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Abstract

This report discusses two models for intuitionistic propositional logic - Heyting
algebras and Kripke structures - and their properties. The relation between Kripke
structures and Heyting algebras, and their relation with the natural deduction system
and the Fitting’s tableau systems are also discussed.

1 Heyting algebras

Definition 1 (Heyting algebra). A Heyting algebra is a preorder (H,≤) with a smallest
element ⊥ and a largest element > and three operations ∧, ∨, and → satisfying the following
conditions for all x, y, z ∈ H:

(i) x ≤ >

(ii) ⊥ ≤ x

(iii) z ≤ x ∧ y iff z ≤ x and z ≤ y

(iv) x ∨ y ≤ z iff x ≤ z and y ≤ z

(v) z ≤ x→ y iff z ∧ x ≤ y.

We write x ∼= y if x ≤ y and y ≤ x.

Fact 2. For any Heyting algebra H and x, y ∈ H, we have the following facts:

(i) x ∧ y ≤ x and x ∧ y ≤ y

(ii) x ∧ y ∼= y ∧ x

(iii) x ≤ x ∨ y and y ≤ x ∨ y

(iv) x ∨ y ∼= y ∨ x

(v) (x→ y) ∧ x ≤ y

(vi) x ≤ y iff x ∨ y ∼= y.
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Definition 3 (Valuation on a Heyting algebra). A valuation of a Heyting algebra H is a
function V : P 7→ H that assigns to each propositional variable a specific element of the
algebra, where P is the infinite set of propositional variables. The valuation is extended to
formulas recursively:

V (⊥) = ⊥
V (s→ t) = V (s)→ V (t)
V (s ∧ t) = V (s) ∧ V (t)
V (s ∨ t) = V (s) ∨ V (t)

Note that ∧, ∨, →, and ⊥ on the left-hand side are the connectives and Falsehood constant
of the logic, while on the right-hand side are the operations and smallest element of the
Heyting algebra, respectively.

A valuation of a list of formulas V (Γ) is defined as the valuation of the conjunction of the
formulas in that list:

V (nil) = >
V (s,Γ) = V (s) ∧ V (Γ)

Definition 4 (Heyting entailment). We say that s is H-entailed by Γ, denoted Γ �H s, if
V (Γ) ≤ V (s) for all valuations V of H.

Lemma 5 (Soundness for Ni). Given H an arbitrary Heyting algebra, if Γ `i s, then
Γ �H s.

Proof. By induction on the derivation Γ `i s.

Collorary 6 (Semantics Equivalence). If `i s↔ t, then for any Heyting algebra H and its
valuation V , V (s) ∼= V (t).

Proof. By the soundness lemma we have �H s ↔ t, therefore V (nil) = > ≤ V (s ↔ t) =
V (s → t) ∧ V (t → s). Then we have > ≤ V (s → t) and > ≤ V (t → s), which lead to
V (s) ≤ V (t) and V (t) ≤ V (s).

Lemma 7. If > ≤ V (s) for any Heyting algebra H and any valuation V of H, then `i s.

Proof. We construct a Heyting algebra Hs of formulas where s ≤ t = `i s→ t. The bottom
element ⊥ and operations ∧, ∨, → of Hs are respectively the constant ⊥ and connectives
∧, ∨, → of formulas. It is easy to see that Hs is a Heyting algebra. We use the valuation
V (x) = x. By induction V (s) = s. Now, if > ≤ V (s), then > ≤ s, which means that
`i > → s. Therefore `i s.

Lemma 8 (Completeness for Ni). If Γ �H s for any Heyting algebra H, then Γ `i s.

Proof. Follows from Lemma 7.
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Remark 1. In the original definition of Heyting algebra, the order is a partial order while
here we use a preorder, since the soundness proof does not need antisymmetry. This is also
observed by Brown [2014]. If antisymmetry is accepted, then we can replace V (s) ∼= V (t)
with V (s) = V (t).
Remark 2. Here we have only formalized the completeness proof for preordered Heyting
algebras basing on Troelstra and Dalen [1988], in which a stronger proof for partial-ordered
Heyting algebras is provided. The authors also observe that completeness holds for finite
Heyting algebras.

2 Kripke structures

Definition 9 (Kripke model). A Kripke model is a tuple (K,≤, α) where ≤ is a preorder on
the set of states K, and α : P 7→ PK is a monotonic mapping from propositional variables
to subsets of K, where monotonicity means that if p ∈ α(x) and p ≤ q then q ∈ α(x).

Definition 10 (Valuation on a Kripke model). The valuation of a formula s on a Kripke
model (K,≤, α) is defined recursively as:

K̂x := α(x)
K̂⊥ := ∅

K̂(s ∧ t) := K̂s ∩ K̂t
K̂(s ∨ t) := K̂s ∪ K̂t
K̂(s→ t) := {p ∈ K | (p ↑) ∩ K̂s ⊆ K̂t}

where (p ↑) := {q ∈ K | p ≤ q}.

