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Introduction
Starting Point

o ICL'14: intuitionistic Gentzen system, with decidability by
proof search

@ ICL'13: clausal models, with decidability by tableau

e ICL'12: Kripke models and the tableau system

Task:

@ Complete the logic with disjunction and conjunction
@ Look at models for intutionistic logic and . ..

Result: various proofs in 5K+ lines of Coq - lots of technical details



Introduction

What we will (very quickly) see

Cut elimination: intuitionistic and classical Gentzen systems
Models for intutionistic logic: Heyting algebras and Kripke
models

e Countermodels: independence of intuitionistic connectives

e Constructing countermodels: intuitionistic tableau and
demos
Finding countermodels: Naive Kripke models fail.
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Cut Elimination

Cut Elimination for Gentzen's systems

r='s s, =/t
Fr=it

Cut

@ (Troelstra and Schwichtenberg 1996) proofs involve the
definitions of level, rank, and cutrank of a cut.

@ In ICL'14, the proof bases completely on nested structural
inductions, by a generalisation:

r='s M ='u
MM \s="u

GCut



Cut Elimination

A classical Gentzen system

xel xeAA Lel E
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=°A
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Cut Elimination

Cut-elim for classical Gentzen

[=°s,A s =N
M =A N

Cut

and the generalisation

r=°<A M=<A’
NM\s=°A\sA

GCut

This is actually also found in (Girard, Taylor, and Lafont 1989), and
is closely related to the original generalisation of Gentzen:

Fr=°<A,s" s =< A
M =<A, AN

Multicut
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Cut Elimination
Full of technical details, but routine

@ The proof of the generalised cut for classical logic is much
more complex than the intuitionistic case, but more symmetric.

@ In one of the most obscure cases: find and prove the subgoal

M1, (M3 \s), (M1, T2\ s) \ £t = (((A2\ 5), A3) \ t), (A2 )\ s5), A

where

M=\ st
A= (A\s—t),A
Mo:=T,(t,[")\s—t
Ny :=(A\s—t)s A
M3:=s,MM\s—t

Az :=((t,A)\s —t), A



Heyting algebras and Kripke models

Heyting algebras and Kripke models




Heyting algebras and Kripke models
Construction

Heyting algebras model truth values for formulas.

An interpretation maps a formula to a truth value.



Heyting algebras and Kripke models
Construction

Heyting algebras model truth values for formulas.
An interpretation maps a formula to a truth value.

o Elements @ Truth values



Heyting algebras and Kripke models
Construction

Heyting algebras model truth values for formulas.
An interpretation maps a formula to a truth value.

o Elements @ Truth values

@ A partial order < @ Ordering of truth values



Heyting algebras and Kripke models
Construction

Heyting algebras model truth values for formulas.

An interpretation maps a formula to a truth value.

o Elements @ Truth values

@ A partial order < @ Ordering of truth values

@ Bounded truth values

@ Bounded ordering L<x<T



Heyting algebras and Kripke models
Construction

Heyting algebras model truth values for formulas.

An interpretation maps a formula to a truth value.

o Elements @ Truth values

@ A partial order < @ Ordering of truth values

@ Bounded truth values

@ Bounded ordering L<x<T

@ Greatest lower bound @ Truth value for A



Heyting algebras and Kripke models
Construction

Heyting algebras model truth values for formulas.

An interpretation maps a formula to a truth value.

o Elements @ Truth values

@ A partial order < @ Ordering of truth values

@ Bounded truth values

@ Bounded ordering L<x<T

@ Greatest lower bound @ Truth value for A

@ Least upper bound @ Truth value for Vv



Heyting algebras and Kripke models
Construction

Heyting algebras model truth values for formulas.
An interpretation maps a formula to a truth value.

o Elements @ Truth values

@ A partial order <

Ordering of truth values

o Bounded ordering @ Bounded truth values

1 <x<T
@ Greatest lower bound @ Truth value for A
@ Least upper bound @ Truth value for v

@ A mysterious concept @ Truth value for —
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A Heyting algebra is a partial order (H, <, L, T, A, V, —) satisfying
the following conditions for all x,y,z € H:

0o L <x<T

e z<xAyiffz<xandz<y
o xVy<ziffx<zandy <z
e z<x—yiffzAx <y.

