] x = ξ(y)

Proof By induction over the transition. �



Chapter 3

Bisimulations

As in any process calculus, we need to specify what it means for two processes to
be equivalent. Based upon the notion of bisimulation, the appropriate equivalence
describing behavioral equivalence is bisimilarity [8]. Bisimilarity is a coinductive
notion and can be defined in terms of a monotone function. As hinted at in the
introduction, there are different suitable functions. We take a closer look on IO
bisimilarity, for which we will prove some properties in the following chapters under
consideration of its compositional character.

We present the concept of bisimulation and bisimilarity by using the example of
higher-order input bisimulations, which we already referred to in the introduction.
On our LTS of processes, transitions and observable actions (as identified in Section
2.3), we define the first bisimulation.

Definition 3.1 A relation R ∈ Pr × Pr is a higher-order input bisimulation if
for all (A,B) ∈ R holds:

• For any transition A
a−→ A′, there exists B′ s.t. B

a−→ B′ and (A′, B′) ∈ R

• For any transition B
a−→ B′, there exists A′ s.t. A

a−→ A′ and (A′, B′) ∈ R

Two processes A, B are higher-order-input-bisimilar (A∼ho in B) if there exists
a bisimulation R s.t. (A,B) ∈ R.

3.1 Coinductive Definition

Bisimilarity is a coinductive notion, so it can also be defined in terms of fixed-point
theory [8]. To do so, we identify the complete lattice 〈Pr×Pr,⊆,

⋃
〉 on the set of all

process relations Pr×Pr with set union
⋃

as its join operation. The meet operation
is defined in terms of the join operation and is identical to set intersection

⋂
. We use

the letters R,S to range over relations. We write R·S for the relation composition
of R and S, 1 for the identity relation, ⊥ for the empty relation and > for the
universal relation. The notation id stands for the identity function λR. R and
the notation Ŝ for the constant function λR. S. We extend set inclusion ⊆ in a
pointwise manner to functions.

For a function b over relations, we call a relation R with R ⊆ b(R) a post-fixed-
point of b. For a monotone function b, we denote the union of all post-fixed-points
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⋃
{R | R ⊆ b(R)} by νb. A bisimilarity ∼ can be characterized by a monotone

function b s.t.

R is a bisimulation ⇔ R ⊆ b(R) (R is a post-fixed-point of b).

∼ = νb

We call a monotone function b the functional of νb. The functional corresponding
to higher-order input bisimilarity (Definition 3.1) is as follows.

bho in(R) := {(A,B) |
∀ a,A′. A

a−→ A′ ⇒

∃B′.B a−→ B′ ∧ (A′, B′) ∈ R ∧
∀ a,B′. B

a−→ B′ ⇒

∃A′.A a−→ A′ ∧ (A′, B′) ∈ R}

The connection to greatest fixed-points is given by a theorem of Knaster and Tarski
[17].

Theorem 3.2 (Knaster-Tarski) For a monotone function b, νb is the greatest
fixed-point of b.

By formulating bisimilarity through greatest fixed-points of functionals, we can com-
bine functionals to obtain new ones, i.e. they can be composed, transposed, point-
wisely intersected and so on. The great advantage of this coinductive perspective is
that next to combining the functionals themselves, there are techniques to combine
properties of them at the same time. Before we go into detail on this from Chapter
4 on, we describe in the following how we can combine functionals.

3.2 From Simulations to Bisimulations

As already displayed in the term “bisimulation”, the capability of simulating the other
process (i.e. every transition of A can be matched by a transition of B) needs to be
preserved on both sides. Simulations can be characterized by a simulation functional
in the same way as bisimulations can be characterized by a bisimulation functional.
We follow Pous [11] in working with a simulation functional which can then be lifted
to a bisimulation functional, using intersection and transposition.

We define transposition of relations as R := {(A,B) | (B,A) ∈ R} and extend

this definition to functions as follows: f(R) := f(R). We extend intersection ∩ of
relations in a pointwise manner to functions. Finally, we can introduce the notion
of symmetrization which captures the lifting from a simulation functional to a
bisimulation functional: ←→s := s ∩ s. Considering the example of higher-order input
bisimulations, we obtain the following equivalent formulation of its functional.

bho in(R) =←−−→sho in with sho in(R) = {(A,B) |
∀A′A a−→ A′ ⇒

∃B′.B a−→ B′ ∧ (A′, B′) ∈ R}

There is another way to obtain bisimulations in terms of a simulation functional. In
[6] and [7], only symmetric bisimulations are considered. This is convenient, because
symmetric bisimulations coincide with symmetric simulations. For our formalization,
we have not observed any particular advantage of using general bisimulations (through
the symmetrization operator) over symmetric bisimulations (through symmetric sim-
ulations). However, when it comes to finding a bisimulation in order to show that
two concrete processes are bisimilar, requiring a symmetric bisimulation limits the
number of candidates. This seems unnatural to us, letting us choose to work with
the symmetrization operator in our formalization.
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3.3 Bisimulations in HOcore

For the definition of bisimilarity in a first-order process calculus (like the π-calculus),
we require that a transition gets mirrored by the exact same transition. For higher-
order process calculi, this strict requirement is insufficient: Because A ‖ B ∼ B ‖ A,
we also expect a〈A ‖ B〉 ∼ a〈B ‖ A〉. The solution to this is to require emitted
processes not to be syntactically equal, but bisimilar.

Multiple definitions of bisimilarity for HOcore, among them IO bisimilarity, turn
out to coincide [6]. All definitions have in common that they can be formulated in
terms of intersections of different simulation functionals.

In this thesis, we will focus on IO bisimilarity, a bisimilarity for which Lanese et
al. [6] have given a direct decision procedure.

3.4 IO Bisimilarity

IO bisimilarity is a combination of three components, which are defined by the
higher-order output, higher-order input and variable context functionals.

1. (A,B) ∈ sho out(R) iff each transition A
a〈A′′〉−−−−→ A′ implies that there are B′,

B′′ s.t. B
a〈B′′〉−−−−→ B′ with (A′, B′) ∈ R and (A′′, B′′) ∈ R

2. (A,B) ∈ sho in(R) iff each transition A
a−→ A′ implies that there is a B′ s.t.

B
a−→ B′ with (A′, B′) ∈ R

3. (A,B) ∈ svar cxt(R) iff each transition A
x−→ A′ implies that there is a B′ s.t.

B
x−→ B′ with (A′, B′) ∈ R

We define sio := sho out ∩ sho in ∩ svar cxt and ∼io := ν←→sio.
The first two components, sho out and sho in, are defined as in [6]. For every

output and input transition of a simulated process, there must be a corresponding
transition such that the emitted processes and target processes are in the simulation,
too.

The third component, svar cxt, requires that every produced context can be simu-
lated. It thereby also requires that every unguarded variable of A is contained in B,
too.

Proposition 3.3 For a process A and a variable x, there exists an unguarded occur-
rence of x in A iff there exists a transition A

x−→ A′ with a context A′.

By including the bisimulation of variable context transitions (through svar cxt), our
definition of IO bisimilarity differs from the ones of [6, 7]1. However, in Section 8.2
we show that our definition coincides with the one of [7]. The bisimulation functional
←−−−→svar cxt requires two bisimilar processes to have the same number of unguarded oc-
currences for each variable. Requiring this is necessary to obtain congruence of IO
bisimilarity: E.g., we want 0 � 1 and 0 � 0 ‖ 0, because they behave differently in
certain contexts.

1The differences are elaborated on in Chapter 8.



