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Abstract

The metatheory of languages with binders (e.g. programming languages) often
involves intuitive reasoning about the behavior of substitutions. But when formal-
izing metatheory in proof assistants based on type theory, like Coq, these intuitive
notions can turn out to be boilerplate heavy and result in tedious proofs.

The Autosubst family of programs is concerned with generating substitution boil-
erplate code for languages with binders in Coq.
We present two programs that reimplement and extend Autosubst 2, one written
in OCaml and one written in MetaCoq.
The program written in OCaml uses the Coq implementation as a library for code
generation. The programwritten in MetaCoq uses the metaprogramming facilities
of MetaCoq for code generation.

We discuss the implementation details and implementation challenges of both pro-
grams and how they extend the original Autosubst 2.
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Chapter 1

Introduction

1.1 Coq
Coq [32] is a proof-assistant based on type theory.
It can be used to formalize a mathematical proof by constructing a correspond-
ing term in the functional programming language Gallina. This due to the Curry-
Howard correspondence, which says that a mathematical proposition can be en-
coded as a type in type theory. Constructing an inhabitant of that type then corre-
sponds to a proof of that proposition.

Coq’s formal language is the Calculus of Inductive Constructions. As such it sup-
ports dependent types and inductive type definitions. Everything has a type, even
a type itself, which leads to a hierarchy of types. For example starting at the trivial
proof of the true proposition it holds that

I : ⊤ : P : T : T : . . .

with P being an impredicative universe of propositions.

Inductive type definitions in particular are useful to model various predicates, for
example logical conjunction with a single constructor.

∧ : P→ P→ P
conj : ∀(P Q : P), P → Q→ P ∧Q

We can then prove a simple fact about conjunction by constructing the following
Gallina term.

fun P Q c => match c with conj p q => conj q p end

: ∀(P Q : P), P ∧Q→ Q∧ P

A user interacts with the Coq environment by way of vernacular commands. For
example the Inductive vernacular command is used to define a new inductive
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type.
Coq also implements a tactic language that can be used to construct proofs interac-
tively.

Inductive type definitions can also be used to model programming languages (or
other languages like first-order logic), as well as reduction semantics and type sys-
tems for these programming languages.
With this, metatheorems of programming languages can be expressed and proved
in Coq. Two important metatheorems of programming languages are progress and
preservation. For terms tm, types ty, an evaluation relation on terms ≻ : tm →
tm→ P and a typing relation1 on terms and types has_type : tm→ ty→ P

• the progress theorem states that for any well-typed term t there is a term t ′

so that t ≻ t ′,

• the preservation theorem states that for any well-typed term t that reduces to
a term t ′, t ′ is still well-typed.

During proofs of theorems like the above, one often needs auxiliary lemmas about
substitutions that are intuitively clear but tedious to prove.
There are several ways to address this problem, the Autosubst family of programs
being one of them.

1.2 MetaCoq
The MetaCoq project [29] is metaprogramming library for the Coq proof assistant.
It aims to formally verify metatheorems about Coq, in Coq, and to allow the devel-
opment of metaprogramming plugins that can manipulate Gallina terms.
In order to do this, MetaCoq defines a reification of Gallina terms in Coq, i.e. a rep-
resentation of the Gallina AST2 as an inductive type definition, called term3. It also
implements a way of converting from Gallina terms to the reified terms (quoting)
and back (unquoting).

Quoting and unquoting is done by evaluating terms of the TemplateMonad type.
The TemplateMonad is a monad that encapsulates side-effects that can interact with
the Coq environment. A term of type TemplateMonad A represents a computation
that will return a value of type Awhen evaluated.
For example, the

• tmQuote :∀ A, A -> TemplateMonad term

• and tmUnquoteTyped :∀ A, term -> TemplateMonad A

1where for a term t and type T , has_type t T means that t is well-typed
2abstract syntax tree
3which clashes with other names we want to use, so we call it the MetaCoq AST
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constructors can be used for quoting and unquoting.
The TemplateMonad also supports other interactionswith the Coq environment like
adding new definitions and inductive types to the environment using the construc-
tors

• tmDefinition : ident -> ∀ A, A -> TemplateMonad A

• and tmMkInductive : mutual_inductive_entry -> TemplateMonad unit.

So by using the TemplateMonad, we can write metaprograms in Gallina that con-
struct, unquote, and define other Gallina terms in the Coq environment.
Evaluation of TemplateMonad terms is implemented as a Coq plugin and is trig-
gered by the MetaCoq Run vernacular command.

1.3 Overview
When formalizing metatheory of languages with binders one often needs boiler-
plate lemmas about substitutions. These lemmas are often intuitive, but a formal
proof requires technicalities and is tedious.

Schäfer et al. [24] created the Autosubst tool for Coq. It derives proofs of certain
rewrite lemmas about substitutions for a given language, and uses a completeness
result about the σSP-calculus [23] to implement a decision procedure for equalities
between terms.
However, it is implemented in Ltac, which is fragile and hard to debug because
Ltac semantics are not well defined, and also imposes some limitations on the lan-
guages that Autosubst supports. For example, it does not support languages with
variadic binders4 or mutually inductive sorts5.

Stark et al. [31] developed Autosubst 2 which improves upon Autosubst by having
a simplified treatment of multi-sorted languages, and supports variadic binders,
mutually inductive sorts, wellscoped syntax, modularly defined syntax, and other
extensions.
It is implemented as a Haskell program so it does not suffer from the limitations of
Ltac. The program takes a language specification and generates Coq source code
that contains inductive types for the language, rewrite lemmas for substitutions
and the asimpl tactic to automatically solve equalities between terms.
Autosubst 2 is described in detail in the dissertation of Stark [30], where she also
mechanizes a convergence result of the σSP-calculus.

In this thesis we develop two reimplementations of Autosubst 2.
Autosubst OCaml is a reimplementation in OCaml, the language that Coq is imple-
mented in. We explore how feasible it is to use the Coq implementation as a library

4An abstraction that can bind multiple variables
5Sorts that are defined in terms of each other like in the call-by-value System F (Appendix A.1)
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for code generation.
Autosubst MetaCoq is a reimplementation in the MetaCoq framework for Coq. We
explore how to use MetaCoq’s metaprogramming capabilities to implement code
generation.

We implement some improvements over Autosubst 2 in the OCaml reimplementa-
tion.
Neither program supports the modular syntax feature of Autosubst 2, as it is a
complex extension that is out of scope for this work.

We discuss the general theory behind Autosubst (Chapter 2), our implementation
in OCaml (Chapter 3), our implementation in MetaCoq (Chapter 4), case studies
using the OCaml implementation (Chapter 5), and extensions to Autosubst 2 that
we (attempt to) implement (Chapter 6).

1.4 Related Work
There are several other compilers that generate some amount of boilerplate code
for languages with binders.
We give a brief overview here.

• Ott [25] is a compiler for language specifications withmultiple backends. For
example, it can generate code for Coq, Isabelle/HOL and Latex. This code
can be used in formalizations but Ott does not generate any lemmas about
the languages.

• LNGen [5] is related to Ott and uses its specification language. It generates
code in the locally nameless style [9] and focuses on generating infrastructure
lemmas.

• Needle&Knot [14] is a compiler for language specifications that also gener-
ates common infrastructure lemmas and tactics that use these lemmas.

1.5 Contributions
In this section we give a short summary of our contributions.

Note that the author wrote an initial reimplementation of Autosubst 2 in OCaml as
part of his ACP project6.
That version7 only supports basic code generation and no generation of automation
tactics.

Our contributions during the bachelor project are:

• Continuation of the reimplementation of Autosubst 2 in OCaml (Chapter 3).