We can also define T = 1 — L.
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Heyting algebras

A Heyting algebra is a partial order (H, <, L, T, A, V, —) satisfying
the following conditions for all x,y,z € H:

0o L <x<T

e z<xAyiffz<xandz<y
o xVy<ziffx<zandy <z
e z<x—yiffzAx <y.

We can also define T = 1 — L.

Completeness of Heyting algebras

I = s iff for any H and «a, a(l) < as.
Or s is intuitionistically derivable iff T < as, for any H, a.

We proved this for preordered Heyting algebras partly basing on
(Brown 2014). For partial-ordered algebras, (Troelstra and Dalen
1988) provided a proof with quotients (equivalence class).
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Intuitionistic connectives are all independent, i.e. we cannot replace
one connective with a construction of the remaining connectives.




Heyting algebras and Kripke models
Independence of Intuitionistic connectives

For classical logic, we can define s A t = —(—s V —t).

Intuitionistic connectives are all independent, i.e. we cannot replace
one connective with a construction of the remaining connectives.

Proof by countermodels.

T

N a(xNy) = &
X 2 b v but any combination of x, y, L, T, V
NS and — does not evaluate to c.
c So there does not exist a combination

‘ that is equivalent to x A y.
€
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Kripke models for intuitionistic logic

A Kripke model! is a tuple (K, <, a) where:

o < is a preorder on the set of states K
@ a: P+~ PK is a monotonic labeling, meaning that if p € a(x)
and p < q then g € a(x).

!specialized model for intuitionistic logic
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Kripke models for intuitionistic logic

A Kripke model! is a tuple (K, <, a) where:

o < is a preorder on the set of states K
@ a: P+~ PK is a monotonic labeling, meaning that if p € a(x)
and p < q then g € a(x).
3 X5y
VRN a(x) = {1,3}
<1 2y oly) = {2.3}
N S

0

!specialized model for intuitionistic logic
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Interpretation of a Kripke model

Kx := a(x)

KL:=0
K(snt):=KsnKt
K(sVvt):=KsUKt
Kis—>t)={peK|(pt)nKsCKt}

where (p1) :={ge K| p<gq}. KO :=K; K(s,T) := Ksn K(I').

Read Ks as the set of states in K that force or satisfy s.



Heyting algebras and Kripke models
Interpretation of a Kripke model

Kx := a(x)

KL:=0
K(sAt):=KsnKt
K(sVvt):=KsUKt
Kis—>t)={peK|(pt)nKsCKt}

where (p1) :={ge K| p<gq}. KO :=K; K(s,T) := Ksn K(I').

Read Ks as the set of states in K that force or satisfy s.

Soundness of Kripke models

If [ =7 s then for any Kripke model K, K(I') C K.
Or if s is intuitionistically derivable then Ks = K, for any K.




Heyting algebras and Kripke models
EINES

Kx ={1,3}
Ky ={2,3}
/3\X,y K(xAy) = {3}
x 1 5y AK(va ={1,2,3}
NS K(x —y)=1{2,3}



Heyting algebras and Kripke models
Kripke models to Heyting algebras

upward-closed A =Vpe A p<g—qg€cA
K :={A| AC K A upward-closed A}

(K,C) is a Heyting algebra, with .. =@, and T = K, and the 3
operations:

AANB:=ANB
AVB:=AUB
A—-B:={peK|(pt)NAC B}

A

The interpretation a(x) := Kx. By induction a(s) = Ks.