Chapter 4

Up-to Techniques

Two processes are bisimilar if there exists a bisimulation which relates them. Because
such bisimulations can be very large and hard to describe, up-to techniques have been
introduced (e.g. in [8, 14]). For a functional b describing a bisimilarity ∼b, an up-
to technique enhances b in such a way that the greatest fixed-point (bisimilarity)
is maintained but more post-fixed-points (bisimulations) exist. This enhancement
consists of composing the functional with an up-to function.

Definition 4.1 For a functional s, a function f is s-sound if

∀R. R ⊆ s(f(R)) ⇒ R ⊆ νs

Suppose we want to show A ∼b B for a bisimulation functional b. Now, a b-sound
function f allows a new proof technique for showing bisimilarity: Instead of finding
a b-bisimulation R with (A,B) ∈ R, it suffices to find a (b ◦ f)-bisimulation R with
(A,B) ∈ R. Such a relation is then called a bisimulation-up-to-f. Usually f is
extensive (id ⊆ f), which allows for smaller relations R. Our proof obligation has
thus been weakened from R ⊆ b(R) to R ⊆ b(f(R)).

Unfortunately, soundness does not have good closure properties. E.g., just because
f is an s1-sound and s2-sound up-to function, this does not necessarily mean it is
also an (s1 ∩ s2)-sound up-to function, too. As a remedy, we follow the ideas of
Pous [11] and use his notion of compatibility as a soundness criterion with good
closure properties. We give a method for showing soundness of the up-to-bisimilarity
technique for compositional definitions of bisimilarity. The purpose is to demonstrate
how compatibility allows compositional proofs of up-to techniques for compositional
definitions of bisimilarity. For this, the up-to-bisimilarity technique serves as an
example.

For the rest of the chapter, we fix a (monotone) functional s.

4.1 Compatibility

Because s-soundness has bad closure properties, compatibility is introduced by Pous
in [11] as a sufficient condition for s-soundness with good closure properties1. We

1To be more precise, in [11] compatibility is introduced as a sufficient condition for s-correctness,
which implies s-soundness.
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f is s-compatible g is s-compatible

(f ◦ g) is s-compatible
(i) Closure under composition

f1 is s-compatible f2 is s-compatible

(f1 ∪ f2) is s-compatible
(ii) Closure under union

f is s1-compatible f is s2-compatible

f is (s1 ∩ s2)-compatible
(iii) Closure under intersection

f is s-compatible

f is s-compatible
(iv) Closure under transposition

f symmetric f is s-compatible

f is←→s -compatible
(v) Closure under symmetrization

Figure 4.1: Closure properties of compatibility

define compatibility in a slightly more general way by extending its applicability from
monotone functions to any functions (not necessarily monotone)2.

Definition 4.2 A function f is s-compatible if

∀R,S. R ⊆ s(S) ⇒ f(R) ⊆ s(f(S))

It turns out that many interesting up-to techniques can be proven compatible [11].
The strength of compatibility are its closure properties, whose proofs are straight-
forward. They allow the combination and transposition of different up-to functions
and functionals (Figure 4.1 (i) - (iv)). As a corollary, we can lift symmetric up-to
techniques from a simulation functional s to its corresponding bisimulation functional
←→s (Figure 4.1 (v)). A function f is symmetric if f = f .

4.1.1 Comparison to other Soundness Criteria

Before we show that compatibility implies soundness, we compare the present defini-
tion of compatibility to the notion of respectfulness [14] and to the original definition
of compatibility given by Pous [11].

Compatibility is based on the notion of respectfulness. The notion of respectful-
ness was introduced by Sangiorgi [14] and is very similar to the notion of compatibil-
ity, both serving as a soundness criterion and allowing for compositional results. A
function f is s-respectful if

∀R,S. R ⊆ S ∧ R ⊆ s(S) ⇒ f(R) ⊆ s(f(S))

The definition of respectfulness only differs from the definition of compatibility in the
additional assumption R ⊆ S. An observation of Pous [12] can be carried over to the

2The idea of extending compatibility to (not necessarily monotone) functions was proposed by
Steven Schäfer in private communication.
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present definition of compatibility: A function f is s-respectful iff f is ṡ-compatible,
with ṡ := s ∩ id being the decreasing version of a function s.

By the Pous’ definition of compatibility [11], a monotone function f is said to be
s-compatible if f ◦ s ⊆ s ◦ f . Besides having a different appearance, our definition of
compatibility mainly differs from Pous’ definition in that it is stated for (not neces-
sarily monotone) functions whereas Pous’ definition is stated for monotone functions.
As Pous [12] observes, the two versions of compatibility coincide for monotone f .

Proposition 4.3 For a monotone function f , f is s-compatible iff f ◦ s ⊆ s ◦ f .

Although most interesting up-to functions are monotone, the present definition gives
us the advantage of not having to show monotonicity.

4.1.2 Compatibility implies Soundness

We now show that compatibility implies soundness. As a proof method, we use the
companion introduced by Pous [12]. The companion cs of a functional s is defined as
the pointwise union of all compatible monotone functions and is a monotone function
itself.

cs :=
⋃
{f | f is s-compatible ∧ f monotone}

As shown by Pous in [12], the companion cs preserves the greatest fixed-point νs.

Lemma 4.4 ν(s ◦ cs) = νs.

We can follow:

Proposition 4.5 cs is s-sound.

For a functional s, the companion cs contains all compatible monotone functions
by definition. To show that it also contains all compatible (not necessarily mono-
tone) functions, we can use the method of monotonization. We define the (upper)
monotonization of a function f as

pfq(R) :=
⋃
S⊆R

f(S)

The central idea is the following:

Lemma 4.6 If a function f is s-compatible, then pfq is also s-compatible.

Proof Let R, S be relations with R ⊆ s(S). We have to show pfq(R) ⊆ s(pfq(S)),
which is equivalent to showing⋃

T ⊆R

f(T ) ⊆ s(pfq(S))

Let T be a relation with T ⊆ R. It suffices to show f(T ) ⊆ s(pfq(S)):

f(T ) ⊆ s(f(S)) f is s-compatible

⊆ s(pfq(S)) p·q is extensive (f ⊆ pfq) �



14 Up-to Techniques

Because monotonization is an extensive operation (f ⊆ pfq), every s-compatible (not
necessarily monotone) function is contained in cs. We use this fact for the main result
of this section.

Theorem 4.7 For a functional s, every s-compatible function is s-sound.

Proof Assume a functional s, an s-compatible function f and a relation R with
R ⊆ s(f(R)). We have to show R ⊆ νs:

R ⊆ s(f(R)) By assumption

⊆ s(pfq(R)) p·q is extensive (f ⊆ pfq)

⊆ s(cs(R)) pfq is monotone and s-compatible (by Lemma 4.6)

⊆ ν(s ◦ cs) R is a post-fixed-point of s ◦ cs
= νs By Lemma 4.4

�

4.2 Up-to-Bisimilarity

The up-to-bisimilarity technique is the function f∼(R) := ∼ · R · ∼. It extends
a relation by adding all pairs of processes which are bisimilar to the ones originally
related. In [6, 7], the authors use up-to techniques, among them up-to-bisimilarity
[7] and up-to structural congruence (an “important tool” [7]). We have not used
up-to techniques in our formalization. In general their significance for dealing with a
process calculus however is indisputable, making their formalization worthwhile.

We establish the soundness of the up-to-bisimilarity technique for a composi-
tional definition of bisimilarity by showing its compatibility. To this end, we define
pointwise relation composition as (f ·̂ g)(R) := f(R) · g(R) and use it to give a
reformulation of f∼.

f∼(R) = ∼ · R · ∼
⇔ f∼ = ∼̂ ·̂ id ·̂ ∼̂

Then, for a functional s, we define the property ∀R,S. s(R) · s(S) ⊆ s(R · S) as
preservation of transitivity3. For the compatibility proof of f∼, we use two results
of Pous [11] which can be directly applied to the reformulation of f∼. First, s-
compatibility is closed under pointwise relation composition if s preserves transitivity.

