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Abstract

This report discusses two models for intuitionistic propositional logic - Heyting
algebras and Kripke structures - and their properties. The relation between Kripke
structures and Heyting algebras, and their relation with the natural deduction system
and the Fitting’s tableau systems are also discussed.

1 Heyting algebras

Definition 1 (Heyting algebra). A Heyting algebra is a preorder (H, <) with a smallest
element | and a largest element T and three operations A, V, and — satisfying the following
conditions for all z,y,z € H:
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(iii) z<zAyif z<zand 2 <y
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(V) z<z—=yiff zANz <y.

We write z =2y if z <yand y < z.

Fact 2. For any Heyting algebra H and z,y € H, we have the following facts:

(i) eAny<zandzAy<y
(i) s ANy ZyAx
(iii) x <zVyandy <z Vy
(iv) aVyEyVe
)
)
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(vi) z<yiff zVy Zy.

(x—=y) A<y



Definition 3 (Valuation on a Heyting algebra). A valuation of a Heyting algebra H is a
function V' : P — H that assigns to each propositional variable a specific element of the
algebra, where P is the infinite set of propositional variables. The valuation is extended to
formulas recursively:

Note that A, V, —, and L on the left-hand side are the connectives and Falsehood constant
of the logic, while on the right-hand side are the operations and smallest element of the
Heyting algebra, respectively.

A valuation of a list of formulas V(T") is defined as the valuation of the conjunction of the
formulas in that list:

V(ni) =T
V(s,T)=V(s) AV ()

Definition 4 (Heyting entailment). We say that s is H-entailed by T', denoted T Eg s, if
V(') < V{(s) for all valuations V of H.

Lemma 5 (Soundness for Ni). Given H an arbitrary Heyting algebra, if T ' s, then

Proof. By induction on the derivation I' - s. O

Collorary 6 (Semantics Equivalence). If F s <+ ¢, then for any Heyting algebra H and its
valuation V', V(s) = V().

Proof. By the soundness lemma we have Fp s <> ¢, therefore Vi(nil) = T < V(s <> t) =
V(s = t) AV(t — s). Then we have T < V(s — t) and T < V(t — s), which lead to
V(s) <V(t) and V(t) < V(s). O

Lemma 7. If T < V(s) for any Heyting algebra H and any valuation V of H, then - s.

Proof. We construct a Heyting algebra Hy of formulas where s <t = ' s — t. The bottom
element 1 and operations A, V, — of H, are respectively the constant L and connectives
A, V, — of formulas. It is easy to see that H, is a Heyting algebra. We use the valuation
V(z) = z. By induction V(s) = s. Now, if T < V(s), then T < s, which means that
F T — s. Therefore ¥ s. O

Lemma 8 (Completeness for Ni). If ' Ey s for any Heyting algebra H, then T s.

Proof. Follows from Lemma 7. O



Remark 1. In the original definition of Heyting algebra, the order is a partial order while
here we use a preorder, since the soundness proof does not need antisymmetry. This is also
observed by Brown [2014]. If antisymmetry is accepted, then we can replace V(s) = V (¢)
with V(s) = V (¢).

Remark 2. Here we have only formalized the completeness proof for preordered Heyting
algebras basing on Troelstra and Dalen [1988], in which a stronger proof for partial-ordered
Heyting algebras is provided. The authors also observe that completeness holds for finite
Heyting algebras.

2 Kripke structures

Definition 9 (Kripke model). A Kripke model is a tuple (K, <, ) where < is a preorder on
the set of states K, and « : P +— PK is a monotonic mapping from propositional variables
to subsets of K, where monotonicity means that if p € a(z) and p < ¢ then ¢ € a(x).

Definition 10 (Valuation on a Kripke model). The valuation of a formula s on a Kripke
model (K, <, ) is defined recursively as:

where (p 1) :={¢ € K [p <q}.

The valuation for list of formulas is defined as:
K):=K

K(s,T):= Ksn K(I)

Fact 11 (R' is monotonic). If p € Ks and p < qthen q € Ks.

Proof. By induction on s. O

Definition 12 (Forcing relation). The forcing relation F between states of a Kripke model
(K, <, ) and formulas is defined as:
(i) pEziff p € a(x)
(ii) p F L never holds
(iii) pEsAtiff pEsand pE Tt
)

(iv) pEsvtiffpEsorpEt



(v) pEs—tiff Vg >p, qF s — gF L.

We say p forces s or p satisfies s to mean p = s. We write [s], == {p € K | pF s}.

Fact 13. [s], = Ks.

Proof. By induction on s. O
Lemma 14 (Soundness for Ni). If '+ s then K(I') C K.

Proof. By induction on the derivation I - s. Fact 11 and the properties of the preorder are
needed. O

Definition 15 (Upward-closed sets). A set A is called upward-closed, if for any p € A,
(p1) C A. We write K := {A| AC K A A is upward-closed}.

Fact 16. Upward-closed sets are closed under intersection and union. That is, if A and B
are in K, then so are AN B and AU B.

Lemma 17 (Kripke models to Heyting algebras). K with set inclusion is a Heyting algebra,
where T = K, L =0, and the operations are:
ANB:=ANB
AVB:=AUB
A—-B:={peK|(pt)NACB}

The valuation for the algebra is V(z) = Kz = [z]x = a(z) € K.

Fact 18. If K and V are respectively the Heyting algebra and its valuation built from K,
then V(s) = [s] -

Proof. By induction on s. O

Fact 19. If K is finite then K is a finite distributive lattice and we can define A — B :=
V{C € K | C AN A < B}: the join is finite.

