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Abstract

This report lists the various systems for both classical and intuitionistic propositional
logics. These include the natural deduction systems, Gentzen’s sequent calculi, Hilbert’s
axiomatic systems, and Fitting’s tableau-based systems. Fundamental results for these
systems include cut-elimination, their equivalences and their decidability. We work with
lists, instead of multisets, of formulas to formalize these results in Coq.

1 Basic definitions

Definition 1 (Propositional formulas). The grammar of propositional formulas is

s, t ::= x|s→ t|s ∧ t|s ∨ t|⊥

where x ranges over propositional variables. Define ¬s = s→ ⊥ and s↔ t = s→ t ∧ t→ s.
Γ denotes a finite list of formulas.

Definition 2 (Entailment relation). An entailment relation is a relation between two sets
of formulas. In the natural deduction systems, the intuitionistic Gentzen system, and the
Hilbert systems, it is a relation between a set of formulas (possibly empty) on the left-hand
side with exactly one formula on the right-hand side. In the classical Gentzen system and
Fitting’s tableau system, it is a relation between two sets of an arbitrary number of formulas.

We often write ` s to mean that the left-hand side is empty: ∅ ` s. When both sides are
empty, we will write explicitly as ∅ ` ∅.

Definition 3 (Substitution). A substitution is a mapping σ from variables to formulas.
A substitution operation can be defined recursively for formulas. We write σs for the
substitution of σ on s, and σΓ for a list of formulas of which each is a substitution of σ on
each formula in Γ.

Definition 4 (Substitutability). An entailment relation ` satisfies substitutability if σΓ ` σs
if Γ ` s, or σΓ ` σ∆ if Γ ` ∆.
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s ∈ Γ AΓ `c s
¬s,Γ `c ⊥

CΓ `c s

s,Γ `c t
→IΓ `c s→ t

Γ `c s→ t Γ `c s →EΓ `c t

Γ `c s Γ `c t ∧IΓ `c s ∧ t
Γ `c s ∧ t s, t,Γ `c u

∧EΓ `c u

Γ `c s ∨ILΓ `c s ∨ t
Γ `c t ∨IRΓ `c s ∨ t

Γ `c s ∨ t s,Γ `c u t,Γ `c u
∨EΓ `c u

Figure 1: Rules for the classical natural deduction system Nc

2 Natural deduction systems

Definition 5 (Classical natural deduction system Nc). The classical natural deduction
system defines the entailment relation Γ `c s by rules given in Figure 1.

Definition 6 (Intuitionistic natural deduction system Ni). The intuitionistic natural de-
duction system defines the entailment relation Γ `i s by rules given in Figure 2.

s ∈ Γ AΓ `i s
Γ `i ⊥ EΓ `i s

s,Γ `i t
→IΓ `i s→ t

Γ `i s→ t Γ `i s →EΓ `i t

Γ `i s Γ `i t ∧IΓ `i s ∧ t
Γ `i s ∧ t s, t,Γ `i u

∧EΓ `i u

Γ `i s ∨ILΓ `i s ∨ t
Γ `i t ∨IRΓ `i s ∨ t

Γ `i s ∨ t s,Γ `i u t,Γ `i u
∨EΓ `i u

Figure 2: Rules for the intuitionistic natural deduction system Ni

Fact 7 (Reflexivity of N[ci]). If s ∈ Γ then Γ ` s.

Fact 8 (Substitutability of N[ci]). N[ci] satisfy substitutability.

Lemma 9. Weakening and Cut are admissible in N[ci].

Γ ` s Γ ⊆ Γ′
WeakΓ′ ` s

Γ ` s s,Γ ` t
CutΓ ` t
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Proof. By induction on the derivation Γ ` s.

Lemma 10. If Γ `i s then Γ `c s.

Proof. By induction on the derivation Γ `i s.

Lemma 11 (Glivenko). Γ `c s iff Γ `i ¬¬s.

Proof. By induction on the derivation Γ `c s.

Collorary 12 (Refutation equivalence). Γ `c ⊥ iff Γ `i ⊥.

Collorary 13 (Embedding of Nc in Ni). Γ `c s iff ¬s,Γ `i ⊥.