Proposition 4.8 (Compatibility is closed under pointwise rel. composition)

∀R,S. s(R) · s(S) ⊆ s(R · S) f1 is s-compatible f2 is s-compatible

(f1 ·̂ f2) is s-compatible

Second, two types of functions, which both occur in f∼, are always compatible.

3Pous [11] introduces this property as a part of “preservation of the monoid 〈Pr × Pr, ·, 1〉”
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Proposition 4.9 The identity function id is s-compatible. If R ⊆ s(R), then the
constant function R̂ is s-compatible.

Preservation of transitivity has good closure properties so that we can apply Propo-
sition 4.8 to a composed functional s.

Proposition 4.10

s1 preserves transitivity

s = s1 ∩ s2 s2 preserves transitivity

s preserves transitivity

s preserves transitivity

s preserves transitivity

Finally, we can use Proposition 4.8, Proposition 4.9 and Proposition 4.10 to obtain
our main result.

Theorem 4.11 (Compatibility of up-to-bisimilarity) Given a functional s of
the form s = s1 ∩ ... ∩ sn, let ∼ be defined as ν←→s . If each si preserves transitiv-
ity, then f∼ is ←→s -compatible.

Proof First, we note that from the premises si(R)·si(S) ⊆ si(R·S) we obtain←→s (R)·
←→s (S) ⊆ ←→s (R · S): This is due to the closure properties given by Proposition 4.10.

Second, by ←→s (R) · ←→s (S) ⊆ ←→s (R · S), we will show that f∼ is ←→s -compatible:
By Proposition 4.8, showing compatibility of the two components ∼̂ and id proves
compatibility of the composition ∼̂ ·̂ id ·̂ ∼̂. This follows from Proposition 4.10. �

Because the components of IO bisimilarity preserve transitivity, we obtain by Theo-
rem 4.11 correctness of the up-to-bisimilarity technique for it.

Proposition 4.12 sho out, sho in and svar cxt preserve transitivity.



Chapter 5

Closure Properties of Bisimilarity

Many properties of bisimilarity are closure properties. A bisimilarity ∼ is closed
under a function f if f(∼) ⊆ ∼. For example, substitutivity can be formulated as a
closure property.

Definition 5.1 (Substitutivity) A bisimilarity ∼ is substitutive if it is closed under
fsubst with fsubst(R) := {(A[σ], B[σ]) | (A,B) ∈ R, σ substitution}

Similar to soundness of up-to techniques, closure properties of bisimilarity are not
compositional either. E.g., just because νs1 and νs2 are both closed under f , this
does not necessarily mean that ν(s1 ∩ s2) is closed under f , too.

In the following, we present two ways of proving a closure property for a com-
positional definition of bisimilarity. First, we show how compatibility can help us.
Because there are cases where compatibility is too strong, we introduce the notion of
conditional closedness as an alternative criterion, which still has good closure prop-
erties.

5.1 Compatibility implies Closedness

Let νs be a bisimilarity defined through a functional s. When trying to prove that
it is closed under a function f , i.e. f(νs) ⊆ νs, we can use compatibility again and
therefore profit from its closure properties.

Lemma 5.2 (Compatibility implies closedness)

f is s-compatible

f(νs) ⊆ νs

Proof It suffices to show f(νs) ⊆ s(f(νs)). We have this by definition of compati-
bility with R = S = νs. �

Let a functional s have the form s = s1 ∩ ... ∩ sn and let f be symmetric. We can
prove that ν(←→s ) is closed under f : Having shown f to be si-compatible for every i,
by the closure properties of compatibility we have ←→s -compatibility of f (by Figure
4.1 (iii), (v)). Finally, the claim follows from Lemma 5.2.
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5.2 Conditional Closure Properties

For some properties, components require certain conditions to hold for a bisimilarity
which they are part of. Consider this example: In order to show that a bisimilar-
ity ∼ containing the component sho out is substitutive, we have to rely on ∼ being
both reflexive and only relating processes which have the same unguarded variables.
The conditions for ∼ can be divided into two categories, minimum conditions and
maximum conditions. Minimum conditions correspond to pre-fixed-point proper-
ties and maximum conditions to post-fixed-point properties.

Reflexivity is an example of a minimum condition: ∼ must contain at least the
identity relation 1. The requirement of having the same unguarded variables is an
example of a maximum condition: ∼ may contain at most pairs possessing the same
unguarded variables.

Proving the substitution closure to be sho out-compatible is not possible, because
compatibility does not let us impose any minimum/maximum condition as it is needed
in this case. Thus we need to find a different criterion which incorporates the minimum
and maximum conditions but remains compositional at the same time.

5.2.1 Conditional Closedness

To show closedness of bisimilarities fulfilling certain conditions, we introduce the
notion of conditional closedness.

Definition 5.3 For a functional s and functions f , g1, g2, we call s f-closed above
g1 and below g2 if:

∀R. g1(R) ⊆ R ∧ R ⊆ g2(R) ∧ R ⊆ s(R) ⇒ f(R) ⊆ s(f(R))

For “f -closed above g1 and below g2” we write “f-closedg2
g1

”. We also call g1 (g2) the
minimum (maximum) condition of the statement. Conditional closedness differs
in two ways from compatibility: First, the two additional side conditions confine the
statement’s applicability to relations fulfilling a minimum and a maximum condition,
expressed by g1 and g2. Second, the distinction between R and S is canceled as it
is not needed to show the closure property. Once we have established conditional
f -closedness of s, we can separately show g1(νs) ⊆ νs and νs ⊆ g2(νs) and obtain
our desired result, closedness of νs under f .

Lemma 5.4 (Conditional closedness implies closedness)

s is f -closedg2g1 g1(νs) ⊆ νs νs ⊆ g2(νs)

f(νs) ⊆ νs

Proof It suffices to show f(νs) ⊆ s(f(νs)). We have this by definition of conditional
closedness with R = νs. �

As presented in Figure 5.1, conditional closedness has closure properties which are
very similar to those of compatibility (Figure 4.1) and whose proofs are straightfor-
ward.

Proving that a bisimilarity ν←→s with s := s1 ∩ ...∩ sn is closed under a symmetric
function f can thus be done in a compositional way: By showing every si to be
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g1 ⊆ g′1 g2 ⊇ g′2 s is f -closedg2g1

s is f -closed
g′2
g′1

(i) Consolidating conditions

s is f1-closedg2g1 s is f2-closedg2g1
s is (f1 ∪ f2)-closedg2g1

(ii) Closure under union

s1 is f -closedg2g1 s2 is f -closedg2g1
(s1 ∩ s2) is f -closedg2g1

(iii) Closure under intersection

s is f -closedg2g1

s is f -closedg2g1
(iv) Closure under transposition

f symmetric g1, g2 symmetric s is f -closedg2g1
←→s is f -closedg2g1

(v) Closure under symmetrization

Figure 5.1: Closure properties of conditional closedness

f -closedg2g1 and g1, g2 to be symmetric, we get that ←→s is f -closedg2g1 (by Figure 5.1
(iii), (v)). Then we can separately show g1(ν←→s ) ⊆ ν←→s and ν←→s ⊆ g2(ν←→s ) and get
the closure property.

If components are “merged” as in Figure 5.1 (ii), (iii), then their minimum and
maximum condition might not be the same at first. This is no problem though,
as one can always increase the minimum and decrease the maximum condition of a
conditional closedness statement by Figure 5.1 (i). Hence the conditions of different
components can be aligned so that rules (ii) and (iii) of Figure 5.1 can be properly
applied.