The valuation for list of formulas is defined as:

K̂∅ := K

K̂(s,Γ) := K̂s ∩ K̂(Γ)

Fact 11 (K̂ is monotonic). If p ∈ K̂s and p ≤ q then q ∈ K̂s.

Proof. By induction on s.

Definition 12 (Forcing relation). The forcing relation � between states of a Kripke model
(K,≤, α) and formulas is defined as:

(i) p � x iff p ∈ α(x)

(ii) p � ⊥ never holds

(iii) p � s ∧ t iff p � s and p � t

(iv) p � s ∨ t iff p � s or p � t
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(v) p � s→ t iff ∀q ≥ p, q � s −→ q � t.

We say p forces s or p satisfies s to mean p � s. We write [s]K := {p ∈ K | p � s}.

Fact 13. [s]K = K̂s.

Proof. By induction on s.

Lemma 14 (Soundness for Ni). If Γ `i s then K̂(Γ) ⊆ K̂s.

Proof. By induction on the derivation Γ `i s. Fact 11 and the properties of the preorder are
needed.

Definition 15 (Upward-closed sets). A set A is called upward-closed, if for any p ∈ A,
(p ↑) ⊆ A. We write K := {A | A ⊆ K ∧A is upward-closed}.

Fact 16. Upward-closed sets are closed under intersection and union. That is, if A and B
are in K, then so are A ∩B and A ∪B.

Lemma 17 (Kripke models to Heyting algebras). K with set inclusion is a Heyting algebra,
where > = K, ⊥ = ∅, and the operations are:

A ∧B := A ∩B
A ∨B := A ∪B
A→ B := {p ∈ K | (p ↑) ∩A ⊆ B}

The valuation for the algebra is V (x) = K̂x = [x]K = α(x) ∈ K.

Fact 18. If K and V are respectively the Heyting algebra and its valuation built from K,
then V (s) = [s]K .

Proof. By induction on s.

Fact 19. If K is finite then K is a finite distributive lattice and we can define A→ B :=∨
{C ∈ K | C ∧A ≤ B}: the join is finite.

3 Countermodels

We demonstrate several counter-models for some propositionally underivable formulas. The
counter-models are given as Kripke models (K,≤, α), whose states represent α: each state p
is a set of (labeled by) variables whose mapping by α contains p. The models are visualized in
form of lattices of Heyting algebras. These models are from unpublished notes by Prof. Gert
Smolka.

Fact 20 (Countermodel for ⊥, x, and x ∨ y). 0i ⊥, and 0i x, and 0i x ∨ y.

Proof. Let K := {∅}. We have K = {∅,K}, then K̂⊥ = K̂x = K̂(x ∨ y) = ∅, that is
K = > � V (⊥) = V (x) = V (x ∨ y).
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∅

K

Fact 21 (Countermodel for ¬x). 0i ¬x.

Proof. Let K := {{x}}. Then K = {∅,K}. We have K̂x = K and K̂(¬x) = ∅.

∅

K

Fact 22 (Countermodel for XM and DN). 0i x ∨ ¬x and 0i ¬¬x→ x .

Proof. Let K := {∅, {x}}. Then K = {∅, {{x}},K}. We have

K̂x = {{x}}
K̂(¬x) = ∅

K̂(x ∨ ¬x) = K̂x

K̂(¬¬x) = K

K̂(¬¬x→ x) = K̂x

∅

K̂x

K

Fact 23 (Countermodel for Peirce). 0i ((x→ y)→ x)→ x.

Proof. Let K := {∅, {x}, {x, y}}. Then K = {∅, {{x, y}}, {{x}, {x, y}},K}. We have

K̂y = {{x, y}}
K̂x = {{x}, {x, y}}

K̂(x→ y) = K̂y

K̂((x→ y)→ x) = K

K̂(((x→ y)→ x)→ x) = K̂x
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4 Demos

Definition 24 (Hintikka pairs). A pair of lists of formulas (Γ,∆) is called a Hintikka pair
if it satisfies all of the following conditions:

(i) ⊥ /∈ Γ

(ii) if x ∈ Γ then x /∈ ∆

(iii) if s→ t ∈ Γ then s ∈ ∆ or t ∈ Γ

(iv) if s ∧ t ∈ Γ then s ∈ Γ and t ∈ Γ

(v) if s ∨ t ∈ Γ then s ∈ Γ or t ∈ Γ

(vi) if s ∧ t ∈ ∆ then s ∈ ∆ or t ∈ ∆

(vii) if s ∨ t ∈ ∆ then s ∈ ∆ and t ∈ ∆.

Definition 25 (Demos). A demo, or a Hintikka collection, is a finite set D of pairs (Γ,∆)
such that any (Γ,∆) ∈ D is a Hintikka pair and if s→ t ∈ ∆ then there exists (Γ′,∆′) ∈ D
such that s,Γ ⊆ Γ′ and t ∈ ∆′.