6https://courses.ps.uni-saarland.de/acp_20/
7https://github.com/uds-psl/autosubst-ocaml/tree/acp_submission

https://courses.ps.uni-saarland.de/acp_20/
https://github.com/uds-psl/autosubst-ocaml/tree/acp_submission
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• A partial reimplementation of Autosubst 2 as a MetaCoq plugin (Chapter 4).

• Extensions to the input syntax of the programs (Section 2.5.1).

• Extension to asimpl tactic (Section 6.1)

• Bugfixes in several projects:

– One printing bug in Coq fixed (Technical Remark 3.5)

– One bug in Autosubst 2 reported (Section 6.3)

– One bug in the monadic library fixed (Section 3.3)

The MetaCoq plugin turned out to require a lot more work than we antici-
pated so there are some implementation details missing compared to Auto-
subst 2 and Autosubst OCaml, which is discussed in Section 4.2.



Chapter 2

Autosubst

In this chapter we discuss the general ideas underlying Autosubst 2, and by exten-
sion, our implementations. In the following we will just use the name Autosubst if
the statement is general enough that it holds for all three implementations. Other-
wise we use their names.

The goal of Autosubst is

• to lift the burden of generating tedious boilerplate code commonly usedwhen
proving metatheorems about languages with binders

• and to allow a user to automatically prove certain lemmas that appear in the
context of substitutions by generating Coq tactics.

Autosubst achieves these goals by generating code for a de Bruijn algebra, which
are introduced in Section 2.3.
We summarize the design decisions and properties of the theory behindAutosubst,
which are a result of the work of Schäfer et al. [24] and Stark [30].
We also discuss the general behavior of an Autosubst compiler, which is a program
implementing the code generation.

Since Autosubst is concerned with automatically generating boilerplate code for
languages with binders some decisions have to be made about how to formalize
binders and substitutions in the generated code. This is a long researched problem
space with a lot of approaches [11, 12, 9, 19] that have different trade-offs.
We discuss the basic named syntax and single substitution approach below and
contrast them with the approach that Autosubst takes.

2.1 Binders
The general definitions concerning binders are the following, based on [20, Section
5.1].
A binder is a construct which declares a variable to be local to a term. A bound
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variable is any variable of a term that is associated with a binder. A free variable
is any variable of a term that is not bound.
A term is closed if it contains no free variables.

Themost prominent example of a binder in programming languages is the λ-binder
of the eponymous λ-calculus which consists of a single sort tm.
Definition 2.1 (λ-calculus)

s, t ∈ tm := v | s t | λv.s v ∈ string

With a standard notion of substitution: s[t/v] is a term where all free occurrences
of v have been replaced by t.
Substitution naturally appears during β-reduction, which replaces a bound vari-
able with an argument in the body of a λ-abstraction.

(λv.s)t→β s[t / v]

Named Syntax
The textbook approach to binders is to use names for variables. In paper proofs
this works well. However, when formalizing a language with this approach, one
encounters some problems.

One problem is that of α-equivalence: two programs that only differ in the names
of their bound variables have equivalent behavior. So by convention, equality is
defined up to renaming of bound variables.

(λf.λx.f x)(λy.y x) =α (λg.λz.g z)(λy.y x)

Butwith an implementation of the λ-calculus in Coq, these terms are not definition-
ally equivalent. So extra work needs to be done to reconstruct this α-equivalence.

Another problem is that of capture-avoiding substitution: when substituting a
term s containing a free variable v into some other term where a variable of the
same name is bound, the occurrence of v in s should not become bound.

(λx.f x)[(λy.y x) / f] ̸= (λx.(λy.y x) x)

The free x in (λy.y x) would be captured because after the substitution it is associ-
ated with λx.

One solution is to say substitution can rename variables in a way that free variables
are not captured. This might result in the following substitution.

(λx.f x)[(λy.y x) / f] = (λz.(λy.y x) z)

This, again, introduces more work in the formalization because substitution then
needs the ability to pick fresh variable names. Some introductorymaterials resort to
"sidestep this extra complexity" [21] by using substitutions only with closed terms.
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De Bruijn Syntax
Instead of named syntax, Autosubst opts to use de Bruijn syntax [11] for the code it
generates, which solves both of the above-mentionedproblems. In de Bruijn syntax,
a bound variable is a natural number n that specifies the variable is bound by the
nth enclosing binder. And a free variable is a natural number greater than the
number of enclosing binders.
The named term from above can be translated to the following term in de Bruijn
syntax.

(λf.λx.f x)(λy.y x) ≃ (λ.λ.1 0)(λ.0 1)

In de Bruijn syntax, terms have a canonical form, so there is no problem like α-
equivalence.

Capture-avoiding substitution still has to be dealt with but it is a straightforward
transformation. The indices of free variables are increased each time the substitu-
tion affects the body of a binder (the free variable 1 is shifted to 2 because substitu-
tion traverses into the body of λ).

(λ.1 0)[(λ.0 1) / 0] = λ.(1 0)[(λ.0 2) / 1]

= λ.1[(λ.0 2) / 1] 0[(λ.0 2) / 1]

= λ.(λ.0 2) 0

This regularity makes de Bruijn syntax a prime target for code generation.
2.2 Substitutions
Another design decision is about formalizing substitutions.

The textbook approach is using single substitutions, which replace a single variable
with a term. This is what we have used above.
But for some proofs we still "need to build some (rather tedious) machinery to deal
with the fact that we are performing multiple substitutions" [21] like the following
lemma.
Lemma swap_subst : ∀ t x x1 v v1 ,

x ̸= x1 → closed v → closed v1 →
<{ t[v/x][v1/x1] }> = <{ t[v1/x1][v/x] }>.

Listing 2.1: swap_subst lemma from [21, Norm.v]

Instead of single substitutions, Autosubst directly usesmultiple substitutions in the
form of parallel substitutionswhich replace all free variables in a term at the same
time.
When using de Bruijn syntax, a parallel substitution is a function from N to terms.
Autosubst even uses a generalization called vector substitutions which is a vector
of parallel substitutions for independently substituting variables of different sorts.
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2.3 De Bruijn Algebras
The code generation of Autosubst targets de Bruijn algebras.
Completeness results about de Bruijn algebras by Schäfer et al. [23] are what ini-
tially inspired work on Autosubst.

Definition 2.2 (De Bruijn Algebra) A de Bruijn algebra for a given language is an
algebra consisting of

• the syntax of terms,

• instantiations with renamings and substitutions,

• and associated substitution primitives1.

Autosubst supports two different categories of de Bruijn algebras: unscoped and
wellscoped. They are discussed in Section 2.5.3.
Below, we give the names of the substitution primitives and how they are repre-
sented in different contexts. Their exact definition depends on the category of the
de Bruijn algebra at hand.

Name Mathematical Symbol Coq Identifier Coq Notation
zero Z var_zero
shift ↑ shift ↑

extension s · σ scons s sigma s .: sigma

Table 2.1: Comparison of Substitution Primitives

Zero is the lowest de Bruijn index, shift increases a de Bruijn index and extension
defines a substitution by specifying its behavior on zero and a shifted index.
Generally, the following equation holds for the primitives.

(s · σ) Z = s

(s · σ) (↑ m) = σ m

As an example, we list the de Bruijn algebra of the λ-calculus in Figure 2.1.
So the generated code of de Bruijn algebras contains inductive type definitions for
the terms, recursive function definitions for instantiations, and definitions of the
liftings.

Additionally, Autosubst generates code for rewriting laws (or rewriting lemmas)
about the behavior of renamings and substitutions.