5.2.2 Discussion

Shifting from compatibility to conditional closedness via adding the two side con-
ditions expressing minimum and maximum conditions, we cannot use conditional
closedness as a soundness criterion for up-to techniques anymore. It would be nice to
have a criterion for soundness (Definition 4.1) with regard to greatest fixed-points νs
which fulfill certain conditions. Consider conditional companions defined as follows.

sc
g2
g1 :=

⋃
{f | s is f -closedg2g1 ∧ f monotone}

Now one would like to obtain Lemma 4.4 for companions and greatest fixed-points
which abide by minimum and maximum conditions. The proof of Lemma 4.4 in [12]
is based upon the property cs ◦ cs ⊆ cs. In our case of conditional companions,
this corresponds to the property sc

g2
g1 ◦ sc

g2
g1 ⊆ sc

g2
g1 . At this point we would need

conditional closedness to be closed under function composition. Unfortunately we
have not found such an appropriate closure property. We think though that a further
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investigation of a potential “conditional compatibility” could be rewarding and mark
this as future work.



Chapter 6

Substitutivity of IO Bisimilarity

In the following, we show substitutivity of IO bisimilarity. Substitutivity essentially
states that the instantiation of free variables of two processes preserves their bisim-
ilarity. Being a closure property, we recall from Definition 5.1 that the substitution
closure is defined as

fsubst(R) := {(A[σ], B[σ]) | (A,B) ∈ R, σ substitution}

We will show that ν←→sio is closed under fsubst, i.e. fsubst(ν
←→sio) ⊆ ν←→sio.

Having two criteria for closedness at hand (compatibility and conditional closed-
ness), we show substitutivity using conditional closedness. As already hinted at in
Section 5.2, we can show greatest fixed-points of functionals including sho out only
to be closed under fsubst if they are at least reflexive and relate at most processes
with the same unguarded variables. As IO bisimilarity fulfills these two conditions,
conditional closedness lets us prove this result in a compositional manner. As a means
of requiring the same unguarded variables we use the fact that IO bisimilarity is a
←−−−→svar cxt-bisimulation.

Being an ←−−−→svar cxt-bisimulation is clearly a post-fixed-point property, i.e. svar cxt
can be given as a maximum condition. Reflexivity can be expressed through a pre-
fixed-point property: Because a relation R is reflexive iff 1 ⊆ R, the constant function
frefl := 1̂ can be given as a minimum condition.

Theorem 6.1 fsubst(ν
←→sio) ⊆ ν←→sio

Proof By the closure properties of conditional closedness (Figure 5.1) we have the
following derivation:

sho out fsubst-closedsvar cxt

frefl

sho in fsubst-closedsvar cxt

⊥ fsubst symmetric

svar cxt fsubst-closed>⊥ frefl symmetric

←→sio fsubst-closed
←−−−−→svar cxt

frefl

We show the conditional closedness proofs for the components sho out, sho in and
svar cxt in Section 6.3. Symmetry of fsubst and frefl is trivial. By Lemma 5.4, it
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remains to show the minimum condition for IO bisimilarity, i.e. frefl(ν
←→sio) ⊆ ν←→sio.

We prove this in Lemma 6.3. �

With regard to the implementation in Coq, the proof is not completely automatic.
This is due to the fact that specifying common minimum and maximum conditions,
as well as showing that they are appropriate, is done manually. In principle though
this could be solved by automation.

6.1 Reflexivity of IO Bisimilarity

Having to show reflexivity of a compositional definition of bisimilarity, we find our-
selves in a similar situation as before: Our goal is to prove reflexivity separately for
the components (in our case, for sho out, sho in and svar cxt) and then merge them
together. We can do so by using the notion of compatibility again. The following
equivalence1 holds.

frefl is s-compatible ⇔ 1 ⊆ s(1)

We show 1 ⊆ s(1) for each component.

Proposition 6.2 1 ⊆ sho out(1) and 1 ⊆ sho in(1) and 1 ⊆ svar cxt(1).

Lemma 6.3 1 ⊆ ν←→sio

Proof By the closure properties of compatibility (Figure 4.1) with Proposition 6.2
and symmetry of frefl, we have frefl is ←→sio-compatible. By Lemma 5.2, this implies
reflexivity of νs. �

6.2 Transitions of Substituted Processes

To prove conditional compatibility of the different components in Section 6.3, we need

to analyze transitions of substituted processes, e.g. A[σ]
a〈B〉−−−→ C. In this case there

are exactly two possibilities of how the output transition can happen:

1. Process A itself can make an output transition on channel a. Hence A[σ] can
also make a transition on channel a.

2. Process A has an unguarded occurrence of variable x and the process σ(x) can
output B on a. Thus A[σ] can output B on a, too.

Deriving a transition of a substituted process as in (1) is described by the substitu-
tivity property (Section 2.3.1). Deriving a transition of a substituted process as in
(2) makes use of variable context transitions and is described in the following2:

Lemma 6.4 (Propagation via context)

A
x−→ C σ(x)

a〈B〉−−−→ E

A[σ]
a〈B〉−−−→ C[E :: σ]

A
x−→ C σ(x)

a−→ E

A[σ]
a−→ C[E :: (σ◦ ↑)]

A
x−→ C σ(x)

y−→ E

A[σ]
y−→ C[E :: (σ◦ ↑)]

1The criterion “1 ⊆ s(1)” is introduced in [11] as part of “monoid preservation”.
2Propagation via context also holds for τ -transitions, but is not stated here as it is not used.



22 Substitutivity of IO Bisimilarity

We can show that output and input transitions of substituted processes can only
be obtained either by substitutivity (Lemma 2.1) or by propagation via context
(Lemma 6.4). We can further show that variable context transitions can only be
obtained by substitutivity Lemma 2.1. Therefore, we have an inversion lemma to
analyze such transitions and distinguish between the two derivations.

Lemma 6.5 (Inversion of transitions of substituted processes)

A[σ]
a〈B〉−−−→ D ⇔

∃B′, D′. A a〈B′〉−−−→ D′ ∧B = B′[σ] ∧D = D′[σ]

or

∃x,C,E. A x−→ C ∧ σ(x)
a〈B〉−−−→ E ∧D = C[E :: σ]

A[σ]
a−→ B ⇔

∃B′. A a−→ B′ ∧B = B′[⇑ σ]

or

∃x,C,E. A x−→ C ∧ σ(x)
a−→ E ∧B = C[E :: (σ◦ ↑)]

A[σ]
x−→ C ⇔ ∃ y, C ′. A y−→ C ′ ∧ σ(y)

x−→ E ∧ C = C ′[E :: (σ◦ ↑)]

Proof ⇐: By Lemma 2.1 (substitutivity) and Lemma 6.4 (propagation via context).
⇒: By induction on A. �

6.3 Conditional Closedness of Components

In the following we present how the conditional closedness proofs for the individual
components can be done.

Lemma 6.6

sho out is fsubst-closedsvar cxt

frefl
sho in is fsubst-closedsvar cxt

⊥ svar cxt is fsubst-closed>⊥

Proof We show only conditional closedness of sho out, the proofs for sho in and
svar cxt are similar.

Assume a relation R with frefl(R) ⊆ R, i.e. R is reflexive, with R ⊆ svar cxt(R)
and with R ⊆ sho out(R). We have to show fsubst(R) ⊆ sho out(fsubst(R)).

Let (A,B) ∈ R with a transition A[σ]
a〈A′〉−−−→ A′′. We have to show the existence

of B′, B′′ s.t. B[σ]
a〈B′〉−−−→ B′′ with (A′, B′) ∈ fsubst(R) and (A′′, B′′) ∈ fsubst(R).