Theorem 14. Classical natural deduction entailment is decidable.

3 Gentzen’s sequent calculi

Definition 15 (Classical sequent system Gc). The classical sequent system defines the
entailment relation Γ⇒c ∆ by rules given in Figure 3. The system allows arbitrary number
of formulas in the right-hand sided sequent.

x ∈ Γ x ∈ ∆ AΓ⇒c ∆
⊥ ∈ Γ EΓ⇒c ∆

s→ t ∈ ∆ s,Γ⇒c t,∆
→RΓ⇒c ∆

s→ t ∈ Γ Γ⇒c s,∆ t,Γ⇒c ∆
→LΓ⇒c ∆

s ∧ t ∈ ∆ Γ⇒c s,∆ Γ⇒c t,∆
∧RΓ⇒c ∆

s ∧ t ∈ Γ s, t,Γ⇒c ∆
∧LΓ⇒c ∆

s ∨ t ∈ ∆ Γ⇒c s, t,∆
∨RΓ⇒c ∆

s ∨ t ∈ Γ s,Γ⇒c ∆ t,Γ⇒c ∆
∨LΓ⇒c ∆

Figure 3: Rules for the classical Gentzen system Gc

Definition 16 (Intuitionistic sequent system Gi). The intuitionistic sequent system defines
the entailment relation Γ⇒i s by rules given in Figure 4.

Fact 17 (Reflexivity of Gi). If s ∈ Γ then Γ⇒i s.

Fact 18 (Double negation rejected in Gi). Γ ;i ¬¬x→ x.

Lemma 19. Weakening is admissible in G[ci].

Γ⇒c ∆ Γ ⊆ Γ′ ∆ ⊆ ∆′
cWeakΓ′ ⇒c ∆′

Γ⇒i s Γ ⊆ Γ′
iWeakΓ′ ⇒i s
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s ∈ Γ AΓ⇒i s

⊥ ∈ Γ EΓ⇒i s

s,Γ⇒i t
→RΓ⇒i s→ t

s→ t ∈ Γ Γ⇒i s t,Γ⇒i u
→LΓ⇒i u

Γ⇒i s Γ⇒i t ∧RΓ⇒i s ∧ t
s ∧ t ∈ Γ s, t,Γ⇒i u

∧LΓ⇒i u

Γ⇒i s ∨R1Γ⇒i s ∨ t
Γ⇒i t ∨R2Γ⇒i s ∨ t

s ∨ t ∈ Γ s,Γ⇒i u t,Γ⇒i u
∨LΓ⇒i u

Figure 4: Rules for the intuitionistic Gentzen system Gi

Proof. By induction on the derivation of the first premise.

Lemma 20 (Consistency of Gc). ∅;c ∅, and ;c ⊥, and ;c x.

Lemma 21 (Consistency of Gi). ;i ⊥ and ;i x.

Lemma 22 (Generalized cut for Gc). The generalized cut rule is admissible in Gc.

Γ⇒c ∆ Γ′ ⇒c ∆′
GCutΓ,Γ′ \ s⇒c ∆ \ s,∆′

Proof. The proof needs laboring with a lot of technical details. We need 3 nested structural
inductions: first and induction on the cut formula s, then induction on Γ ⇒c ∆, and if
needed, another nested induction on Γ′ ⇒c ∆′.

The base cases (variables and Falsehood) are straightforward and do not need the 3rd
induction. For implication, conjunction, and disjunction, after the 2nd induction, most cases
are also straightforward. The cases below are not so, and need the 3rd induction. In all of
these cases, which are for s→ t, s ∧ t and s ∨ t, we have 2 inductive hypotheses from the 1st
induction:

∀ Γ ∆ Γ′ ∆′. Γ⇒c ∆ −→ Γ′ ⇒c ∆′ −→ Γ,Γ′ \ s⇒c ∆ \ s,∆′ (22.1)

∀ Γ ∆ Γ′ ∆′. Γ⇒c ∆ −→ Γ′ ⇒c ∆′ −→ Γ,Γ′ \ t⇒c ∆ \ t,∆′ (22.2)

