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Abstract

This report describes the contructive proof for the independence of intuitionistic
propositional connectives, that is the undefinability of each connective by the other
connectives. The proof is based on the counter-examples originally by McKinsey
for Heyting algebra semantics of intuitionistic logic. The main result is the Coq
formalization.

1 Introduction

While the classical logic, certain connectives can be defined by others, for example a ∧ b =
¬(¬a ∨ ¬b), the situation is not the same for intuitionistic logic. McKinsey [1939] gave the
counter-examples as Heyting algebras for the independence of intuitionistic propositional
connectives. Heyting algebras can be used as one of the complete semantics for intuitionistic
logic. In this report we formulate intuitionistic logic in the natural deduction style, prove
soundness of the system with respect to the Heyting’s semantics, and then prove the unde-
finability results of all four connectives and constants (conjuction, disjunction, implication
and falsehood) using McKinsey’s three algebras. The formalization was completed in Coq.

2 Definitions

Definition 1 (Propositional formulas). The grammar of propositional formulas is

s, t ::= x|s→ t|s ∧ t|s ∨ t|⊥

where x ranges over propositional variables. Define ¬s = s→ ⊥ and s↔ t = s→ t ∧ t→ s.
Γ denotes a finite list of formulas.

Definition 2 (Natural deduction system). The intuitionistic natural deduction system
defines the entailment relation Γ ` s by rules given in Figure 1.
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s ∈ Γ AΓ ` s
Γ ` ⊥ EΓ ` s

s, Γ ` t
→IΓ ` s→ t

Γ ` s→ t Γ ` s →EΓ ` t

Γ ` s Γ ` t ∧IΓ ` s ∧ t
Γ ` s ∧ t s, t, Γ ` u

∧EΓ ` u

Γ ` s ∨ILΓ ` s ∨ t
Γ ` t ∨IRΓ ` s ∨ t

Γ ` s ∨ t s, Γ ` u t, Γ ` u
∨EΓ ` u

Figure 1: Rules for the Intuitionistic Natural Deduction system

Definition 3 (Heyting algebra). A Heyting algebra is a preorder (H,≤) with a smallest
element ⊥ and a largest element > and three operations ∧, ∨, and → satisfying the following
conditions for all x, y, z ∈ H:

(i) x ≤ >

(ii) ⊥ ≤ x

(iii) z ≤ x ∧ y iff z ≤ x and z ≤ y

(iv) x ∨ y ≤ z iff x ≤ z and y ≤ z

(v) z ≤ x→ y iff z ∧ x ≤ y.

Definition 4 (Valuation). A valuation of a Heyting algebra H is a function V : P 7→ H
that assigns to each propositional variable a specific element of the algebra, where P is the
infinite set of propositional variables. The valuation is extended to formulas recursively:

V (⊥) = ⊥
V (s→ t) = V (s)→ V (t)
V (s ∧ t) = V (s) ∧ V (t)
V (s ∨ t) = V (s) ∨ V (t)

Note that ∧, ∨, →, and ⊥ on the left-hand side are the connectives and Falsehood constant
of the logic, while on the right-hand side are the operations and smallest element of a Heyting
algebra, respectively.

A valuation of a list of formulas V (Γ) is defined as the valuation of the conjunction of the
formulas in that list:

V (nil) = >
V (s, Γ) = V (s) ∧ V (Γ)
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Definition 5 (Heyting entailment). We say that s is H-entailed by Γ, denoted Γ �H s, if
V (Γ) ≤ V (s) for all valuations V of H.

Lemma 6 (Soundness 1). Given H an arbitrary Heyting algebra, if Γ ` s, then Γ �H s.

Proof. By induction on the derivation Γ ` s. All the cases make use of the properties of H
(properties of the partial order and (i)-(v)). For the rule A, another nested induction on the
list Γ is needed.

Collorary 7 (Semantics Equivalence). If ` s↔ t, then for any Heyting algebra H and its
valuation V , V (s) ≤ V (t) and V (t) ≤ V (s).