Lemma 6.5 lets us distinguish between two cases:

1. A
a〈Â′〉−−−→ Â′′ with A′ = Â′[σ] and A′′ = Â′′[σ].

By R ⊆ sho out(R) there exists B̂′, B̂′′ s.t. B
a〈B̂′〉−−−→ B̂′′ with (Â′, B̂′) ∈ R and

(Â′′, B̂′′) ∈ R.

Finally, substitutivity (Lemma 2.1) yields B[σ]
a〈B̂′[σ]〉−−−−−→ B̂′′[σ]. Our claim fol-

lows by (Â′[σ], B̂′[σ]) ∈ fsubst(R) and (Â′′[σ], B̂′′[σ]) ∈ fsubst(R).
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2. A
x−→ CA with σ(x)

a〈A′〉−−−→ E and A′′ = CA[E :: σ].

By R ⊆ svar cxt(R) there exists CB s.t. B
x−→ CB with (CA, CB) ∈ R.

By propagation via context(Lemma 6.4), we obtain B[σ]
a〈A′〉−−−→ CB [E :: σ]. It

remains to show:

(a) (A′, A′) ∈ fsubst(R). This holds by extensiveness of fsubst (id ⊆ fsubst)
and reflexivity of R.

(b) (CA[E :: σ], CB [E :: σ]) ∈ fsubst(R). This holds by (CA, CB) ∈ R. �

6.4 Injective Renamings

To show substitutivity of IO bisimilarity we relied on it being reflexive and a variable
context bisimulation. We will now consider a subset of substititions, namely decid-
able injective renamings. A decidable injective renaming is an injective renaming
for which one can decide for every variable if it is in the image of the renaming or
not. We find this requirement to be fulfilled by all injective renamings we are work-
ing with3. As decidable injective renamings form a subset of substitutions, closedness
under substitions implies closedness under decidable injective renamings. It turns out
that closedness under decidable injective renamings does not impose any conditions
on an enclosing bisimilarity as substitutivity does and that we can prove compati-
bility for the corresponding closure function. In doing so, we obtain a sound up-to
technique and a closedness property of IO bisimilarity at the same time. We define
the decidable injective renaming closure as follows:

fdec inj ren(R) := {(A[ξ], B[ξ]) | (A,B) ∈ R, ξ decidable injective renaming}

We show compatibility for every component.

Lemma 6.7 fdec inj ren is sho out-, sho in- and svar cxt-compatible

Proof The proofs for the components are similar, exemplarily we show that fdec inj ren
is sho out-compatible:

Let ξ be a decidable injective renaming andR, S two relations withR ⊆ sho out(S).
We have to show fdec inj ren(R) ⊆ sho out(fdec inj ren(S)).

Let (A,B) ∈ R with a transition A[ξ]
a〈A′〉−−−→ A′′. We have to show the exis-

tence of B′, B′′ s.t. B[ξ]
a〈B′〉−−−→ B′′ with (A′, B′) ∈ fdec inj ren(S) and (A′′, B′′) ∈

fdec inj ren(S).

By preservation of renaming(Lemma 2.2) we have the existence of Â′, Â′′ s.t.

A
a〈Â′〉−−−→ Â′′ with A′ = Â′[ξ] and A′′ = Â′′[ξ]. By assumption, there exist also B̂′,

B̂′′ s.t. B
a〈B̂′〉−−−→ B̂′′ with (Â′, B̂′) ∈ S and (Â′′, B̂′′) ∈ S. We pick B′ = B̂′[ξ] and

3The requirement of being decidable is not necessary in this case. We have included it because it
is needed for svar multi-compatibility (Chapter 8) which can then be automatically composed with
the compatibility results of this section.
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B′′ = B̂′′[ξ]. By substitutivity (Lemma 2.1) we have B[ξ]
a〈B′〉−−−→ B′′ and by definition

we have (A′, B′) ∈ fdec inj ren(S) and (A′′, B′′) ∈ fdec inj ren(S). �

Lemma 6.8 fdec inj ren is ←→sio-compatible

Proof By the closure properties of compatibility (Fig. 4.1) with Lemma 6.7 and
symmetry of fdec inj ren. �



Chapter 7

Congruence of IO Bisimilarity

In the following, we show that IO bisimilarity is a congruence. Intuitively, this means
that filling the hole of a context with bisimilar processes results again in bisimilar pro-
cesses. Formally, we can express congruence as a closure property using the following
context closure.

fcxt(R) := {(CJAK, CJBK) | (A,B) ∈ R, C context}

Note that we are using a different instantiation operation J·K instead of [·]. We call
J·K a capturing instantiation, because it allows the substituted processes to be
captured by existing binders. The only difference between the definition of [·] and J·K
lies in the following case.

(a.A)[σ] := a.(A[⇑ σ])

(a.A)JσK := a.(AJ0 :: σK)

To show the different impact with regard to capturing, consider the following example:
With J·K, we cannot instantiate the context a.1 (with 1 being the context hole) in such
a way that we get as a filled context a.0. While (a.1)[0] = a.1, we have (a.1)J0K = a.0.

We will have as a final result that ν←→sio is closed under fcxt. For the proof to go
through, we show a more general closure property, based on the following definition
of a multi-context closure (we interpret the free variables of A as context holes).

fmulti cxt(R) := {(AJσK, AJτK) | σ, τ substitutions ∧ ∀x ∈ N. (σ x, τ x) ∈ R}

In [6], congruence of IO bisimilarity is given in three parts, as congruence for
output processes, input-prefixed processes and parallel composition. We split up the
congruence proof in a similar way, using the following three closures.

fsend(R) := {(a〈A〉, a〈B〉) | (A,B) ∈ R}
freceive(R) := {(a.A, a.B) | (A,B) ∈ R}

fpar(R) := {(A1 ‖ A2, B1 ‖ B2) | (A1, A2) ∈ R ∧ (B1, B2) ∈ R}
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Theorem 7.1 fmulti cxt(ν
←→sio) ⊆ ν←→sio

Proof Assume a process A. We have to show that for every pair of substitutions σ,
τ with ∀x ∈ N. σ(x) ∼io τ(x), we also have AJσK ∼io AJτK. This holds by induction
over A using closedness of fsend, freceive and fpar, which we show next. �

It remains to show fsend(ν
←→sio) ⊆ ν←→sio, freceive(ν←→sio) ⊆ ν←→sio and fpar(ν

←→sio) ⊆ ν←→sio.
As in Chapter 6, we use conditional closedness with appropriate conditions, treating
the different components of ν←→sio separately. For the conditional closedness proofs to
go through, we show conditional closedness of the increasing versions of the three
closures, yielding slightly stronger statements. The increasing version f ∪ id of a
function f is denoted as f̊ .

For every closure ˚fsend, ˚freceive, ˚fpar, this leaves us with three proofs of condi-
tional closedness, one for each of the components sho out, sho in, svar cxt. We require
frefl and fdec inj ren as conditions. The following derivations consist of mechanic
applications of closure rules of conditional closedness (Figure 5.1).

frefl symmetric

˚fsend symmetric

sho out ˚fsend-closed>frefl

sho in ˚fsend-closed>⊥

svar cxt ˚fsend-closed>⊥

←→sio ˚fsend-closed>frefl

˚freceive symmetric

sho out ˚freceive-closed>⊥

sho in ˚freceive-closed>⊥

svar cxt ˚freceive-closed>⊥

←→sio ˚freceive-closed>⊥

fdec inj ren symmetric

˚fpar symmetric

sho out ˚fpar-closed>⊥

sho in ˚fpar-closed>fdec inj ren

svar cxt ˚fpar-closed>fdec inj ren

←→sio ˚fpar-closed>fdec inj ren

Symmetry of frefl, fdec inj ren, ˚fsend, ˚freceive and ˚fpar are trivial. In the following we
present how the proofs for the individual components can be done. We demonstrate
the proof of conditional closedness of ˚fpar for sho in, the other proofs are similar.