From the 2nd induction, we have the following important cases for the cut formula:

(i) s→ t

We have Γ′ ⇒c ∆′ and some s′, t′ such that s′ → t′ ∈ ∆, and s′,Γ ⇒c t′,∆. The
inductive hypothesis from the 2nd induction is

s′,Γ,Γ′ \ (s→ t)⇒c ((t′,∆) \ s→ t),∆′ (22.3)
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We need to show Γ,Γ′ \ s→ t⇒c ∆ \ s→ t,∆′.
If s → t 6= s′ → t′, then s′ → t′ ∈ ∆ \ s → t,∆′. By →R we need to show
s′,Γ,Γ′ \ s→ t⇒c t′,∆ \ s→ t,∆′, which follows from Weakening of 22.3.
Now, consider that s→ t = s′ → t′, i.e. s = s′ and t = t′. We need the 3rd induction
on Γ′ ⇒c ∆′. The base subcases are straightforward. In the other 7 subcases we all
have s→ t ∈ ∆, and s,Γ⇒c t,∆. 22.3 becomes:

s,Γ,Γ′ \ (s→ t)⇒c ((t,∆) \ s→ t),∆′ (22.4)

The 7 subcases are:

(a) s1 → s2 ∈ Γ′. We also have Γ′ ⇒c s1,∆′ and s2,Γ′ ⇒c ∆′. The 2 new inductive
hypotheses are:

Γ,Γ′ \ s→ t⇒c (∆ \ s→ t), s1,∆′ (22.5)
Γ, (s2,Γ′) \ s→ t⇒c (∆ \ s→ t),∆′ (22.6)

If s→ t 6= s1 → s2, then s1 → s2 ∈ (Γ,Γ′ \ s→ t). By →L, we only have to show
Γ,Γ′ \ s → t ⇒c s1, (∆ \ s → t),∆′ and s2,Γ,Γ′ \ s → t ⇒c ∆ \ s → t,∆′, which
follow from Weakening of 22.5 and 22.6, respectively.
Now, consider the case where s→ t = s1 → s2, i.e. s = s1 and t = s2. Let

Γ1 := Γ,Γ′ \ s→ t

∆1 := (∆ \ s→ t),∆′

Γ2 := Γ, (t,Γ′) \ s→ t

∆2 := (∆ \ s→ t), s,∆′

Γ3 := s,Γ,Γ′ \ s→ t

∆3 := ((t,∆) \ s→ t),∆′

From 22.5 and 22.6, using 22.1, we have

Γ1,Γ2 \ s⇒c (∆2 \ s),∆1 (22.7)

Also from 22.5 and 22.4, with 22.1:

Γ1,Γ3 \ s⇒c (∆2 \ s),∆3 (22.8)

Now from 22.8 and 22.7, using 22.2, we finally have

Γ1, (Γ3 \ s), (Γ1,Γ2 \ s) \ t⇒c (((∆2 \ s),∆3) \ t), (∆2 \ s),∆1 (22.9)

whose Weakening is what we need to prove: Γ1 ⇒c ∆1.
(b) s1 → s2 ∈ ∆′. We also have the inductive hypothesis

Γ, (s1,Γ′) \ s→ t⇒c (∆ \ s→ t), s2,∆′ (22.10)

Since s1 → s2 ∈ (∆ \ s→ t),∆′, by →R we only need to show s1,Γ,Γ′ \ s→ t⇒c

s2, (∆ \ s→ t),∆′, which is the Weakening of the inductive hypothesis 22.10.
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(c) s1 ∧ s2 ∈ Γ′. We also have the inductive hypothesis

Γ, (s1, s2,Γ′) \ s→ t⇒c (∆ \ s→ t),∆′ (22.11)

Since s1 ∧ s2 ∈ (∆ \ s→ t),∆′, by ∧L we only need to show s1, s2,Γ,Γ′ \ s→ t⇒c

(∆ \ s→ t),∆′, which is the Weakening of the inductive hypothesis 22.11.
(d) s1 ∧ s2 ∈ ∆′. Similar to the case (ic).
(e) s1 ∨ s2 ∈ Γ′. Similar to the case (ic).
(f) s1 ∨ s2 ∈ ∆′. Similar to the case (ic).
(g) Γ′ ≡ Γ0 and ∆′ ≡ ∆0. We have the inductive hypothesis

Γ,Γ′ \ s→ t⇒c (Γ \ s→ t),∆′ (22.12)

whose Weakening is what we need to prove: Γ,Γ0 \ s→ t⇒c (Γ \ s→ t),∆0.

