Generating Infrastructural Code

for Terms with Binders using MetaCoq
Bachelor Talk 2

Author: Adrian Dapprich
Advisor: Andrej Dudenhefner

Department of Computer Science
Saarland University

22. July 2021

Autosubst
°

Motivation

Problem: Prove Metatheorems of Languages Modelled in Coq
@ How to model binders and substitution
(Ax.t)v =g t[x — V]
@ How to solve subtitution equations

slo] = t[7]

Solution: Autosubst (Dissertation of Kathrin Stark [Stark, 2019])

@ De Bruijn indices

@ Based on sigma calculus [Abadi et al., 1991]

@ Provides asimpl tactic to solve substitution equations

OCaml
®00

Workflow: Autosubst OCaml

& User

Write HOAS
specification

Prove substi-
tution lemmas

lang.sig B

@ Autosubst OCaml

lang.v &

Parse HOAS specification

|

Generate inductive types
and substitution operation

!

Generate rewriting lem-
mas about substitutions

Coq as
a library

OCaml
oeo

Code Generation

@ Variations of old lemmas supporting funext-free asimpl are generated

@ Some original lemmas are optionally generated

OCaml
ooe

Automation Generation

@ Tactics can be constructed with tactic AST from Coq implementation
(but Ltac commands can not)

let tac = repeat_ (first_ [progress_ (setoid_rewrite_ asimpl_rewrite_lemma)
; progress_ (unfold_ asimpl_unfold_functions)
; progress_ (cbn_ asimpl_cbn_functions)

]

Ltac asimpl :=

@ Typeclasses and instances can be constructed from the command & term ASTs

Code Generation

@ Basic lemmas are generated
(unscoped, functor-less and non-variadic syntax)

@ wellscoped, functor and variadic syntax are straightforward extensions

Problems

Implicit arguments
Shadowing

Recursive functions

De Buijn indices

Implicit Arguments

Problem
Which arguments are implicit is not part of MetaCoq AST

Workaround
Pass "holes” (underscores in concrete syntax)

tmTypedDefinition "myList" hole (tApp <% @coms %> [hole; <% O %>; <% [1 %>1)
(x* = myList : ?T := comns ?TO O [] *)
(* = mylist : list N := [0] x*)

Recursive Functions

Problem: Porting Recursive Functions to MetaCoq
Are all 23 recursive functions from OCaml terminating and implementable in Coq?

@ Most are structurally recursive helper functions on lists

@ Some use recursion nested in lists like rose trees

@ One uses well-founded recursion with an agenda argument
can be reformulated to use a fold

De Bruin Indices

Problem: Programming with De Bruin Indices is Hard

Fixpoint even (n: N) := tFix [
e tLam (tCase O
| S n= negb (odd n) | ... [tLam (negb ((20)); ... 1);
with odd (n: N) := tLam (tCase O
match n with [tLam (negb ((30D); ... 1)
| S n= negb (even n) | ...]

Solution: Environments

Function env : string — N that is updated when constructing a term below a binder

De Bruin Indices

Problem: Managing Environments is Hard

@ Need to know the context before constructing a term

let smallerTerm = tApp (env "even") [env "n"] in
let t = buildBiggerTerm smallerTerm in
@ Monadic functions are pervasive and you have to worry about order of execution

let mSmallerTerm = mApp (mEnv "even") [mEnv "n"] in
let t = mBuildBiggerTerm mSmallerTerm in

Solution: Custom AST with Named Variables

Translate the named variables to deBruijn indices after the whole term is built

Extensions
®00

asimpl With Setoid Rewriting

Lemma extequal : V f g x, f x = g x.

Goal: Solve a Substitution Equation

V (s t: tm) £ g h,
st .2 (h{>> £)] =slt .: (b > g))].
Need morphisms for instantiation , 'scons and 'function composition'

Instance subst_morphism :
Proper (pointwise_relation _ eq = eq = eq) (@subst_tm).

Extensions
(o] 1¢}

asimpl With Setoid Rewriting

@ Setoid rewrite requires exact match (before typeclass resolution begins)
H:Vzx, fx=gzx

s[h >> £f] = s[h >> g] (* Tactic failure: nothing to rewrite x*)
s[fun x = f (h x)] = s[fun x = g (h x)]

@ Morphisms are hard to get right
Need one for all user-defined types with term indices (e.g. I' - s[o] : t)
even harder if language has nested recursion (e.g. record types)

@ Slower

Extensions
ooe

Allfv Lemmas

Existing infrastructure works well for this kind of new lemmas
Handle variable case, combination of recursive calls and lifting

Fixpoint subst (o0 : N—= tm) (s : tm) := Fixpoint allfv (p: N—=P) (s: tm) :=
match s with match s with

| var s0 = o s0O | var x = p x

| app sO s1 = | app sO sl =

app (subst o s0) (subst o s1) allfv p sO A allfv p si

| lam sO s1 = lam sO (subst ([ffa|) s1) | lam sO s1 = True A allfv ((ffp) si

end. end.