Lemma 7.2 sho in is ˚fpar-closed>fdec inj ren

Proof Assume a relation R with fdec inj ren(R) ⊆ R, i.e. R is closed under de-

cidable injective renamings, and with R ⊆ sho in(R). We have to show ˚fpar(R) ⊆
sho in( ˚fpar(R)). As we are dealing with the decreasing version of fpar, this consists of

two parts: First, showing R ⊆ sho in( ˚fpar(R)), which follows by assumption. Second,

it remains to show fpar(R) ⊆ sho in( ˚fpar(R)).

Let (A1, B1) ∈ R and (A2, B2) ∈ R with a transition A1 ‖ A2
a−→ A. We have

to show the existence of B s.t. B1 ‖ B2
a−→ B with (A,B) ∈ ˚fpar(R). We do a case

analysis on the transition which is either obtained by InParL or by InParR:

1. A1 ‖ A2
a−→ A′ ‖ A2[↑] with A1

a−→ A′. By assumption there is also a transition

B1
a−→ B′ with (A′, B′) ∈ S. We pick B = B′ ‖ B2[↑] and have B1 ‖ B2

a−→
B′ ‖ B2[↑] by InParL. It remains to show (A′ ‖ A2[↑], B′ ‖ B2[↑]) ∈ ˚fpar(R).
By assumption and definition of fpar it suffices to show (A2[↑], B2[↑]) ∈ R. We
have this because R is closed under decidable injective renamings.

2. A1 ‖ A2
a−→ A1[↑] ‖ A′ with A2

a−→ A′. Analog. �



Chapter 8

Handling Unguarded Variables

Besides being useful for the analysis of processes through contexts, variable con-
text transitions are used through the simulation functional svar cxt to check that the
unguarded variable occurrences of two bisimilar processes coincide. Our way of per-
forming this check for IO bisimilarity through svar cxt differs from other approaches
which are present in the literature [6, 7]. In this chapter, we compare existing ways for
the treatment of unguarded variable occurrences and prove that for IO bisimilarity,
three of them are interchangeable. This justifies using variable context bisimulations
for the definition of IO bisimilarity.

The following approaches are present in the literature:

1. In [6], checking coincidence of unguarded variable occurrences is based upon a
definition of structural congruence (≡)1. The corresponding functional s is the
following:

(A,B) ∈ s(R) iff for each x, A′ with A ≡ x ‖ A′ there is a B′ s.t. B ≡ x ‖ B′
with (A′, B′) ∈ R.

2. In [7], variable removal simulations2 are used, based upon variable removal

transitions. Variable removal transitions (
x

==⇒) replace unguarded variable
occurrences by Ø and can be defined in terms of variable context transitions:

A
x−→ C

A
x

==⇒ C[Ø]

Variable removal simulations are defined through the following functional:

svar rem(R) contains a pair (A,B) iff each transition A
x

==⇒ A′ implies that

there is a B′ s.t. B
x

==⇒ B′ with (A′, B′) ∈ R.

We chose not to use the approach of [6], because we want to avoid dealing with
structural congruence. Our variable context transitions can be seen as an extension
of variable removal transitions [7]. Besides the advantage gained for the substitutivity
proof, there is also a downside to our simulation functional svar cxt: Context variable
transitions do not reduce the size of processes and thereby disable a direct decision
procedure for bisimilarity which is based on a terminating character of the functional.

1To be precise, the simulation is part of the definition of “open simulation” [6].
2To be precise, the simulations are coined variable simulations [7] but to avoid confusion, we

emphasize its removal character.
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8.1 Termination Behavior

The definitions of IO bisimilarity through structural congruence [6] and through
svar rem [7] stand out of all definitions of bisimilarity because one can give a di-
rect decision procedure for it, i.e. every two processes A and B can be proven either
bisimilar or not bisimilar. This is due to the terminating character of each component
sho out, sho in and svar multi: One can give a size function for processes in a way
that each transition produces strictly smaller processes [6].

size(Ø) = 0

size(x) = 1

size(a〈A〉) = 1 + size(A)

size(a.A) = 1 + size(A)

size(A ‖ B) = size(A) + size(B)

1. For each of the finite number of output transitions, the emitted and target
processes are strictly smaller than the source process. This requires only a
finite number of checks.

2. For each of the finite number of input transitions, the target proces is strictly
smaller than the source process. Noticeable about sho in is that no variables
are instantiated when checking that the target processes A′ and B′ of two input
transitions are in R. This could lead to larger processes than before, due to the
substitution of the 0 variables in the target processes. In our setting though,
only a finite number of checks is required.

3. For checking unguarded variable coincidence, the three methods (via structural
congruence [6], variable removal simulations through svar rem [7], variable con-
text simulations through svar cxt) differ in their termination behavior. For the
structural congruence approach [6] and svar rem approach [7], checks only need
to be performed on strictly smaller processes as an unguarded variable is either
completely removed or replaced by Ø after each check. Because there is only a
finite number of unguarded variables in a process, one needs to do only a finite
number of checks.

Checking simulations defined through svar cxt may lead to an infinite number of
checks, because variable context transitions do not decrease the size of a process
as variables are only renamed. An example of a process causing infinitely many
checks is the following flip-flop example:

(0 ‖ 1 ‖ 3)
1−→ (1 ‖ 0 ‖ 4)

1−→ (0 ‖ 1 ‖ 5)
1−→ ...

For the two approaches in the literature, there exist direct decision procedures based
on the finiteness of checks to be performed [6, 7] and Maksimović et al. have formalized
it in Coq [7]. For our definition of IO bisimilarity using svar cxt, we cannot carry over
the direct decision procedure from the literature.

To show that our definition describes the same IO bisimilarity as in the literature,
we prove in this chapter that our definition of IO bisimilarity using svar cxt coincides
with the definition using svar rem. We have not yet formalized the decidability result
itself for IO bisimilarity on our own due to a lack of time.
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8.2 Coincidence of IO Bisimilarity Variants

We do not directly show coincidence of the definition of IO bisimilarity based on
svar cxt and the definition based on svar rem. The reason for this is that we would
have to rely on substitutivity of both greatest fixed-points, but only have this property
for IO bisimilarity defined via svar cxt (Theorem 6.1).

We introduce an auxiliary definition which ensures coincidence of unguarded vari-
ables, serving as a bridge. Taking a straightforward way, we require that the multisets
of unguarded variables of two processes are equivalent. We use the notation V (A)
for the multiset of unguarded variables which are contained in a process A and
mulx(V (A)) for the multiplicity of a variable x within V (A). In Coq, we have
implemented multisets as unordered lists over natural numbers (see also Chapter 9).

The checks are required through a constant functional which we call variable
multiset functional.

Definition 8.1 (A,B) ∈ svar multi(R) iff V (A) ⊆ V (B).

We have now three definitions of IO bisimilarity, each of them dealing with unguarded
variables in a different way.

sio = sio cxt := sho out ∩ sho in ∩ svar cxt
sio rem := sho out ∩ sho in ∩ svar rem
sio multi := sho out ∩ sho in ∩ svar multi

We show ν←−−→sio cxt = ν←−−−→sio rem = ν←−−−−→sio multi in the following circular way.

ν←−−→sio cxt ⊆ ν←−−−→sio rem

ν←−−−→sio rem ⊆ ν←−−−−→sio multi

ν←−−−−→sio multi ⊆ ν←−−→sio cxt

Because the greatest fixed-points are symmetric and differ only in the way they deal
with unguarded variables, it suffices to show that their treatment of unguarded vari-
ables can be simulated.