1Note that renamings are special substitutions that only replace de Bruijn indices with de Bruijn
indices. They are first class inAutosubst 2 butwe still use the naming scheme "substitutionprimitives"
instead of "renaming and substitution primitives" in this and other cases.
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There are several groups of rewriting laws that are generated. The groups are listed
in Appendix A.4 containing as an example the rewriting laws for the de Bruijn al-
gebra of the λ-calculus.
In general, there are instances of the laws for all sorts of the language. For exam-
ple, for the polymorphic lambda calculus, System F (Appendix A.2), Autosubst
generates instances of the rewriting lemmas for ty and tm.

The liftings (⇑∗,⇑) are used to ensure instantiations are capture-avoiding.
In de Bruijn syntax, free variables in the body of a λ-binder are increased by one
compared to outside the body, and the 0 index inside the body is bound by the λ-
binder.
In the definition of instantiation, σ must only affect free variables of a term.
Therefore, in the case of a λ-binder, σ is extended by var 0, so that any 0 inside the
body stays unaffected and all increased indices are passed to σ. It is also composed
with a shift to increase all free variables in the result of σ, to account for the λ-binder.
Note that in this thesis the composition operator ◦ always denotes forward compo-
sition and binds stronger than extension.

The choice to generate code for a de Bruijn algebra with its associated rewriting
lemmas enables Autosubst to automatically prove certain lemmas, which are dis-
cussed in section 2.3.1.

This is due to a metatheoretical property that Schäfer et al. [23] have shown for
the de Bruijn algebra of the λ-calculus: With respect to equality, it is a sound and
complete model of the σSP-calculus.

The σSP-calculus by Curien et al. [10] (Appendix A.3) is a calculus of explicit sub-
stitutions [1]. This is a form of λ-calculus where substitutions are part of the syntax
and a reduction relation is defined to reduce substitutions.
The σSP-calculus is interesting because its reduction has the property that it is con-
fluent and terminating (for abstract rewriting systems in general and the defini-
tions of confluent and terminating in particular, see [7]).

Schäfer et al. [23] use the confluence and termination properties to prove equality
is decidable for terms of the σSP-calculus. And since the de Bruijn algebra of the λ-
calculus is a sound and completemodel of the σSP-calculus, decidability of equality
is transported there.
Finally, Autosubst can use the decidability of equality in the de Bruijn algebra of
the λ-calculus to automatically prove equations between terms.

Note that the proofs of soundness, completeness, confluence, and termination have
only been mechanized by Schäfer et al. [23] and Stark [30] for the de Bruijn algebra
of the λ-calculus and the associated σSP-calculus.
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s, t ∈ tm := var n | app s t | λ.s n ∈ N

(a) The λ-calculus using de Bruijn syntax.

_⟨ _ ⟩ : tm→ (N→ N)→ tm ⇑∗ : (N→ N)→ (N→ N)
(var n)⟨ξ⟩ = var (ξ n) ⇑∗ ξ = 0 · ξ ◦ ↑

(app s t)⟨ξ⟩ = app s⟨ξ⟩ t⟨ξ⟩
(λ.s)⟨ξ⟩ = λ.s⟨⇑∗ ξ⟩

_[ _ ] : tm→ (N→ tm)→ tm ⇑ : (N→ tm)→ (N→ tm)

(var n)[σ] = σ n ⇑ σ = var 0 · σ ◦ ⟨↑⟩
(app s t)[σ] = app s[σ] t[σ]

(λ.s)[σ] = λ.s[⇑ σ]

(b) Instantiations with renamings and substitutions, and associated liftings.

Figure 2.1: The de Bruijn algebra of the λ-calculus.

The conjecture is that the same holds for the de Bruijn algebras and associated
σ-calculi of other languages, like System F or first-order logic.
To our knowledge, the conjecture has not been disproven so far and evidence in
favor of the conjecture is given in the form of case studies (Chapter 5) that use
different languages.
2.3.1 Substitution Equations
The theory of de Bruijn algebras allows Autosubst to generate Coq tactics that au-
tomatically solve substitution equations. These are assumption free (i.e. there is
no additional information about them) equations between instantiations and they
appear ubiquitously as goals when proving metatheorems about languages with
binders.
The example in Figure 2.2 is from the proof that instantiation preserves reduction
in the λ-calculus.

One can intuitively check that the goal holds by tracing the behavior of free vari-
ables in s.

0 [t .: id]−−−−−−−→ t [σ]−−→t[σ] [t[σ] .: id]←−−−−−−−−−− 0 [⇑σ]←−−− 0

S n [t .: id]−−−−−−−→ n [σ]−−→σ n [t[σ] .: id]←−−−−−−−−−− (σ n)⟨↑⟩ [⇑σ]←−−− S n
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Theorem ≻_inst_tm (σ : N → tm) (s t : tm) :
(s ≻ t) → (s[σ] ≻ t[σ]).

(a) A metatheorem that instantiation preserves reduction.

s[t · id][σ] = s[⇑ σ][t[σ] · id]

(b) A substitution equation goal that appears in the proof of the above theorem.

Figure 2.2

But Autosubst generates a tactic, called asimpl, that can automatically prove it.

The tactic works off the conjecture that for all of our generated de Bruijn algebras,
the rewriting lemmas constitute a confluent and terminating rewriting system, as
it does for the λ-calculus.
The algorithm implemented by the tactic does the following:

• On both sides of the equation, use the rewrite lemmas in any order (conflu-
ent) to arrive at a normal form (terminating).

• If the normal forms of both terms are equal then the goal is solved.

• If they are not equal we can be sure the goal is not provable. Because of con-
fluence the two terms have exactly one normal form.

2.4 Traversals
We summarize traversals [13, 2], which are a specialization of recursive function
definitions for syntax with binders. Autosubst uses the theory of traversals to im-
plement generation of recursive function definitions.

A traversal is way of defining recursive functions for a sort, e.g. tm of the λ-calculus.

Definition 2.3 (tm-Traversal [13, Definition 3.1]) A tm-traversal T = (V,A,L) : TV
D

for terms of the λ-calculus consists of semantic counterparts to the syntactic constructors.

V : V → D

A : D→ D→ D

L : ((N→ N)→ V → D)→ D

where the typesV,D are referred to as denotation domains for de Bruijn indices and terms.

Intuitively, a tm-traversal describes a recursive function on tm by specifying (1)
what happens to the variable in the var case, (2) how to use the results of recur-
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sive calls in the app case, (3) how to use the result of a recursive call that has some
additional information in the lam case.

Traversals are useful in the context of Autosubst because they encapsulate the pro-
cess of lifting arguments to recursive calls, which is done with the additional infor-
mation.
In Figure 2.3 we show instantiation with substitutions and a rewriting lemma of
the de Bruijn algebra of the λ-calculus. Both are defined recursively and certain ar-
guments are lifted (denoted by ⇑,⇑ ′) in recursive calls on the subterms of binders.

When Autosubst generates these proof terms, it uses a function that generates an
inlined traversal.
Stark notes in her dissertation [30, Section 11.2.2] that it would be interesting future
work to generate an explicit traversal. Then one can reuse this for other recursive
function definitions.

2.5 Autosubst Compiler
We give a general description of the Autosubst compiler. Specifics can be found the
respective chapters for the OCaml and MetaCoq implementations.

The Autosubst compiler consists of three stages.
First, it parses the input syntax that specifies the target language.
Then, it analyzes the language to precompute some information.
And finally, it generate the actual code.

The code generation is again divided into two parts: the first generates the de Bruijn
algebra and rewriting lemmas (we say algebra generation) and the second gener-
ates code that is related to the asimpl tactic (we say automation generation).

2.5.1 Input Syntax

We define an input syntax for specifying languages with binders based on Auto-
subst 2’s EHOAS2.