Definition 26 (Positive set inclusion). A pair (Γ,∆) is a positive subset of (Γ′,∆′), written
(Γ,∆) ⊆+ (Γ′,∆′), if Γ ⊆ Γ′.

Fact 27. If D is a finite set of pairs of lists of formulas and α(x) := {(Γ,∆) ∈ D | x ∈ Γ},
then (D,⊆+, α) is a finite Kripke model.

Proof. It is clear that ⊆+ is a preorder. If (Γ,∆) ∈ α(x) and (Γ′,∆′) ⊆+ (Γ′,∆′), then
x ∈ Γ ⊆ Γ′ and therefore (Γ′,∆′) ∈ α(x). Thus we have showed that α is monotonic.

Lemma 28. Let D a demo and (Γ,∆) ∈ D, and (D,⊆+, α) is the Kripke model of D. Then:

(i) (Γ,∆) ∈ D̂s for every s ∈ Γ and

(ii) (Γ,∆) /∈ D̂s for every s ∈ ∆.
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Proof. By induction on s.

Definition 29. A demo D falsifies (Γ,∆) if D contains a pair (Γ′,∆′) such that Γ ⊆ Γ′

and ∆ ⊆ ∆′.

Theorem 30. If (Γ,∆) is falsified by a demo, then Γ 0i
∨

∆.

Proof. We have for the demo D that falsifies (Γ,∆) a pair (Γ′,∆′) such that Γ ⊆ Γ′ and
∆ ⊆ ∆′.

By definition we have

D̂(Γ) =
⋂
{D̂s | s ∈ Γ}

D̂(
∨

∆) =
⋃
{D̂s | s ∈ ∆}

From Lemma 28, we have for all s ∈ Γ ⊆ Γ′, (Γ′,∆′) ∈ D̂s, and for all s ∈ ∆ ⊆ ∆′,
(Γ′,∆′) /∈ D̂s. Therefore (Γ′,∆′) ∈ D̂(Γ) and (Γ′,∆′) /∈ D̂(

∨
∆), i.e. D̂(Γ) * D̂(

∨
∆). By

the soundness lemma 14 we finally have Γ 0i
∨

∆.

Lemma 31. Γ⇒F ∆ is decidable.

We call a pair (Γ,∆) consistent if Γ ;F ∆.

Fact 32. If (Γ,∆) is consistent and Γ′ ⊆ Γ and ∆′ ⊆ ∆, then (Γ′,∆′) is also consistent.

Definition 33 (Maximal consistent extension). (Γm,∆m) is a maximal consistent extension
of (Γ,∆) if (Γm,∆m) is consistent and contains only subformulas of Γ or ∆, and for any
other (Γ′,∆′) that satisfies the same properties, if Γm ⊆ Γ′ and ∆m ⊆ ∆′, then Γ′ ⊆ Γm

and ∆′ ⊆ ∆m.

We write D(Γ,∆) to denote the set of all maximal consistent extensions of (Γ,∆).

Lemma 34. D(Γ,∆) is a demo. We call D(Γ,∆) the canonical demo of (Γ,∆).

Lemma 35. For any consistent (Γ′,∆′) that contains only subformulas of Γ or ∆, there
exists a pair (Γm,∆m) ∈ D(Γ,∆) such that Γ′ ⊆ Γm and ∆′ ⊆ ∆m.

Collorary 36. If (Γ,∆) is consistent, then D(Γ,∆) falsifies (Γ,∆).

Lemma 37. Either Γ⇒F ∆ or D(Γ,∆) falsifies (Γ,∆).

Lemma 38. Γ `i s iff Γ⇒F s and Γ `i
∨

∆ iff Γ⇒F ∆.

Lemma 39. If s is a subformula of (Γ,∆), and (Γm,∆m) is a maximal consistent extension
of (Γ,∆), and s /∈ Γm ∪∆m, then both ((s,Γm),∆m) and (Γm, (s,∆m)) are inconsistent.

Collorary 40. If s is a subformula of (Γ,∆), and (Γm,∆m) is a maximal consistent extension
of (Γ,∆), then either s ∈ Γm or s ∈ ∆m.

Theorem 41 (Maximal consistent extension identity). If (Γ1,∆1) and (Γ2,∆2) are both
maximal consistent extensions of (Γ,∆), and Γ1 and Γ2 have the same set of propositional
variables, and ∆1 and ∆2 have the same set of implications, then (Γ1,∆1) ≡ (Γ2,∆2), i.e.
Γ1 ≡ Γ2 and ∆1 ≡ ∆2.
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Lemma 42. If (Γ1,∆1) and (Γ2,∆2) are both maximal consistent extensions of (Γ,∆), and
Γ1 ≡ Γ2, then ∆1 ≡ ∆2.

Collorary 43. (D(Γ,∆),⊆+) is a partial order.
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