Code Statistics

‘ Haskell ‘ OCaml ‘ MetaCoq
code 2636 3285 2828
comments | 310 437 -

Timings

Comparing compilation times of a large case study
(containing a.o. POPLmark[Aydemir et al., 2005])

functional extensionality ‘ setoid-rewriting
111.7 seconds ‘ 412.0 seconds

Bugfixes

@ Original Autosubst

e Some printed notations
e Unparseable substitution operation generated
e Missing {struct s} annotation caused slowdonws

o Coq
e Printing of "Existing Instances” command

Feature Table

Autosubst OCaml Autosubst MetaCoq New asimpl
done | parsing parsing define lemmas
basic lemmas basic lemmas’ morphisms
lemmas for new asimpl proof-of-concept
tactics
todo | allfv lemmas allfv lemmas fix bugs
full documentation full documentation
publish publish
Tsyntax extensions
lemmas for new asimpl
tactics

Maybe Todo
Faster PoC for asimpl, traced syntax, Autosubst webservice

Appendix
9000000

Bibliography |

[Abadi, M., Cardelli, L., Curien, P-L., and Lévy, J.-J. (1991).
Explicit substitutions.
Journal of functional programming, 1(4):375-416.

& Aydemir, B. E., Bohannon, A., Fairbairn, M., Foster, J. N., Pierce, B. C., Sewell,
P., Vytiniotis, D., Washburn, G., Weirich, S., and Zdancewic, S. (2005).
Mechanized metatheory for the masses: the p opl m ark challenge.

In International Conference on Theorem Proving in Higher Order Logics, pages
50-65. Springer.

@ Herbelin, H. and Lee, G.
Formalizing logical metatheory: Semantical cutelimination using kripke models for
first-order predicate logic.

Appendix
9000000

Bibliography Il

[Schafer, S., Smolka, G., and Tebbi, T. (2015).
Completeness and decidability of de bruijn substitution algebra in coq.
In Proceedings of the 2015 Conference on Certified Programs and Proofs, pages
67-73.

[§ Sozeau, M., Boulier, S., Forster, Y., Tabareau, N., and Winterhalter, T. (2019).
Coq coq correct! verification of type checking and erasure for coq, in coq.
Proceedings of the ACM on Programming Languages, 4(POPL):1-28.

[§ Stark, K. (2019).
Mechanising syntax with binders in coq.

Shadowing

Problem: Shadow existing constants

When dynamically defining new constants from a meta-program

Inductive ty := ... | all : ty — ty.

(x all : reductionStrategy *)

tmUnquoteInductive "tm" (Some all) ind;;

(x all : ty — ty *)

tmDefinition "mydef" (Some all) term;; (* fails *)

Appendix
00@0000

Put user generated code into a module

Custom AST

Inductive term :=

tRel N — term

tProd string — term — term — term

tLambda string — term — term — term
term — term — term

tApp

Appendix
[ele)eY Yolole}

Inductive nterm :=

nRef
nTerm
nProd
nterm
nLambda
nterm

nApp

string — nterm
term — nterm
string — nterm — nterm —

string — nterm — nterm —

nterm — nterm — nterm

Appendix
[ele)eleY Tole}

Faster Alternative to Setoid Rewriting

Do Setoid Rewriting Backwards

@ setoid-rewriting: given an equality, find a path of morphisms that lead to being
able to rewrite with that equality

@ idea: because our rewriting is pretty regular, start applying morphisms as long as
subterms are not equal and apply the rewrite lemmas if we can’t decompose terms
further

.
@ works well on subsitution equations s[o] = t[7]

@ does not work on normalizing single terms s[o]

Appendix
000000

Allfv use cases

Closedness check with constant L predicate
Check if a term is wellscoped
If type function instead of predicate, collect free variables in list

Prove two substitutions equal if they agree only on the free variables

Fixpoint idSubst (o

Allfv Lemmas

: N— tm)

(Eq : V x, 0 x = var x) (s : tm)
subst 0 s = s :=

match s with

| var sO = Eq sO

| app sO s1 =
congr_app (idSubst o Eq s0)

(idSubst o Eq s1)
| lam sO s1 =

congr_lam sO
(idSubst (e) (ftEq) si1)

end.

Fixpoint allfv_triv (p: N— P)

(H: V x, p x) (s: tm)
allfv p s :=
match s with

| var sO = H s0
| app sO s1 =
conj (allfv_triv p H sO0)

(allfv_triv p H s1)
| lam sO s1 =

conj I
(allfv_triv ((ffp) (fHH)D s1)

end.

Appendix
000000e

	Autosubst
	OCaml
	MetaCoq
	Extensions
	Data
	Appendix