ν←−−→sio cxt ⊆ svar rem (ν←−−→sio cxt)

ν←−−−→sio rem ⊆ svar multi(ν←−−−→sio rem)

ν←−−−−→sio multi ⊆ svar cxt (ν←−−−−→sio multi)

It turns out that proving the first two inclusions is straightforward through elegant
proofs. The third proof needs more effort, as we will explain later. For all three
inclusions, we rely on strong connections between the three concepts.

Proposition 8.2

A
x

==⇒ A′ ⇔ ∃C. A x−→ C ∧A′ = C[Ø] (i)

mulx(V (A)) > 0 ⇔ ∃A′. A x
==⇒ A′ (ii)

∃C. A x−→ C ⇔ mulx(V (A)) > 0 (iii)

A
x

==⇒ A′ ⇒ mulx(V (A)) = mulx(V (A′)) + 1 (iv)
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We present now proofs of the first two inclusions.

Lemma 8.3 ν←−−→sio cxt ⊆ sio rem(ν←−−→sio cxt)

Proof Let (A,B) ∈ ν←−−→sio cxt with A
x

==⇒ A′. We have to show the existence of B′ s.t.

B
x

==⇒ B′ with (A′, B′) ∈ ν←−−→sio cxt.

By Proposition 8.2 (i), there is a context CA with A
x−→ CA and A′ = CA[Ø]. Be-

cause A and B are bisimilar, there exists a context CB with B
x−→ CB and (CA, CB) ∈

ν←−−→sio cxt. By definition of variable removal transitions, we have B
x

==⇒ CB [Ø]. It
remains to show (CA[Ø], CB [Ø]) ∈ ν←−−→sio cxt, which we have by substitutivity (Theo-
rem 6.1). �

Lemma 8.4 ν←−−−→sio rem ⊆ sio multi(ν←−−−→sio rem)

Proof Let (A,B) ∈ ν←−−−→sio rem. We have to show V (A) ⊆ V (B). Consider a variable n.
We have to show mulx(V (A)) ≤ mulx(V (B)). We prove this by complete induction
over mulx(V (A)) + mulx(V (B)) and distinguish between two cases:

1. mulx(V (A)) = 0. Trivial.

2. mulx(V (A)) > 0. By Proposition 8.2 (ii), there exists a process A′ s.t. A
x

==⇒ A′.

Because A and B are bisimilar, there exists also a process B′ with B
x

==⇒ B′

and (A′, B′) ∈ ν←−−−→sio rem. By Proposition 8.2 (ii), we have mulx(V (B)) > 0.
Using Proposition 8.2 (iv), it suffices to show mulx(V (A′)) ≤ mulx(V (B′)). We
have this by induction because mulx(V (A′)) + mulx(V (B′)) ≤ mulx(V (A)) +
mulx(V (B)). �

The third inclusion ν←−−−−→sio multi ⊆ svar cxt(ν
←−−−−→sio multi) requires more effort, because the

constant functional svar multi does not relate any potential target processes of A and
B. We apply a trick to use conditional closedness to tackle the problem: Because
conditional closedness only gives us closure properties of the form f(νs) ⊆ νs, we
“invert” the functional svar cxt in a certain way and receive its counterpart which we
call freach. Showing freach(ν←−−−−→sio multi) ⊆ ν←−−−−→sio multi will help us showing our desired
goal, ν←−−−−→sio multi ⊆ svar cxt(ν

←−−−−→sio multi). We define freach as follows, together with the
closure under bijective renamings.

freach(R) := {(A′, B′) | ∃A,B, x. (A,B) ∈ R ∧A x−→ A′ ∧B x−→ B′}

fbij ren(R) := {(A[ξ], B[ξ]) | (A,B) ∈ R, ξ bijective renaming}

Before we come to the proof of the third inclusion in Lemma 8.8, we state two propo-
sitions. First, we state closedness of ν←−−−−→sio multi under decidable injective renamings.
Note that for the sho out and sho in components, we have presented proofs for this
in Lemma 6.7. Second, we state the three main components for the inclusion result.
The proofs are rather technical and are not presented here. However, they are of
course part of the formalization.

Proposition 8.5 fdec inj ren(ν←−−−−→sio multi) ⊆ ν←−−−−→sio multi

Proposition 8.6 ((fbij ren◦freach)∪id) is sho out-, sho in- and svar multi-closed>fdec inj ren
.
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Next, we show the auxiliary lemma based on freach:

Lemma 8.7 freach(ν←−−−−→sio multi) ⊆ ν←−−−−→sio multi

Proof Using conditional closedness, we slightly strengthen the claim to make the
proof go through. By the closure properties of conditional closedness (Figure 5.1) we
get the following derivation.

fdec inj ren symmetric

((fbij ren ◦ freach) ∪ id) symmetric

((fbij ren ◦ freach) ∪ id) sho out-closed>fdec inj ren

((fbij ren ◦ freach) ∪ id) sho in-closed>fdec inj ren

((fbij ren ◦ freach) ∪ id) svar multi-closed>fdec inj ren

((fbij ren ◦ freach) ∪ id) sio multi-closed>fdec inj ren

Symmetry of fdec inj ren and ((fbij ren◦freach)∪id) is trivial. Conditional closedness
under sho out, sho in and svar multi is given by Proposition 8.6. �

We now proceed with the proof of the third inclusion.

Lemma 8.8 ν←−−−−→sio multi ⊆ svar cxt(ν←−−−−→sio multi)

Proof We can now use the fact that freach behaves oppositely to svar cxt. Let
A and B be two processes with (A,B) ∈ ν←−−−−→sio multi. We have to show (A,B) ∈
svar cxt(ν

←−−−−→sio multi). Assume a transition A
x−→ A′. We have to show the existence

of B′ s.t. B
x−→ B′ with (A′, B′) ∈ ν←−−−−→sio multi. By Lemma 8.7 it suffices to show

(A′, B′) ∈ freach(ν←−−−−→sio multi). By Proposition 8.2 (iii) we know that there is an un-
guarded occurrence of x in A. By definition of sio multi this means that B has also an
unguarded occurrence of x. Again by Proposition 8.2 (iii) we can infer that there is

also a transition B
x−→ B′ for a context B′. We now have (A′, B′) ∈ freach(ν←−−−−→sio multi)

by definition of freach. �



Chapter 9

Formalization in Coq

The entire formalization1 of the presented results is carried out constructively in the
interactive theorem prover Coq without the use of any axioms. In the following we
present some of the formalization techniques and tools we have used. See Appendix
A for more information about the organization of the Coq files.

Variable-binding

Dealing with de Bruijn indices was much facilitated by Autosubst [15]. The instan-
tiation operation is generated automatically after defining the process terms, with
bind process indicating where a binder occurs.

Inductive process: Type :=
| Send: chan → process → process
| Receive: chan → {bind process} → process
| Var: var → process
| Par: process → process → process
| Nil: process.

Autosubst provides a normalization procedure for substitutions. E.g., the substitution
↑ ◦(0 :: id) will be normalized to id. From the normalization procedure, which can
be triggered by the tactic asimpl, one obtains a complete decision procedure for
equivalence of substitutions. Applying it to a term causes the normalization of every
substitution it contains, e.g. the equivalence ↑ ◦(0::id) = id becomes directly solvable
after asimpl simplifies it to id = id. We use this automation extensively, which saves
us many manual proofs and makes dealing with substitutions a comfortable task.

Coinductive Reasoning

The definitions of bisimulation and bisimilarity in Coq follow exactly the definitions
given in Chapter 3. For a functional s, we define an s-bisimulation as a post-fixed-
point of s and bisimilarity νs as the union of all post-fixed-points.