We also implement some extensions to the syntax based on the extensions of EHOAS.
The extensions are: variadic binders (binders that bind multiple variables), func-
tors (to specify that arguments of a constructor are of a composed type), and con-
structor parameters. The exception iswe do not support themodular syntax feature
of EHOAS, which is out of scope for this work.
Also, even though we support above-mentioned extensions in our two programs,
we generally do not discuss them in the thesis itself because they are not pertinent to

2Extended Higher Order Abstract Syntax based on HOAS [19]
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Fixpoint subst_tm (σ_tm : N → ty) (s : ty) {struct s} :
ty :=

match s with
| var_tm s0 ⇒ σ_tm s0
| app s0 s1 ⇒ app (subst_tm σ_tm s0) (subst_tm σ_tm s1)
| lam s0 ⇒ lam (subst_tm (⇑ σ_tm) s0)
end.

(a) Instantiation with substitution for ty of System Fcbv

Fixpoint idSubst_tm (σ_tm : N → ty)
(Eq_tm : ∀ x, σ_tm x = var_tm x)
(s : ty) {struct s} :

subst_tm σ_tm s = s :=
match s with
| var_tm s0 ⇒ Eq_tm s0
| app s0 s1 ⇒

congr_app (idSubst_tm σ_tm Eq_tm s0) (idSubst_tm σ

_tm Eq_tm s1)
| lam s0 ⇒

congr_lam (idSubst_tm (⇑ σ_tm) (⇑’ _ Eq_tm) s0)
end.

(b) Substitution with identity lemma for ty of System Fcbv

Figure 2.3
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i d e n t : := <Coq i d e n t i f i e r >
c t : := <Coq term>
lang : := d e c l+
d e c l : := s o r t D e c l

| f u n c t o r D e c l
| c o n s t r u c t o r D e c l

s o r t D e c l : := i d e n t s ’ : ’ ’ Type ’
| i d e n t s ’ ( ’ i d e n t ’ ) ’ ’ : ’ Type

f u n c t o r D e c l : := i d e n t F ’ : ’ ’ Functor ’
c o n s t r D e c l : := i d e n t ’ : ’ ( a rg ’−>’)∗ i d e n t s

| i d e n t params ’ : ’ ( a rg ’−>’)∗ i d e n t s

params : := ’ ( ’ param ( ’ , ’ param ) ∗ ’ ) ’
param : := i d e n t ’ : ’ c t
a rg : := arghead

| ’ b ind ’ b i n d e r ( ’ , ’ b i n d e r ) ∗ ’ in ’ a rghead
b i n d e r : := i d e n t s

| ’< ’ i d e n t ’ , ’ i d e n t s ’> ’
arghead : := i d e n t s

| i d e n t F c t arghead+

Figure 2.4: Our Custom Input Syntax. The idents (identF) indicates that this par-
ticular identmust have been declared by a sortDecl (functorDecl).

Autosubst’s code generation. More information about the extensions can be found
in [30, Chapter 5].

The input syntax is described in Figure 2.4 and concrete examples can be found in
Section 3.2.2, Section 4.1.1 and (slight modifications necessary) in Stark’s disserta-
tion [30, Section 5.2].
Note that "bind x in y" declares a binder that binds variables of sort "x" in an argu-
ment of sort "y".

Our input syntax has some improvements compared to EHOAS.

• Usability Improvement

– The Autosubst OCaml implementation allows the user to customize the
name of the variable constructor of a sort using the second sortDecl
variant.
Autosubst MetaCoq and Autosubst 2 auto-generate the name.

– We allow any Coq identifier, i.e. unicode strings, for sorts, constructors,
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Inductive ty : Type :=
| var_ty : N → ty
| arr : ty → ty → ty
| all : ty → ty.

Inductive tm : Type :=
| app : tm → tm → tm
| tapp : tm → ty → tm
| vt : vl → tm

with vl : Type :=
| var_vl : N → vl
| lam : ty → tm → vl
| tlam : tm → vl.

Figure 2.5: Inductive types for System Fcbv generated in order of dependency.

etc.
Autosubst 2 only allows ASCII identifiers.

• Usability Improvement / Forced Change

– We use an explicit bind construct to specify bound sorts in an arg.
Autosubst 2’s EHOAS uses arrow syntax because it is based on HOAS.
We think it is an improvement because this prevents a false impression
that EHOAS is a higher-order syntax, since only first-order binders are
allowed anyways.
But is also a necessary change because we were not able to implement
a notation for nested arrows for the MetaCoq implementation of Auto-
subst (Section 4.1.1).

2.5.2 Dependency Analysis
After parsing an input language, it is analyzed to extract information for code gen-
eration. Most important is the order in which to generate the sorts, as there are
dependencies between them when one sort is defined in terms of another.

For example in System Fcbv (Figure 2.6) the sort tm depends on the sort ty. There-
fore, wemust define the inductive type for ty before the one for tm in Coq. Similarly,
the sorts tm and vl are defined in terms of each other, which necessitates amutually
inductive type definition in Coq.

The dependency analysis builds a dependency graph structure out of the input
language for which we need the following definitions.
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ty : Type
tm : Type
vl : Type

arr : ty -> ty -> ty
all : (bind ty in ty) -> ty

app : tm -> tm -> tm
tapp : tm -> ty -> tm
vt : vl -> tm

lam : ty -> (bind vl in tm) -> vl
tlam : (bind ty in tm) -> vl

(a) Specification of System Fcbv in our input syntax.

(b) The dependency graph of System Fcbv [30, Figure 8.2].

Figure 2.6
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Definition 2.4 (Occurrence [30, Page 111]) A sort y has a direct occurrence in a
sort x if y is an argument head – either immediately or in a nested argument head of a
functor – in one of x’s constructors.
Occurrence is the transitive closure of direct occurrence.

The nodes of the dependency graph are the language’s sorts and there is an edge
(x, y) if y occurs in x.

In this dependency graphAutosubst computes the strongly connected components.
Each strongly connected component consists of sorts that have to be defined as
mutually inductive types because they are defined in terms of each other.
Autosubst starts code generation at the terminal strongly connected component,
i.e. the one with no outgoing edges and thus no dependencies, and then moves
backwards in the graph.

Additionally, the following information is also computed from the dependency
graph.

Definition 2.5 (Open Sort [30, Page 111]) A sort x is open if and only if x is bound
in a sort y and also occurs in y.

Autosubst generates a variable constructor for all open sorts.

Definition 2.6 (Substitution Vector [30, Page 111]) The substitution vector for a
sort x consists of those sorts y that are open and occur in x.

The substitution vector of a sort x contains those sorts whose variables can appear
in terms of x. Autosubst must keep track of which substitutions it needs for each
sort in the instantiation operation.

For each sort, Autosubst either generates just instantiation with renaming, just in-
stantiation with substitution, or both. For the rules of this we refer to [30, Section
8.1].

We change dependency analysis only in one way for the MetaCoq reimplementa-
tion of Autosubst 2:

• Forced Change

– Wealready computewhich sorts have a renamingduring this stagewhile
Autosubst 2 computes it during code generation.
The function that computes this in Autosubst 2 uses non-structural re-
cursion. We want to avoid this because it would be harder to port the
code to MetaCoq.
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2.5.3 Output Syntax
Autosubst 2 supports code generation for two categories of de Bruijn algebras: un-
scoped and wellscoped (and we discuss a third one in Section 6.2).
Unscoped Syntax
Our examples of de Bruijn algebras so far fall into the category of unscoped syntax.
In unscoped syntax, de Bruijn indices are represented by natural numbers.