(ii) s ∧ t
In the same fashion as in case (i), in this case the most important subcase of the 3rd
induction is s1 ∧ s2 ∈ Γ′. We have the followings: s ∧ t ∈ ∆, and Γ ⇒c s,∆, and
Γ⇒c t,∆, and 2 inductive hypotheses from the 2nd induction:

Γ,Γ′ \ s ∧ t⇒c (s,∆) \ s ∧ t,∆′ (22.13)
Γ,Γ′ \ s ∧ t⇒c (t,∆) \ s ∧ t,∆′ (22.14)

For the subcase we also have s1 ∧ s2 ∈ Γ′, and s1, s2,Γ′ ⇒c ∆′, and the inductive
hypothesis

Γ, ((s1, s2,Γ′) \ s ∧ t)⇒c (∆ \ s ∧ t),∆′ (22.15)

We have to show Γ, (Γ′ \ s ∧ t)⇒c (∆ \ s ∧ t),∆′.
If s ∧ t 6= s1 ∧ s2, then s1 ∧ s2 ∈ (Γ,Γ′ \ s ∧ t). By ∧L, we only have to show
s1, s2,Γ, (Γ′ \ s ∧ t) ⇒c (∆ \ s ∧ t),∆′, which is the Weakening of the inductive
hypothesis 22.15.
If s ∧ t = s1 ∧ s2, then s = s1 and t = s2.
Let

Γ1 := Γ,Γ′ \ s ∧ t
∆1 := (∆ \ s ∧ t),∆′

Γ2 := Γ, (s, t,Γ′) \ s ∧ t
∆s := ((s,∆) \ s ∧ t),∆′

∆t := ((t,∆) \ s ∧ t),∆′

Now, from 22.14 and 22.15, using 22.2, we have

Γ1,Γ2 \ t⇒c (∆t \ t),∆1 (22.16)

With 22.13 and 22.16, using 22.1, we finally have

Γ1, (Γ1,Γ2 \ t) \ s⇒c (∆s \ s), (∆t \ t),∆1 (22.17)

of which Weakening is what we need to show.
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(iii) s ∨ t
Similarly, in this case the most important subcase of the 3rd induction is s1 ∨ s2 ∈ Γ′.
We have the followings: s ∨ t ∈ ∆, and Γ⇒c s, t,∆, and the inductive hypothesis from
the 2nd induction:

Γ,Γ′ \ s ∨ t⇒c (s, t,∆) \ s ∨ t,∆′ (22.18)

For the subcase we also have s1 ∨ s2 ∈ Γ′, and s1,Γ′ ⇒s ∆′, and s2,Γ′ ⇒s ∆′, and 2
inductive hypotheses

Γ, ((s1,Γ′) \ s ∨ t)⇒c (∆ \ s ∨ t),∆′ (22.19)

Γ, ((s2,Γ′) \ s ∨ t)⇒c (∆ \ s ∨ t),∆′ (22.20)

We have to show Γ, (Γ′ \ s ∨ t)⇒c (∆ \ s ∨ t),∆′.
If s ∨ t 6= s1 ∨ s2, then s1 ∨ s2 ∈ (Γ,Γ′ \ s ∨ t). By ∨L, we only have to show
s1,Γ, (Γ′ \ s ∧ t)⇒c (∆ \ s ∧ t),∆′, and s2,Γ, (Γ′ \ s ∧ t)⇒c (∆ \ s ∧ t),∆′, which are
the Weakening of the inductive hypotheses 22.19 and 22.20, respectively.
If s ∨ t = s1 ∨ s2, then s = s1 and t = s2.
Let