Definition postfp (s: relation T → relation T) (x: relation T) :=
x ⊆ s x.

Definition nu (s: relation T → relation T) (p q: T) :=

1Available at https://www.ps.uni-saarland.de/˜convent/bachelor.php

https://www.ps.uni-saarland.de/~convent/bachelor.php
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∃ x, postfp s x ∧ x p q.

The theorem of Knaster-Tarski (Theorem 3.2) assures that νs is the greatest fixed-
point. Originally we have worked with the Paco library [4], which defines the greatest
fixed-point of a functional through Coq’s CoInductive construct and enables incre-
mental proofs. Because we have not made use of this incremental feature, which in
case of bisimilarity allows to incrementally build up a bisimulation, we opted for the
simple definitions as described.

Type Classes

Type classes offer convenience and clearer proofs by automatic inference of arguments
when they are needed, under consideration of their context. We profit from this mech-
anism in that once we have shown certain properties, we do not have to explicitly
refer to them anymore but still can rely on them. For example, for a functional we
have a proposition certifying its monotonicity. When applying a lemma to this func-
tional, we do not have to refer to its monotonicity explicitly, as it can be determined
automatically by type class inference. We use type classes not only for monotonicity,
but also for compatibility, conditional closedness and symmetry of a function.

Combining Proof Components

Having proven properties about bisimilarity components, their proofs can be gener-
ically merged. In the case of proofs relying on compatibility, applying the closure
properties of Figure 4.1 is done automatically through type class inference. For proofs
relying on conditional closedness however, merging cannot always be done by type
class inference. The reason for this is as follows: To intersect two conditional closed-
ness results (Figure 5.1 (iii)), the two minimum (maximum) conditions need to be
lifted (lowered) to a “common denominator” (Figure 5.1 (i)). Because of the two side
conditions in Figure 5.1 (i), type class inference does not succeed. However, since in
principle this could be automated, we mark this issue as future work.

Multisets

For the definition of svar multi, we use a multiset implementation which is based on
unordered lists of natural numbers. We have oriented ourselves and originally used
an implementation provided by the CoLoR library [5] for this. It turned out that
for working with multisets we really depend only on lemmas about list manipulation
(Coq Standard Library) and two lemmas about finite sums over multisets. Finite
sums over multisets are defined through fold_right.

Definition fin_sum (f: nat → nat) (m: list nat): nat :=
fold_right (fun x a ⇒ (f x + a)) 0 m.

The first lemma reveals our purpose of sums over multisets, namely to characterize
the number of occurrences of an unguarded variable x within a substituted process
A[σ].

mulx(V (A[σ])) =
∑

y∈V (A)

mulx(V (σ(y)))
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The second lemma about finite sums is rather technical but actually the only point
where we make use of the fact that the order of a list representing a multiset is
irrelevant.

V (A) ⊆ V (B) ⇒
∑

x∈V (A)

f(x) ≤
∑

x∈V (B)

f(x)



Chapter 10

Conclusion

Background

Dealing with variables and substitutions is easy for paper proofs, but can cause much
technical work for a formalization in a proof assistant (e.g., in Hirschkoff’s Coq for-
malization of the π-calculus, of the “800 proved lemmas, about 600 are concerned with
operators on free names” [3]). The background of this thesis was the idea to investi-
gate how de Bruijn indices, under support of the Autosubst library, can be applied
as a formalization technique to the field of concurrency theory. Higher-order process
calculi form very good candidates for such an exploration, because de Bruijn indices
with Autosubst have already been shown to excel when dealing with higher-order
substitutions (e.g. through the formalization of the typed lambda calculus System F
[15]).

Final Discussion und Future Work

We have found dealing with variables indeed to be easy, as the support of de Bruijn
indices and parallel substitutions through the normalization procedure of Autosubst
has taken away much work. In the formalization of Maksimović et al., the authors
mention an auxiliary lemma1 which was “particularly difficult to prove” [7]: It es-
sentially states that “when substituting several variables with empty messages, the
substitution order does not matter” [7]. Although we have not shown the result this
auxiliary lemma is used for, we observe that through parallel substitutions we do not
need to respect the substitution order and its imposed constraints at all.

As described in Section 5.2.2, we have not found a way to extend the notion of
compatibility in a way which lets us prove the soundness of up-to techniques for
greatest fixed-points abiding by minimum and maximum conditions. At this point,
it is not clear to us whether this is possible but we think it might be worthwhile
investigating this more.

In our formalization, it turned out to be difficult to show coincidence of our def-
inition of IO bisimilarity through svar cxt and the definition given by [7] through
svar rem. We suspect that the proof we have given via the bridging definition based
on multisets (svar multi) can be simplified.

1Lemma 4 in [7]
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For future work, one can extend the shown results by proving decidability of IO
bisimilarity, coincidence of IO bisimilarity with other bisimilarities and by giving an
axiomatization of IO bisimilarity.

All in all, we hope to contribute to the exploration of formalization techniques
in the field of higher-order process calculi, with particular regard to variable-binding
and the pursuit of compositional results. We suspect that our framework for giving
compositional proofs does not make our whole development smaller. When consid-
ering different recombinations of multiple components though (as bisimilarities are
given in [6]), we suspect that using compositional results has an impact on the size of
the development. Independently of the time and space needed to do the proofs, we
see the following main advantage of the compositional approach: The decomposition
of monolithic proofs of the main results provides a better understanding, by having
the “big picture” at hand but by being able to focus on concrete components at the
same time.



Appendix A

Organization of Coq Files

The total development contains 3561 lines of code (not counting external libraries).
It was compiled using Coq 8.5 and Autosubst 1.4.

Base/Base.v Base library from “Introduction to Computational
Logic” lecture [16]

Prelim.v Preliminary definitions
Multiset.v Definition and properties of multisets
HoCore.v Definitions of processes and transitions, initialization

of Autosubst

ComplLat.v Definitions and properties of the complete lattice on
binary relations

Compat.v Notion of compatibility, its closure properties and im-
plications

CondClos.v Notion of conditional closedness, its closure proper-
ties and implications

UpToNu.v Compatibility of the up-to-bisimilarity technique

Ren.v Properties of renamings and subsets of it
Subst.v Properties of substitutions

Bis.v Definitions of bisimilarity components
BisDecInjRen.v Compatibility for decidable injective renamings
BisSubstit.v Conditional closedness for substitution closure
BisCongr.v Conditional closedness for congruence closures

IoCxtBis.v Results about ν←−−→sio cxt
IoMultiBis.v Results about ν←−−−−→sio multi

InclIoCxtBisIoRemBis.v Inclusion of ν←−−→sio cxt in ν←−−−→sio rem
InclIoRemBisIoMultiBis.v Inclusion of ν←−−−→sio rem in ν←−−−−→sio multi
InclIoMultiBisIoCxtBis.v Inclusion of ν←−−−−→sio multi in ν←−−→sio cxt
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plicit substitutions. J. Funct. Program., 1(4):375–416, 1991.

[2] Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-Rosser
theorem. In Indagationes Mathematicae (Proceedings), volume 75, pages 381–
392. Elsevier, 1972.

[3] Daniel Hirschkoff. A full formalisation of pi-calculus theory in the calculus of
constructions. In Proceedings of the 10th International Conference on Theorem
Proving in Higher Order Logics, TPHOLs, pages 153–169. Springer-Verlag, 1997.

[4] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of
parameterization in coinductive proof. ACM SIGPLAN Notices, 48(1):193–206,
2013.

[5] Adam Koprowski. Coq formalization of the higher-order recursive path ordering.
Applicable Algebra in Engineering, Communication and Computing, 20(5-6):379–
425, 2009.
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