Inductive tm : Type :=
| var_tm : N → tm
| app : tm → tm → tm
| lam : tm → tm.

Listing 2.2: λ-calculus terms using unscoped syntax.

The substitution primitives are readily defined.

Definition 2.7 (Unscoped Syntax Primitives)

Z : nat

Z = 0

↑ : nat→ nat

↑ m = S m

(_ · _) : X→ (nat→ X)→ nat→ X

(x · f) 0 = x

(x · f) (S m) = f m

Wellscoped Syntax
Inwellscoped syntax, de Bruijn indices are elements of the finite type fin nwhere
n is a natural number. The finite type fin n denotes the numbers from zero to n
and is recusively defined on n.

Fixpoint fin (n : N) : Type :=
match n with
| 0 ⇒ ⊥
| S m ⇒ option (fin m)
end.
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There are other definitions of finitye types [17] but we use this one for its reduction
behavior.

Terms are also parameterized by a natural number n so that the variable constructor
can take an element of type fin n.
Therefore, a term of type tm n is constrained to contain free variables up to n.

Inductive tm (n: N) : Type :=
| var_tm : fin n → tm n
| app : tm n → tm n → tm n
| lam : tm (S n) → tm n.

Listing 2.3: λ-calculus terms using wellscoped syntax.

The crucial part is that we increase the bound in the body of the lam constructor
because it can contain one more free variable.
Wellscoped syntax can be useful in a statement on a term being closed, e.g. a term
of type tm 0 can contain no free variables. Also, even though they increase the
amount of bookkeeping one has to do to manage the bounds, this can be used as a
safety net during programming, because it prevents incompatible terms from being
combined.

The substitution primitives are defined as follows, as the fin n type is an n-fold
nesting of option types.

Definition 2.8 (Wellscoped Syntax Primitives)

ZI : fin (S n)

ZI = None

↑I : fin n→ fin (S n)

↑I m = Some m

·I : X→ (fin n→ X)→ fin (S n)→ X

(x ·I f) None = x

(x ·I f) (Some m) = f m



Chapter 3

Autosubst OCaml

One part of the thesis is the continuation of the authors port of Autosubst 2 to the
OCaml language. We call this reimplementation Autosubst OCaml1. Analogous
to Autosubst 2, Autosubst OCaml parses a user-supplied language specification
and generates Coq code for proving substitution equations of that language, in the
form of Coq source files.

3.1 Motivation
Autosubst 2 is written in Haskell and is distributed in source-form. This makes
it necessary to maintain a Haskell environment if one wants to use the program.
In order to represent the generated code, custom ASTs for Gallina terms, tactics
and Coq vernacular commands are defined. Additionally, for each of these ASTs,
pretty-printers to generate the concrete syntax had to be written from scratch.
With a reimplementation in OCaml, the language Coq is implemented in, users can
reuse their existing OCaml environment to run the program. Also, we can reuse
the ASTs and pretty-printers from the Coq implementation in the definition of our
program.

The ad-hoc nature of the abstract syntax and pretty-printers in Autosubst 2 is a dis-
advantage because for one it replicates functionality but also there are differences
to the existing implementations from Coq.
For example, the pretty-printers produce concrete syntax that uses more paren-
theses than necessary, has irregular spacing and is indented according to custom
rules.
Definition upId_ty_ty (σ : ( fin ) → ty ) (Eq : ∀ x, σ x = (

var_ty ) x) : ∀ x, (up_ty_ty σ) x = (var_ty ) x :=
fun n ⇒ match n with
| S fin_n ⇒ (ap) (ren_ty (shift)) (Eq fin_n)

1The implementation can be found at https://github.com/uds-psl/autosubst-ocaml.
In order run the program, consult the README.org

https://github.com/uds-psl/autosubst-ocaml
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| 0 ⇒ eq_refl
end.

Listing 3.1: Excerpt of code generated by Autosubst 2.

This makes it harder to read than codewritten by a human or printed by the pretty-
printers form the Coq implementation.
Also, we found one instance where non-parseable code is generated. This is possi-
ble due to a combination of an abstract syntax term which should not be possible
to construct and the pretty-printer naively printing the malformed term. An expla-
nation can be found in Section 6.3.

As for the abstract syntax, Autosubst 2’s definition of the abstract syntax of Coq has
a node2 that contains function arguments which are lifted in recursive calls. This
bookkeeping behaviour is specific to syntax traversals [13] and does not belong
in an abstract syntax tree. While porting the code to use the AST from the Coq
implementation, this became apparent as there was no analog to map this node to.

Therefore, our plan for a reimplementation in OCaml is to reuse the abstract syn-
tax and pretty-printers from the Coq implementation. This means we can only
construct sensible abstract syntax terms, the generated code has a canonical look,
and it is more likely3 that it can be parsed again (but with the current design of the
program we have no guarantees that the code also typechecks).

3.2 How it Works
In the followingwediscuss the implementation of theAutosubst compiler inOCaml.
First, we analyze how to interact with the OCaml implementation of Coq. Then, we
implement a parser for the language specification and the dependency analysis. Fi-
nally, we discuss how the abstract syntax terms themselves are generated.

We do not discuss how exactly the types and proof terms for most of the generated
lemmas look, as it is no different (except for formatting due to the pretty-printers)
from the way Stark describes it in her dissertation [30, Section 8.2].

3.2.1 Usage of Coq as a Library

To use the exposed facilities of the Coq implementation we need to link the imple-
mentation’s modules to our ownOCaml code. This allows us to use, among others,
the Coq parser, several abstract syntax trees, and pretty printers for terms.

2called TermSubst
3We found and fixed one instance where the pretty-printer generated wrong concrete syntax dis-

cussed in Technical Remark 3.5.



3.2. How it Works 23

Technical Remark 3.1

One roadblockwas that when linking certainmodules of the Coq implemen-
tation one needs to add the -linkall flaga during compilation, which causes
all modules of the Coq library to be linked in the resulting executable.
This is because these modules depend on other modules to set up state. If
-linkall is omitted, the state is not initialized correctly and the program
will crash at runtime with an unhelpful error message.

ahttps://github.com/coq/coq/issues/9547

Gallina Term AST
The Coq implementation exposes multiple ASTs for Gallina terms, which we use
to construct types and proof terms, and one AST for vernacular commands, which
we use to construct commands like Inductives and Definitions that use the afore-
mentioned types and proof terms.

The three term ASTs are

• constr_expr,

• glob_constr,

• and econstr.

When Coq parses a term, it is first parsed into the constr_exprAST and then trans-
lated down into the other ASTs. So constr_expr is closely related to concrete syn-
tax, glob_constr is an intermediate form, and econstr is used by the kernel for
typechecking,

We opt to use the constr_exprAST to construct Gallina terms because it is simpler
to construct and easier to use with other parts of the code than the other two ASTs
due to the following reasons.

• Other functions that we want to use, like the pretty-printers and constructors
for vernacular commands, use constr_expr.

• It has variadic lambdas and applications whereas the other two have curried
forms, meaning the application node applies the function only to a single
argument.

• It uses named variables instead of de Bruijn indices for locally bound vari-
ables.

• It uses namedvariables instead of references into the environment for globally
bound variables.

https://github.com/coq/coq/issues/9547
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We define smart constructors to take care of boilerplate in the constr_expr AST.
These constitute the DSL4 in which we construct all Gallina terms5.

Technical Remark 3.2

To be more precise about the last point, a globally defined constant (e.g.
defined by Definition or Parameter etc.) consists of a kernel name and
a universe instance. The kernel name is the fully qualified name, e.g.
"Coq.Arith.PeanoNat.Nat.add" for the addition function, and the universe
instance specifies the universe levels of the constant’s arguments.
So to construct a term for add x y in the econstr AST, we would have to
know the fully qualified name of add, set fitting universe levels and calcu-
late the de Bruijn indices for x and y, assuming they are locally bound.