3 Countermodels

We demonstrate several counter-models for some propositionally underivable formulas. The
counter-models are given as Kripke models (K, <, «), whose states represent «: each state p
is a set of (labeled by) variables whose mapping by « contains p. The models are visualized in
form of lattices of Heyting algebras. These models are from unpublished notes by Prof. Gert
Smolka.

Fact 20 (Countermodel for 1, z, and z V y). ¥ L, and ¥* z, and ¥ 2 V y.

Proof. Let K := {0}. We have K = {0, K}, then K1 = Kz = K(z Vy) = 0, that is
K=T4V(L)=V(z)=V(zVy).



= —X

Fact 21 (Countermodel for —z). ¥' —x.
Proof. Let K := {{z}}. Then K = {0, K}. We have Kz = K and K (-z) = 0.

K
|
0

Fact 22 (Countermodel for XM and DN). ¥ 2V =z and ¥ -~z — z .

Proof. Let K := {0, {x}}. Then K = {0, {{z}}, K}. We have

Ko = {{z}}
K(—z) =10
K(zV-z) =Kz
K(-z) = K
K(~-z —2) =Kz
K
Kz
0

Fact 23 (Countermodel for Peirce). ¥ ((z — y) — x) — z.

Proof. Let K := {0, {z}, {z,y}}. Then K = {0, {{z,y}}, {{z}, {z,y}}, K}. We have

Ky = {{z,y}}
Kz = {{z},{z,y}}
K’(x —y) = K’y
I%'((x—>y)—>x)=K
K(((x—=y) »x)—z)=Kz
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4 Demos

Definition 24 (Hintikka pairs). A pair of lists of formulas (I, A) is called a Hintikka pair
if it satisfies all of the following conditions:

(i) L¢T
(ii) if x €T then z ¢ A

(iii) f s >t €T thense Aortel

)
)
)
(iv) if sNteT thenseTl andt el
(v) ifsvtelthensel ortel

(vi) if sANte Athense AorteA

(vii) if sVt € Athen s € A and t € A.

Definition 25 (Demos). A demo, or a Hintikka collection, is a finite set D of pairs (I, A)
such that any (', A) € D is a Hintikka pair and if s — ¢ € A then there exists (I',A’) € D
such that s, ' C IV and t € A’.

Definition 26 (Positive set inclusion). A pair (T, A) is a positive subset of (I, A’), written
(T,A) CT (I, A", if T C TV,

Fact 27. If D is a finite set of pairs of lists of formulas and a(z) := {(I',A) €e D |z € T},
then (D, C™T, «) is a finite Kripke model.

Proof. 1t is clear that CT is a preorder. If (I'A) € a(z) and (I",A’) C* (I, A’), then
xz € I' C TV and therefore (IV, A’) € a(z). Thus we have showed that « is monotonic. O

Lemma 28. Let D a demo and (T, A) € D, and (D,C7", «) is the Kripke model of D. Then:

(i) (I, A) € Ds for every s € T and
(i) (T,A) ¢ Ds for every s € A.



Proof. By induction on s. O

Definition 29. A demo D falsifies (I', A) if D contains a pair (I, A’) such that ' C I
and A C A'.

Theorem 30. If (I',A) is falsified by a demo, then T ¥*\/ A.
Proof. We have for the demo D that falsifies (I', A) a pair (I, A’) such that T' C T and
ACA

By definition we have
D) =({Ds|seT}
D(\/ A) = J{Ds|sec A}

From Lemma 28, we have for all s € I' C I/, (F',A’)AG Ds, and for all s € A C A,
(I, A") ¢ Ds. Therefore (I",A’) € D(T') and (I',A’) ¢ D(\V A), i.e. D(T') € D(\V A). By
the soundness lemma 14 we finally have I ¥* \/ A. O

Lemma 31. T' = A is decidable.

We call a pair (I', A) consistent if I" #r A.
Fact 32. If (I, A) is consistent and IV CT" and A’ C A, then (I, A’) is also consistent.

Definition 33 (Maximal consistent extension). (I';,, A,,) is a maximal consistent extension
of (T',A) if (T'),, A,,) is consistent and contains only subformulas of T or A, and for any
other (I, A’) that satisfies the same properties, if I';, C IV and A,, C A’ then IV C T,
and A’ C A,,.

We write D(I", A) to denote the set of all maximal consistent extensions of (I', A).
Lemma 34. D(T', A) is a demo. We call D(T', A) the canonical demo of (T', A).

Lemma 35. For any consistent (IV, A”) that contains only subformulas of T' or A, there
exists a pair (Cp,, Ay) € DT, A) such that TV C Ty, and A" C A,

Collorary 36. If (I', A) is consistent, then D(T", A) falsifies (T', A).
Lemma 37. Either I' = A or D(T', A) falsifies (T, A).
Lemma 38. T s iff T =r s and T F \/ A iff T =¢ A.

Lemma 39. If s is a subformula of (I', A), and (T, Ay) is a mazimal consistent extension
of (T,A), and s ¢ Ty, UA,,, then both ((s,Tp), Ap) and (T, (8, Ar)) are inconsistent.

Collorary 40. If s is a subformula of (I, A), and (I, A,,) is a maximal consistent extension
of (T',A), then either s € '), or s € A,,.

Theorem 41 (Maximal consistent extension identity). If (T'1, A1) and (T'a, Ag) are both
mazimal consistent extensions of (T, A), and T'y and T's have the same set of propositional

variables, and Ay and As have the same set of implications, then (T'1, A1) = (T2, Ag), i.e.
Fl = FQ and Al = AQ.



Lemma 42. If (T'1, A1) and (Ta, Ag) are both mazimal consistent extensions of (I'; A), and
Fl = FQ, then Al = Ag.

Collorary 43. (D(I',A),C") is a partial order.
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