Γ1 := Γ,Γ′ \ s ∨ t
∆1 := (∆ \ s ∨ t),∆′

∆s,t := ((s, t,∆) \ s ∨ t),∆′

Γs := Γ, (s,Γ′) \ s ∨ t)
Γt := Γ, (t,Γ′) \ s ∨ t)

From 22.18 and 22.20, using 22.2 we have

Γ1,Γt \ t⇒c (∆s,t \ t),∆1 (22.21)

Then from 22.21 and 22.19, using 22.1 we finally have

Γ1, (Γt \ t), (Γs\, s)⇒c (((∆s,t \ t),∆1) \ s),∆1 (22.22)

From this by Weakening we have Γ1 ⇒c ∆1.

Lemma 23. The cut rule is admissible in Gc.

Γ⇒c s,∆ s,Γ′ ⇒c ∆′
CutΓ,Γ′ ⇒c ∆,∆′

Lemma 24. If Γ⇒c ∆ then Γ,¬∆ `c ⊥, where ¬∆ is the set of negations of formulas in ∆.

Theorem 25 (Equivalence of Nc and Gc). Γ `c s iff Γ⇒c s.
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Proof. From left to right: by induction on the derivation of Γ `c s. Cut is needed for Gc.
From right to left: follows from Lemma 24.

Lemma 26 (Generalized cut for Gi). The generalized cut rule is admissible in Gi.

Γ⇒i s Γ′ ⇒i u GCutΓ,Γ′ \ s⇒i u

Proof. By induction on the structure of the cut formula s (first), then on the derivation
Γ ⇒i s (second), and then on derivation Γ′ ⇒i u (third) if necessary. The base cases
(variables and Falsehood) do not need the third induction. Most cases are simple and
Coq with little guidance can check them automatically. The following cases need detailed
inspection. In these cases, the 3rd induction is needed. The inductive hypothesis from the
2nd induction is not used. The inductive hypotheses from the 1st induction are the same for
all of these cases:

∀ Γ Γ′ u. Γ⇒i s1 −→ Γ′ ⇒i u −→ Γ, (Γ′ \ s1)⇒i u (26.1)

∀ Γ Γ′ u. Γ⇒i s2 −→ Γ′ ⇒i u −→ Γ, (Γ′ \ s2)⇒i u (26.2)

(i) s = s1 → s2

We have some s′ → t′ ∈ Γ′, and Γ′ ⇒i s′, and t′,Γ′ ⇒i u, and s1,Γ⇒i s2.
The inductive hypotheses from the 3rd induction are

Γ, (Γ′ \ s1 → s2)⇒i s′ (26.3)

Γ, ((t′,Γ′) \ s1 → s2)⇒i u (26.4)

We have to show Γ, (Γ′ \ s1 → s2)⇒i u.

• If s1 → s2 = s′ → t′, i.e. s1 = s′ and s2 = t′, then from 26.3 and s1,Γ ⇒i s2,
using 26.1 we have Γ, (Γ′ \ s1 → s2), ((s1,Γ) \ s1)⇒i s2, from which by Weakening
we have

Γ, (Γ′ \ s1 → s2)⇒i s2 (26.5)

Now, from 26.5 and 26.4, using 26.2 we have

Γ, (Γ′ \ s1 → s2), ((Γ, ((s2,Γ′) \ s1 → s2)) \ s2)⇒i u (26.6)

From this by Weakening again, we have Γ, (Γ′ \ s1 → s2)⇒i u.
• If s1 → s2 6= s′ → t′, then s′ → t′ ∈ (Γ, (Γ′ \ s1 → s2)), by →L we need only to

show t′,Γ, (Γ′ \ s1 → s2)⇒i u, which follows from Weakening of 26.4.