Especially the last twopoints show that it is simpler to construct terms of constr_expr
than terms of the other ASTs.
For one, while it is good that proofs with de Bruijn indices handle variables in a
straightforward manner, it is arguably harder for humans to read. In the same
manner, programming with de Bruijn indices is harder and more error-prone so
we prefer an AST with named variables.
And second, the other ASTs are globalized, meaning all globally bound variables
(e.g. nat or one of our generated Lemmas) are represented by references into the
environment. To fill that environment we would have to start a Coq instance, parse
the standard library, and also put in any of our defined constants that we want to
reference in other terms.

We can think of only one advantage of using one of the globalized ASTs. Assuming
Autosubst might generate a term that does not typecheck, a user notices this when
they try to compile the generated source code.
If we used a globalized AST, then Autosubst can use the kernel’s typechecker dur-
ing code generation to make sure all constructed terms typecheck. Then the error
would already surface during execution of Autosubst.
Note that it is only a matter of convenience for when the error occurs.
Since our generated code does not rely on Axioms (except Functional Extension-
ality if enabled) it is safe to use, i.e. does not make the development inconsistent.

In a discussion in the Coq chatroom Zulip6 we noted that it is generally possible
to start a Coq instance – either directly or through a tool like SerAPI7 – and handle

4Domain Specific Language
5defined in lib/gallinaGen.mli
6https://coq.zulipchat.com/#narrow/stream/237656-Coq-devs.20.26.20plugin.20devs/

topic/Constructing.20Notations.20in.20OCaml/near/227594459
7https://github.com/ejgallego/coq-serapi/

https://coq.zulipchat.com/#narrow/stream/237656-Coq-devs.20.26.20plugin.20devs/topic/Constructing.20Notations.20in.20OCaml/near/227594459
https://coq.zulipchat.com/#narrow/stream/237656-Coq-devs.20.26.20plugin.20devs/topic/Constructing.20Notations.20in.20OCaml/near/227594459
https://github.com/ejgallego/coq-serapi/
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the environment in our program.
But weighing user-convenience versus developer-convenience we decided to use
with the constr_expr AST to keep our program simple. From experience with
Autosubst 2, we know that the program does not construct untypable terms.

One disadvantage of using constr_expr is that we need to explicitly construct no-
tation terms because a notation is a separate node in the constr_expr AST.
We must use notations because otherwise an equality is printed as "eq a b", which
was the state of code generation after the ACP project. But this goes against our
target of improving the look of the generated code.
We use two notations: "x = y" for equality and "A -> B" for non-dependent func-
tion types. We register both in the Coq environment in the beginning of the pro-
gram and define smart constructors to generate the notation nodes.

Technical Remark 3.3

Notations were perhaps the most challenging part of using the constr_expr
AST.
We did not find any documentation on the CNotation constructor and had to
reverse engineer the arguments by droppinga from a running Coq instance
and reading out the notation storage.
It turns out the notation_key argument must contain the notation with un-
derscores in place of variable names. So for the equality notation "x = y",
the key is "_ = _".

ahttps://github.com/coq/coq/blob/master/dev/doc/debugging.md

Vernacular Command AST

Vernacular commands are represented by vernac_expr terms which often contain
constr_expr terms, e.g. a Definitionhas a type and a bodywhich are constr_exprs.
For the code generation, our programmust construct and print the following com-
mands:

Inductive , Definition , Lemma , Fixpoint , Proof , Qed ,
Notation , Class , Instance , Ltac , Tactic Notation

Most of these are straightforward to construct and use (except Proof, Ltac and
Tactic Notation) and we again define smart constructors to take care of boiler-
plate8.

Weuse pretty-printers from theCoq implementation to convert the abstract vernac_expr

8defined in lib/vernacGen.mli

https://github.com/coq/coq/blob/master/dev/doc/debugging.md
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terms to concrete syntax. We introduce one abstraction, vernac_unit, to group re-
lated vernac_exprs and implement the Ltac and Tactic Notation commands9.

(* TacGen.t is a type alias for Coq ’s tactic AST *)
type vernac_unit =

| Vernac of vernac_control list
| TacticLtac of string * TacGen.t
| TacticNotation of string list * TacGen.t

The grouping is necessary for better pretty-printing, to insert whitespace between
different vernac_units without introducing whitespace within a vernac_unit of
related commands. This is handy in an interactive proof of a lemma (which is
composed of Lemma, Proof and Qed commands).
The necessity of the TacticLtac and TacticNotaton constructors is discussed in
the next section.

Technical Remark 3.4

One irregularity when constructing a Proof command is that there is the
VernacExactProof node to give a proof term directly with the command. It
is pretty-printed as

Proof (foo).

But proof-generala does not workb with this syntax and there is discussion
to deprecate it entirely so we decided to use a custom pretty-printer for this
case which instead prints

Proof.
exact (foo).

aA popular emacs mode for poof assistants https://proofgeneral.github.io/
bhttps://github.com/ProofGeneral/PG/issues/498#issuecomment-638479230

Technical Remark 3.5

While implementing code generation we found that the pretty printer gen-
erated wrong code for the Existing Instance command.
The command is used to register an existing constant in the environment as
a typeclass instance [28]. It can take several arguments separated by spaces,
but the pretty printer separated them with commas.

9Note that vernac_control is a wrapper around vernac_expr to annotate vernacular commands
with attributes like #[ local ].

https://proofgeneral.github.io/
https://github.com/ProofGeneral/PG/issues/498#issuecomment-638479230
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It was a simple fix and a pull request has been mergeda.
ahttps://github.com/coq/coq/pull/15040

Tactic AST
Tactics also have multiple ASTs and we opt again to use the one closest to the con-
crete syntax, raw_tactic_expr. Combinators like try, repeat, progress and
basic tactics like rewrite, cbn, unfold are part of this AST.We again define smart
constructors to take care of boilerplate and to act as a DSL to construct tactics10.

let rewrites = List.map (fun t →
try_ (rewrite_ t))

["lemma0"; "lemma1"] in
let unfold = calltac_ "auto_unfold" in
let tac = then_ (unfold :: rewrites) in
TacticLtac ("mytactic", tac)

(* Ltac mytactic := auto_unfold; try rewrite lemma0; try
rewrite lemma1 *)

Listing 3.2: Using the tactic DSL to construct an Ltac definition.

Other tactics like setoid_rewrite are defined usingCoq’s syntax extensionmecha-
nism so they are not a native part of the AST andwe cannot construct them directly.
We can work around this fact because vernac_expr allows us to reference a tactic
by a string.
Semantically, this is meant for tactics defined by an Ltac command, but it works
for setoid_rewrite because the concrete syntax is the same.

Technical Remark 3.6

The canonical way to construct a term representing a setoid_rewrite is to
define the syntax extension, put it in the environment and reference it with
the TacML AST node.
But to avoid manipulation of the environment, we instead use the TacCall
node, for calling user-defined tactics, which results in the same concrete syn-
tax "setoid_rewrite foo".
The only problem is that we cannot give a rewrite orientation this way be-
cause ← is not a valid identifier in an argument position of TacCall. We
define a left-rewrite version of setoid_rewrite and reference this instead.

10defined in lib/automationGen.mli

https://github.com/coq/coq/pull/15040
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Ltac setoid_rewrite_left t := setoid_rewrite <- t.
Due to the combinatory explosion if there are many flags this is not suitable
in general, but in our case this was the only special case.