Heyting algebras and Kripke models

EINES

3 X'/.y
1 7N 2 Y
x a(x) = {1,3}
N S
0 a(y) ={2,3}
a(xNy)={3}
{0,1,2,3} a(xVy)={1,2,3}
N a(x = y) = {2,3}
x {1,3} {2,3} v a(-x) =10
~N 7 a(x V -x) = {1,3}
{3} a(—-x = x) = {1,3}
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Intuitionistic tableau

Tableau system

@ Decision procedure that produces counter Kripke models, first
by (Kripke 1963), reformalized compactly by (Fitting 1969).

@ Has the same rules as the classical Gentzen system except the
negative implication (right implication).

s—>tel =fs, A t, = A
F:>,_-A

s—steA s,T=rt,X
I':>,:A

—R

Completeness of Tableau
Fr=rAiffl="\VA




Intuitionistic tableau
Signed formulation by Fitting

C,snt" At C,snt™ =
C,st,t* C,s™ | C,t~
C,sVvtt N C,sVt™
V
C,st|C,t+ C,s,t~
C,s = tt C,s =t~
+ -

_
C,s | C,tF Ct, st t~



Intuitionistic tableau
Signed formulation by Fitting

C,snt" C,snt™
—— AT — = N\
C,st,t* C,s™ | C,t~
C,sVvtt N C,sVt™

—  ~ . V

C,st|C,t+ C,s,t~

C,s = tt N C,s =t~

— T = F T =
C,s | C,tt Ct,st,t~

If s is not intuitionistically derivable, then there is one tableau of
[s~] that is not closed. That tableau is the counter Kripke model.

We call such countermodel a Demo.
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Intuitionistic tableau

EINES

@ The tableau of x — ——x is closed

@ The tableau of =—x — x results in a demo:

X — X

!

——xT, x7, x~

!

—|—|X+,X+, 1~

oO— = —N



Intuitionistic tableau
EINES

@ The tableau of x — ——x is closed

@ The tableau of =—x — x results in a demo:

——X T X 2 X I'A(X _ {2}
=X, X7, X 1 Ak(ﬁx) =0

| | (+) ={0,1,2}

0 K(—WX—>X):{2}7§K

—|—|X+,X+, 1~
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Intuitionistic tableau
Observations

@ Terminal nodes in a demo act classically

@ The jump rule of the negative implication creates the
non-terminal nodes, thus the intuitionistic sense:

If A is —-free, then = A iff =fF A.
Orif s is —-free, then =/ s iff = s.

| \

Fact

If the set of signed subformulas of s~ generated by the tableau rules
does not contain negative implications, then =' s iff = s.
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Naive Kripke models
The naive model conjecture

@ A demo is a counter Kripke model with states as sets of signed
subformulas

@ Looking at countermodels for known underivability results:

If s is not intuitionistically derivable, there exists a counter Kripke
model with states as sets of only (subformula) positive variables.

@ The conjecture was rejected by counterexamples found by a
computer program:

=X V X
=XV X — X
—XV-ox —y
X—>yVx—y
XxX—=yVix—y)—=y
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variables and negative implications.

@ Let us look again at the counterexample —x V ——x:
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Naive Kripke models

The amended lemma

@ The set of maximal consistent (underivable) clauses, with
positive formula subset relation, is a demo

A maximal consistent (subformula) clause is identified by its positive
variables and negative implications.

@ Let us look again at the counterexample —x V ——x:

xT, 1~ —xt, 1L~

~ — X+ (D
‘ XV —\—|X_7
@ —|X77—\—|X7 ‘!X_’ﬁﬁx

xt
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Naive Kripke models

@ Structural Cut elimination by generalisation originally from
Gentzen

@ Heyting algebras as complete semantics for intuitionistic
propositional logic, obtainable from Kripke models
@ The intuitionistic tableau provides a decision procedure by

countermodels. Negative implications create the intuitionistic
sense

@ Countermodels can be searched from the powerset of positive
variable and negative implication subformulas.
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