(ii) s = s1 ∧ s2

We have some s′ ∧ t′ ∈ Γ′, and s′, t′,Γ′ ⇒i u, and Γ⇒i s1, and Γ⇒i s2.
The inductive hypothesis from the 3rd induction is

Γ, ((s′, t′,Γ′) \ s1 ∧ s2)⇒i u (26.7)

We have to show Γ, (Γ′ \ s1 ∧ s2)⇒i u.
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• If s1 ∧ s2 = s′ ∧ t′, i.e. s1 = s′ and s2 = t′, then from Γ⇒i s1 and 26.7, using 26.1
we have Γ, ((Γ, ((s1, s2,Γ′) \ s1 ∧ s2)) \ s1) ⇒i u. With this and Γ ⇒i s2, using
26.2, we have

Γ, ((Γ, ((Γ, ((s1, s2,Γ′) \ s1 ∧ s2)) \ s1)) \ s2)⇒i u (26.8)

from which by Weakening we have Γ, (Γ′ \ s1 ∧ s2)⇒i u.
• If s1 ∧ s2 6= s′ ∧ t′, then s′ ∧ t′ ∈ (Γ, (Γ′ \ s1 ∧ s2)), by ∧L we need only to show
s′, t′,Γ, (Γ′ \ s1 ∧ s2)⇒i u, which follows from Weakening of 26.7.

(iii) s = s1 ∨ s2

We have some s′ ∨ t′ ∈ Γ′, and s′,Γ′ ⇒i u, and t′,Γ′ ⇒i u, and Γ ⇒i s1 (there is
another similar case where we have Γ⇒i s2 instead of Γ⇒i s1, in which the reasoning
is the same).
The inductive hypotheses from the 3rd induction are

Γ, ((s′,Γ′) \ s1 ∨ s2)⇒i u (26.9)

Γ, ((t′,Γ′) \ s1 ∨ s2)⇒i u (26.10)

We have to show Γ, (Γ′ \ s1 ∨ s2)⇒i u.

• If s1 ∨ s2 = s′ ∨ t′, i.e. s1 = s′ and s2 = t′, with Γ⇒i s1 and 26.9, using 26.1 we
have

Γ, ((Γ, ((s1,Γ′) \ s1 ∨ s2)) \ s1)⇒i u (26.11)

from which by Weakening we have Γ, (Γ′ \ s1 ∨ s2)⇒i u.
• If s1 ∨ s2 6= s′ ∨ t′, then s′ ∨ t′ ∈ (Γ, (Γ′ \ s1 ∨ s2)), by ∨L we have to show
s′,Γ,Γ′ \ s1 ∨ s2 ⇒i u and t′,Γ,Γ′ \ s1 ∨ s2 ⇒i u, which follow from Weakening of
26.9 and 26.10, respectively.

Lemma 27. The cut rule is admissible in Gi.

Γ⇒i s s,Γ⇒i t
CutΓ⇒i t

Theorem 28 (Equivalence of Ni and Gi). Γ `i s iff Γ⇒i s.

Theorem 29. Intuitionistic sequent entailment is decidable.
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KΓ `c
H s→ t→ s

SΓ `c
H (s→ t→ u)→ (s→ t)→ s→ u

DNΓ `c
H ¬¬s→ s

∧RΓ `c
H s→ t→ s ∧ t

∧L1Γ `c
H s ∧ t→ s

∧L2Γ `c
H s ∧ t→ t

∨R1Γ `c
H s→ s ∨ t ∨R2Γ `c

H t→ s ∨ t

∨LΓ `c
H (s→ u)→ (t→ u)→ (s ∨ t→ u)

s ∈ Γ AΓ `c
H s

Γ `c
H s→ t Γ `c

H s
MPΓ `c

H t

Figure 5: Rules for the classical Hilbert system Hc

KΓ `i
H s→ t→ s

SΓ `i
H (s→ t→ u)→ (s→ t)→ s→ u

EΓ `i
H ⊥ → s

∧RΓ `i
H s→ t→ s ∧ t

∧L1Γ `i
H s ∧ t→ s

∧L2Γ `i
H s ∧ t→ t

∨R1Γ `i
H s→ s ∨ t

∨R2Γ `i
H t→ s ∨ t

∨LΓ `i
H (s→ u)→ (t→ u)→ (s ∨ t→ u)

s ∈ Γ AΓ `i
H s

Γ `i
H s→ t Γ `i

H s
MPΓ `i

H t

Figure 6: Rules for the intuitionistic Hilbert system Hi

4 Hilbert’s systems

Definition 30 (Classical Hilbert system Hc). The classical Hilbert system defines the
entailment relation Γ `c

H s by rules given in Figure 5.