This AST only allows us to construct the tactic terms.
Commands like Ltac to bind a tactic term to a name are also defined using Coq’s
syntax extension mechanism so there is no easy way to construct and print it.
Therefore, we define our own trivial printer for this which prints "Ltac␣some_name
␣:=" and delegates the right-hand side to Coq’s pretty-printer for tactic terms.
The same holds for the Tactic Notation command.
3.2.2 Parsing User Input
In Autosubst OCaml the user writes their language specification in a text file which
is passed to the program.
The language specification is written in our custom input syntax (Section 2.5.1) for
which we implemented a parser using the angstrom11 parser combinator library.
We also evaluated the parser combinator libraries mparser and planck but decided
for angstrom because it is the most modern and fully featured.

planck seems abandoned as thewebsite12 is not reachable and it was last published
in 2016 on opam13.

mparser has the nice feature of reporting line numbers in error messages. But since
out language specifications are line based, with angstrom we just report the next
unparsed line if there is any parsing error.

Technical Remark 3.7

The backtracking behavior of angstrom complicates this but as long as we
commita the parser after each successfully parsed line, error reportingworks
well this way.

aIn parser combinator vernacular: To prevent backtracking beyond a certain point.

Also, while mparser has amonadic interface, it does not support themodern let op-
erator syntax that angstrom and other libraries use to unify the handling ofmonads
in OCaml (see Section 3.3 for further explanation of let operator syntax).

There are two deviations in the variant of our input syntax for Autosubst OCaml.

11https://github.com/inhabitedtype/angstrom/
12https://bitbucket.org/camlspotter/planck
13An OCaml package manager

https://github.com/inhabitedtype/angstrom/
https://bitbucket.org/camlspotter/planck
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• For functor arguments in constructors we follow the same pattern as in Au-
tosubst 2 where the functor and its constant arguments are enclosed in quo-
tation marks (Listing 3.2.2).
InAutosubst 2 this is done so that the pretty printer can simply copy the string
to the generated code.
In Autosubst OCaml it is done because initially it was a time-constrained
project of ACP and the aim was to keep the input syntax compatible. But
this can be removed in the future.

• We allow line comments beginning at --, like Autosubst 2 does.

Next we show two examples of the input syntax.

The first is for System Fcbv where all the common features of the syntax are used.
First several types are defined and then their constructors (although in general the
definitions can be in any order).
-- the types
ty : Type
tm : Type
vl : Type

-- the constructors for ty
arr : ty -> ty -> ty
all : (bind ty in ty) -> ty

-- the constructors for tm
app : tm -> tm -> tm
tapp : tm -> ty -> tm
vt : vl -> tm

-- the constructors for vl
lam : ty -> (bind vl in tm) -> vl
tlam : (bind ty in tm) -> vl

Listing 3.3: Specification of System Fcbv in our input syntax.

The second is for a variadic version of the simply typed λ-calculus.
An application can take a variable amount of operands by using the list functor.
And a lambda abstraction is parameterized over the number of bound variables
and uses the variadic syntax for the binders.
tm: Type

list : Functor

app : tm -> "list" (tm) -> tm
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lam (p: nat) : (bind <p, tm> in tm) -> tm

Listing 3.4: Specification of variadic simply typed λ-calculus in our input syntax.

Improvements over the Autosubst 2 parser are the ones already mentioned in Sec-
tio 2.5.1, and also:

• Usability Improvement

– We support the same identifiers that Coq allows for sorts and construc-
tors, i.e. identifiers containing unicode, by reusing functions from the
Coq parser.
Autosubst 2 only allows ASCII identifiers.

– We do a sanity check that identifiers are not declared twice.

Thedependency analysis of the parsed specification is implementedwith the ocamlgraph
library14,15 and works analogously to Autosubst 2.
3.2.3 Code Generation
The next step after the dependency analysis is the algebra generation and automa-
tion generation.
In this section we discuss how Autosubst OCaml generates the abstract syntax of
types, proof terms, vernacular commands, and tactics, as well as differences in be-
havior to Autosubst 2.

Most of the generated types and proof terms are the same as in Autosubst 2. For
these we refer to [30, Section 8.2].

For each non-variable constructor, Autosubst generates a congruence lemma stat-
ing that if we have equalities for all subterms, then the constructors applied to the
respective subterms are also equal.
These lemmas are used in the generation of recursive functions to combine the
results of recursive calls on subterms. Below is the congruence lemma for Sys-
tem Fcbv’s function type constructor.

Lemma congr_arr {s0 : ty} {s1 : ty} {t0 : ty} {t1 : ty}
(H0 : s0 = t0) (H1 : s1 = t1) :

arr s0 s1 = arr t0 t1.

Listing 3.5: Type of congr_arr from System Fcbv.

14https://github.com/backtracking/ocamlgraph/
15Incidentally, therewas a bug in the computation of strongly connected components, whichwould

have given us unexpected problems during implementation of the dependency analysis (https:
//github.com/backtracking/ocamlgraph/issues/85). A fix was just released a couple of weeks
before we started the project. But the bug had been open for 3 years and the fix had been imple-
mented but unpublished for 1.5 years, which reflects somewhat poorly on the OCaml ecosystem.

https://github.com/backtracking/ocamlgraph/
https://github.com/backtracking/ocamlgraph/issues/85
https://github.com/backtracking/ocamlgraph/issues/85
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Autosubst 2 proves these lemmas by using the congruence tactic.
In Autosubst OCamlwe explicitly generate the proof terms to become familiar with
the process of code generation.
Also, the tactic language of Coq could change so using proof terms is more stable.
The proof terms use chains of eq_trans to swap out one si for ti at a time and
eq_refl as the base case.

Proof.
exact (eq_trans

(eq_trans eq_refl
(f_equal (fun x ⇒ arr x s1) H0))

(f_equal (fun x ⇒ arr t0 x) H1)).
Qed.

Listing 3.6: Proof of congr_arr

For some lemmas, including the compositionality lemmas, Autosubst 2 generates
one versionwith extensional equality and one versionwith equality using the func-
tional extensionality axiom. We generate a third version that abstracts the exten-
sional equality16 which our version of the asimpl tactic uses. This is further dis-
cussed in Section 6.1.

For all Fixpoints we annotate the structurally decreasing argument. Without the
annotation, Coq’s inference causes slowdowns with some pathologically large lan-
guages (ca. 20 sorts). For a Fixpoint with n bodies each with m arguments, the
inference tries all n ∗m combinations.

Another way the output differs from Autosubst 2 is the way Autosubst OCaml or-
ganizes the generated code.
To avoid naming conflicts and problems with keeping multiple files in sync, Au-
tosubst OCaml generates one output file. In the file, code is separated into several
modules:

• Core, for the basic code of the de Bruijn algebra,

• Fext, for code involving the functional extensionality axiom,

• Allfv, for code belonging to the allfv extension discussed in section ??,

• Extra, for any extra code,

• and Interface, to define the interface of the generated file.

The Core module contains the biggest part of the generated code: the de Bruijn
algebra, the rewriting lemmas and tactics like asimpl.

16based on an idea by Yannick Forster
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The Fextmodule contains all lemmas that involve the functional extensionality ax-
iom and the asimpl_fext tactic that uses them. By default the module and thereby
any use of axioms is excluded from code generation. It will only be generated if (1)
the user passes the -fext command line flag or (2) when the given language uses
the codomain functor because it requires functional extensionality17

The Allfv module contains all the lemmas about evaluating predicates on all free
variables of a term. By default it is excluded from code generation but can be turned
on if the user passes the -allfv command line flag.

The Extra module contains all code that should be run after everything else, like
opaqueness hints and implicit argument declarations.