Proof. By the soundness lemma we have �H s ↔ t, therefore V (nil) = > ≤ V (s ↔ t) =
V (s → t) ∧ V (t → s). Then we have > ≤ V (s → t) and > ≤ V (t → s), which lead to
V (s) ≤ V (t) and V (t) ≤ V (s).

Lemma 8 (Completeness 2). If Γ �H s for any Heyting algebra H, then Γ ` s.

Proof. We prove completeness by proving an equivalent statement: if > ≤ V (s) for any
Heyting algebra H and any valuation V of H, then ` s.

We construct a Heyting algebra Hs of formulas where s ≤ t = ` s→ t. The bottom element
⊥ and operations ∧, ∨, → of Hs are respectively the constant ⊥ and connectives ∧, ∨, → of
formulas. It is easy to see that Hs is a Heyting algebra. We use the valuation V (x) = x. By
induction V (s) = s. Now, if > ≤ V (s), then > ≤ s, which means that ` > → s. Therefore
` s.

Definition 9 (◦-free). A formula s is called ◦-free, where ◦ is a placeholder for some
connective or constant, if ◦ does not appear in s. For example, that s is ∧-free is defined
recursively as:

(i) if s is a propositional variable, then s is ∧-free

(ii) if s = ⊥, then s is ∧-free

(iii) if s = s1 ∨ s2, then s is ∧-free if s1 and s2 are ∧-free

(iv) if s = s1 → s2, then s is ∧-free if s1 and s2 are ∧-free.

McKinsey [1939] gave three counter-examples to prove independence of the 4 connectives
of intuitionistic propositional logic, of which the first is for the negation, the second is for
the disjunction, and the third is for implication and conjunction connectives. McKinsey
considered negation as one of the primitive connective, while here we use the Falsehood
constant and implication to define negation. The counter-example for negation, however, still
works in the same way. The next sections follow the order of the three counter-examples.

1see nd_soundHA in the formalization.
2see HA_iff_nd in the formalization.
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3 Independence of Falsehood

The first Heyting algebra H1 by McKinsey is given as the lattice in Figure 2, and its
corresponding operations in Table 1.

⊥

a

>

Figure 2: The partial order for H1

Table 1: Operations for H1

(a)

→ > a ⊥
> > a ⊥
a > > ⊥
⊥ > > >

(b)

∧ > a ⊥
> > a ⊥
a a a ⊥
⊥ ⊥ ⊥ ⊥

(c)

∨ > a ⊥
> > > >
a a a a
⊥ > a ⊥

Proposition 10. H1 with its operations is a Heyting algebra.

Proof. We have to show that H1 is a preorder, and its operations satisfy properties (i)-(v).
This can be done by enumerating all the possible values of any x, y, z ∈ H1. Coq can check
this automatically.

Now, if we use a valuation V1 that assigns every propositional variable to >, then it is clear
that for any ⊥-free formula s, V1(s) = > 6= ⊥ = V1(⊥). Therefore, 2H1 s↔ ⊥, which means
that there is no ⊥-free formula s that can replace ⊥.

Proposition 11. If V1 : P 7→ H1 is a valuation of H1 that assigns any variable to >, then
for any ⊥-free formula s, V1(s) = >.

Proof. By induction on the structure of s.

Lemma 12 (Independence of Falsehood 3). There is no ⊥-free formula s such that ` s↔ ⊥.

Proof. Assume that there is a ⊥-free s that ` s↔ ⊥. Using V1 we must have by Collorary 7
V1(s) ≤ V1(⊥) = ⊥, which contradictions Proposition 11.

3see FalIndependence_hey in the formalization.
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4 Independence of Disjunction

The Heyting algebra H2 is given as the lattice in Figure 3, and its corresponding operations
in Table 2.