Definition 31 (Intuitionistic Hilbert system Hi). The intuitionistic sequent system defines
the entailment relation Γ `i

H s by rules given in Figure 6.

Lemma 32 (Deduction theorem for Hc and Hi). If s,Γ `H t then Γ `H s→ t.

Lemma 33 (Equivalence of Hc and Nc). Γ `c
H s iff Γ `c s.

Lemma 34 (Equivalence of Hi and Ni). Γ `i
H s iff Γ `i s.
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5 Semantic tableaux

Definition 35 (Intuitionistic tableau system F). The intuitionistic tableau system defines
the entailment relation Γ ⇒F ∆ by rules given in Figure 7. There is an interesting, close
resemblance with the classical Gentzen system.

⊥ ∈ Γ FΓ⇒F ∆
x ∈ Γ x ∈ ∆ CΓ⇒F ∆

s→ t ∈ Γ Γ⇒F s,∆ t,Γ⇒F ∆
→LΓ⇒F ∆

s→ t ∈ ∆ s,Γ⇒F t
→RΓ⇒F ∆

s ∧ t ∈ Γ s, t,Γ⇒F ∆
∧LΓ⇒F ∆

s ∧ t ∈ ∆ Γ⇒F s,∆ Γ⇒F t,∆
∧RΓ⇒F ∆

s ∨ t ∈ Γ s,Γ⇒F ∆ t,Γ⇒F ∆
∨LΓ⇒F ∆

s ∨ t ∈ ∆ Γ⇒F s, t,∆
∨RΓ⇒F ∆

Figure 7: Rules for the intuitionistic tableau system F

Fact 36 (Reflexivity of F). If s ∈ Γ and s ∈ ∆ then Γ⇒F ∆.

Lemma 37. Weakening is admissible in F.

Γ⇒F ∆ Γ ⊆ Γ′ ∆ ⊆ ∆′
WeakΓ′ ⇒F ∆′

Lemma 38 (F to Gi). If Γ⇒F ∆ then Γ⇒i
∨

∆.

Proof. By induction on Γ⇒F ∆. This observation is needed: if Γ ⊆ ∆, then
∨

Γ⇒i
∨

∆.

Theorem 39 (Equivalence of F and Gi). Γ⇒F s iff Γ⇒i s and Γ⇒F ∆ iff Γ⇒i
∨

∆.

Theorem 40. Intuitionistic tableau entailment is decidable.

Theorem 41 (Equivalence of F and Ni). Γ⇒F s iff Γ `i s and Γ⇒F ∆ iff Γ `i
∨

∆.

Definition 42 (◦-free). A formula s is called ◦-free, where ◦ is a placeholder for some
connective or constant of the logic, if ◦ does not appear in s. For example, that s is ∧-free is
defined recursively as:

(i) if s is a propositional variable, then s is ∧-free

(ii) if s = ⊥, then s is ∧-free

(iii) if s = s1 ∨ s2, then s is ∧-free if s1 and s2 are ∧-free

(iv) if s = s1 → s2, then s is ∧-free if s1 and s2 are ∧-free.

Lemma 43. If ∆ is a set of →-free formulas, and ⇒c ∆, then ⇒F ∆.
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Proof. By induction on ⇒c ∆.

Lemma 44. If s is →-free, then `i s iff `c s.

Proof. Follows from Lemma 10, Lemma 43, Theorem 25, and Theorem 39.

6 Remarks

The systems represented here are based on those represented by Troelstra and Schwichtenberg
[1996], except that the tableau system is the formulation of [Fitting, 1969], who called it
Beth tableau. The original tableau system is by [Kripke, 1963]. All systems are adjusted
to work with lists of formulas in the fashion of [Smolka and Brown, 2014]. The Gentzen
systems here are closest to the GK3[ci] systems in [Troelstra and Schwichtenberg, 1996],
which are due to Stephen Kleene. The cut-elimination proofs for Gentzen systems are based
on [Smolka and Brown, 2014].
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