⊥

a b

c

>

Figure 3: The partial order for H2

Table 2: Operations for H2

(a)

→ > a b c ⊥
> > a b c ⊥
a > > b > b
b > a > > a
c > a b > ⊥
⊥ > > > > >

(b)

∧ > a b c ⊥
> > a b c ⊥
a a a ⊥ a ⊥
b b ⊥ b b ⊥
c c a b c ⊥
⊥ ⊥ a ⊥ ⊥ ⊥

(c)

∨ > a b c ⊥
> > > > > >
a > a c c a
b > c b c b
c > c c c c
⊥ > a b c ⊥

Proposition 13. H2 with its operations is a Heyting algebra.

Proposition 14. If V2 : P 7→ H2 is a valuation of H2 that assigns any variable to either a
or b, then for any ∨-free formula s, V2(s) 6= c.

Proof. By induction on the structure of s. The possible values of V2(s) are marked as red in
Table 2 (a) and (b).

McKinsey’s original observation was that the set {>, a, b,⊥} ⊆ H2 is closed under the
operations ∧ and→, while a∨ b = c is not. Therefore V2 is a counter-example for disjunction.

Lemma 15 (Independence of Disjunction4). There is no ∨-free formula s such that ` s↔
x ∨ y for two different variables x and y.

Proof. Assume that there is a ∨-free s that ` s↔ x ∨ y. Using V2 that assigns x to a and y
to b, and any other variable to either a or b, we have V2(x∨ y) = V2(a∨ b) = c. By Collorary
7, we have V2(s) ≤ c and c ≤ V2(s), which contradicts Proposition 14.

4see OrIndependence_hey in the formalization.
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5 Independence of Implication and Conjunction

The Heyting algebra H3 is the direct product of H1 to itself: H3 = H1 ×H1. The lattice is
given in Figure 4.

(⊥,⊥)

(a,⊥) (⊥, a)

(>,⊥) (a, a) (⊥,>)

(>, a) (a,>)

(>,>)

Figure 4: The partial order for H3

The operations for (x1, y1), (x2, y2) ∈ H3 are defined using the operations of H1:

(i) (x1, y1) ∧ (x2, y2) = (x1 ∧ x2, y1 ∧ y2)

(ii) (x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∨ y2)

(iii) (x1, y1)→ (x2, y2) = (x1 → x2, y1 → y2)

Proposition 16. H3 with its operations is a Heyting algebra.

Proposition 17. The operations ∧ and ∨ of H3 are closed on the set M→ =
{(>,>), (>, a), (a, a), (⊥,⊥)}.

Lemma 18 (Independence of Implication5). There is no →-free formula s such that ` s↔
x→ y for two different variables x and y.

Proof. Assume that there is a →-free s that ` s ↔ x → y. Using V3→ that assigns x
to (>, a) and y to (a, a), and any other variable to some value in the set M→, we have
V3→(x→ y) = (a,>) /∈M→. By Collorary 7, we have V3→(s) ≤ (a,>) and (a,>) ≤ V3→(s),
which contradicts Proposition 17.

Proposition 19. The operations → and ∨ of H3 are closed on the set M∧ =
{(>,>), (>, a), (>,⊥), (⊥,>), (⊥,⊥)}.

Lemma 20 (Independence of Conjunction6). There is no ∧-free formula s such that ` s↔
x ∧ y for two different variables x and y.

5see ImpIndependence_hey in the formalization.
6see AndIndependence_hey in the formalization.
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Proof. Assume that there is a ∧-free s that ` s ↔ x ∧ y. Using V3∧ that assigns x to
(>, a) and y to (⊥,>), and any other variable to some value in the set M∧, we have
V3∧(x ∧ y) = (⊥, a) /∈ M∧. By Collorary 7 we have V3∧(s) ≤ (⊥, a) and (⊥, a) ≤ V3∧(s)
which contradicts Proposition 19.

6 Disjunction Property

In this section we give the proof of independence of disjunction without using Heyting’s
semantics, but the disjunction property [Negri et al., 2008, p. 41]. The proof, however, is
done using Gentzen’s sequent system for intuitionistic logic, instead of natural deduction.

Definition 21 (Intuitionistic sequent system). The intuitionistic sequent system defines the
entailment relation Γ⇒ s by rules given in Figure 5.

s ∈ Γ AΓ⇒ s
⊥ ∈ Γ EΓ⇒ s

s, Γ⇒ t
→RΓ⇒ s→ t

s→ t ∈ Γ Γ⇒ s →LΓ⇒ t

Γ⇒ s Γ⇒ t ∧RΓ⇒ s ∧ t
s ∧ t ∈ Γ s, t, Γ⇒ u

∧LΓ⇒ u

Γ⇒ s ∨R1Γ⇒ s ∨ t
Γ⇒ t ∨R2Γ⇒ s ∨ t

s ∨ t ∈ Γ s, Γ⇒ u t, Γ⇒ u
∨LΓ⇒ u

Figure 5: Rules for the Intuitionistic Gentzen system

Lemma 22 (Admissible rules). The Weakening and Cut rules are admissible in the intu-
itionistic sequent system.

Γ⇒ s Γ ⊆ ∆ Weakening∆⇒ s

Γ⇒ s s, Γ⇒ t
CutΓ⇒ t

Definition 23 (Harrop formula). A Harrop formula is defined recursively as:

(i) propositional variables and the Falsehood constant ⊥ are Harrop formulas

(ii) s→ t is a Harrop formula if t is also a Harrop formula

(iii) s ∧ t is a Harrop formula if both s and t are Harrop formulas.

It is easy to see that if s is ∨-free, then s is a Harrop formula.
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Lemma 24 (Disjunction property 7). If every formula in Γ is a Harrop formula, then
Γ⇒ s ∨ t iff Γ⇒ s or Γ⇒ t.

Proof. The direction from right to left is straightforward. The direction from left to right is
by induction on the derivation Γ⇒ s ∨ t.

Lemma 25 (Independence of Disjunction 2 8). Given two inequivalent formulas p and q,
i.e. ; p→ q and ; q → p, there does not exist a ∨-free formula s such that ⇒ p ∨ q ↔ s.

Proof. Assume that there is a ∨-free s such that ⇒ p ∨ q ↔ s. It is easy to see that
⇒ p ∨ q ↔ s iff ⇒ p ∨ q → s and ⇒ s→ p ∨ q. By Cut and Weakening we have p ∨ q ⇒ s
and s⇒ p ∨ q. From p⇒ p ∨ q and p ∨ q ⇒ s, by Cut we have p⇒ s, and similarly, q ⇒ s.
Since s is ∨-free, it is also a Harrop formula, therefore by the disjunction property s⇒ p or
s⇒ q. In either case, from p⇒ s and q ⇒ s, again by Cut we have either p⇒ q or q ⇒ p,
which contradicts the assumption that p and q are inequivalent.

7 Remarks

Remark 1 (Underivability results). H1 and V1 can be used to disprove x ∨ ¬x and ¬¬x→ x.
H2 and V2 can be used to disprove ¬x ∨ ¬¬x and ¬(x ∧ y)→ ¬x ∨ ¬y.
Remark 2. In the Heyting algebra definition, > and property (i) can be removed and replaced
by the definition > = ⊥ → ⊥. Property (i) then is implied from properties (iii) and (v).
Remark 3. In the original definition of Heyting algebra, the order is a partial order while
here we use a preorder, since the soundness proof does not need antisymmetry. This is also
observed by Brown [2014]. If antisymmetry is accepted, then in Collorary 7 we can replace
V (s) ≤ V (t) and V (t) ≤ V (s) with V (s) = V (t).
Remark 4. Here we have only formalized the completeness proof for preordered Heyting
algebras basing on Troelstra and Dalen [1988], in which a stronger proof for partial-ordered
Heyting algebras is provided. The authors also observe that completeness holds for finite
Heyting algebras.
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