The Interfacemodule exports all other generated modules in order to make them
available to the user in one batch.

The module organization is implemented in the AutosubstModules module that
uses an association list of tags to vernac_units. A code generation function can
simply tag a piece of generated code to put it into amodule. Also, AutosubstModules
implements the monoid signature so that we can aggregate generated code from
multiple sources.

module AutosubstModules = sig
type module_tag = Core | Fext | Allfv | Extra
type t = (module_tag * vernac_unit list) list

val add_units : module_tag → vernac_unit list → t
val empty : t
val append : t → t → t
...

end

Listing 3.7: Excerpt of AutosubstModules.

This makes it straightforward to add further extensions into their own modules.
The tags also make it easy to filter out a module to a disable a feature.
Additionally, it simplifies the existing code generation because it is more encapsu-
lated. Each code generation function can emit definitions that are put into some
modules and functions higher in the call-chain just aggregate the results from be-
low because it’s a monoid.

17The codomain functor abstracts a function type: cod A B = A -> B.
Autosubst needs certain composition lemmas for functors and the lemmas for the codomain functor
require functional extensionality.
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Even though OCaml has support for unrestricted side-effects we choose to imple-
ment Autosubst OCaml using monads and with as little mutable state as possi-
ble, in order make reasoning about the program easier. For general information
about monads and the monad variants that we use, we refer to [35]. We build
a monad transformer stack [18] out of the State monad, to control side-effects,
Errormonad, for error handling, and Readermonad for dependency injection.
With the Readermonad, functions deep in the call chain still have access to the de-
pendency graph.
This monad transformer stack is called RSEM.

One major difference to Autosubst 2 is our use of the Statemonad to record infor-
mation when generating the rewriting system for the de Bruijn algebra.
To generate the automation code we need certain information that is already avail-
able during algebra generation. For example to generate tactics like "setoid_rewrite
idSubst_tm", information about the lemma name is needed.

We use the State monad to store the relevant information in the state and then
use it later when generating the automation. The design works, however it proved
to be problematic due to a couple of reasons.

• The purpose of the the State monad is to emulate mutable state. But this
system is not inherently mutable. This creates a discrepancy because we just
use the state as an extra function output.

• The Statemonadmakes it harder to test our automation generation functions
because they are coupled to the code generation functions.

• A related problem inherent when using the State monad is that order of
execution matters.
When calling two functions that both interact with the state, the order of
calling themmatters. This is because the second one will be implicitly passed
the result state of the first.
Therefore, if we change the code generation we can also affect the automation
generation which lead to at least one bug18.

• Finally, although the algebra generation and the automation generation share
some information, there are some differences.
As a result, in some placeswe have to change the algebra generation functions
to put the proper information into the state so that the automation genera-
tion functions can use it. This shows that our solution does not properly fit
the problem.

However, we decided to keep this design for now because it works and the thesis
has a fixed timeframe.

18Which was caught in our CI and is fixed.
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In Autosubst MetaCoq we derive the information for the automation generation
directly from the dependency graph and it is left as future maintenance work to
also implement this in Autosubst OCaml.
3.3 Using Monads in OCaml
This section focuses on OCaml’s support for monads in general.
Unfortunately, the OCaml standard library lacks an implementation of monads.
We use the monadic19 library because it is easier to write monad transformer stacks
than with the other monad library we evaluated, called monads20.

At the time we started the Autosubst OCaml implementation, the monadic library
was very new and we found one typo which resulted in a bug in the monadic filter
function. We fixed it and opened a pull request21 but it seems the author has since
stopped maintaining the library.

Technical Remark 3.8

The problemwith the monads package is that their transformers do not com-
pose well.
Monad transformers like ReaderT are implemented using a functor
Reader.Make(T: T)(M: Monad).
Module T contains the type that Reader is parameterized over and module
M is the inner monad of the transformer.
But the resulting module of the Make functor does not conform to the Monad
signature again because it is missing a type definition. Therefore, the trans-
formers do not compose well and intuitive code like the following does not
work because M1 is not a Monad.
module M1 = Reader.Make(String)(Identity)
module M2 = State.Make(Int)(M1) (* E *)

The workaround is to include the Make functors output in another module
that defines the type, for example by using the type-deriving functor T1.
module M1 : Monad = struct

include Reader.T1(String)(Identity)
(* or defining the type manually *)
(* type ’a t = string → ’a *)
include Reader.Make(String)(Identity)

end

19https://github.com/Denommus/monadic/
20https://opam.ocaml.org/packages/monads/
21https://github.com/Denommus/monadic/pull/2

https://github.com/Denommus/monadic/
https://opam.ocaml.org/packages/monads/
https://github.com/Denommus/monadic/pull/2
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module M2 = State.Make(Int)(M1)

This is rather uncomfortable so we raised an issuea and discussed a way to
implement better Make functors that build a proper Monads. We plan to im-
plement this after submission of this thesis since it is not important for our
current implementation, although we might switch to this library in the fu-
ture if the monadic library proves to be abandoned.

ahttps://github.com/BinaryAnalysisPlatform/bap/issues/1354

Both monadic and the angstromparser combinator library implement a recentOCaml
syntax feature to make working with monads easier.
OCaml has support for defining custom let operator syntax22 since version 4.08.
This can be used to define natural syntax sugar for monadic bind in OCaml (see
Figure 3.1), analogous to Haskell’s do-notation, which is very comfortable when
programming with monads.

let* a = monadic_value in
let* b = monadic_func a in
return b

do
a <- monadic_value
b <- monadic_func a
return b

Figure 3.1: Monadic bind syntax sugar using let operator syntax and do-notation.

One problem that is inherentwhen programmingwithmonads is that they are very
pervasive. For any monadic function, all calling functions must either be monadic
aswell, or have somemethodof evaluating amonadic value. This "infecting" behav-
ior can lead to some tedious refactoring. If we change some function to bemonadic,
this change propagates recursively through its call-sites until the monadic value is
evaluated. In Autosubst OCaml, evaluation of the monadic value is done at the
entrypoint of the code generation.

After implementing two large programs usingmonads, we now believe it would be
worthwhile tomake almost all functionsmonadic by default. This approachwould
preempt this kind of refactoring.

22https://ocaml.org/releases/4.08/htmlman/manual046.html

https://github.com/BinaryAnalysisPlatform/bap/issues/1354
https://ocaml.org/releases/4.08/htmlman/manual046.html


Chapter 4

Autosubst MetaCoq

As a continuation of our effort to reimplement Autosubst 2 in OCaml, we also ex-
plore how to reimplement it in the MetaCoq framework [29]. This implementation
is then called Autosubst MetaCoq1.

But unfortunately we were not able to bring this implementation to a level with
Autosubst 2 or Autosubst OCaml. We discuss missing features in Section 4.2

4.1 How it Works
A user interacts with Autosubst OCaml on the command line and receives source
code files they can use in their development, similar to Autosubst 2.
But with an Autosubst implementation inMetaCoq, a user can interact with it from
within a runningCoq instance. So this implementation aims tomake the interaction
more seamless and easy.
Apart from the usability standpoint, Autosubst MetaCoq is part of a line of work
exploring the metaprogramming capabilities of the MetaCoq framework [33, 8, 3].

MetaCoq provides an AST for constructing reified Gallina terms. The abstract syn-
tax terms can be unquoted intoGallina terms using the TemplateMonad ofMetaCoq.
The TemplateMonad can also be used to create new inductive types and lemmas in
the Coq environment.
Both is enabled by side-effects produced by evaluating a TemplateMonad expres-
sion.

Therefore, we can implement the code generation of Autosubst 2 by

• computing abstract syntax terms of types, proof terms and inductive types,
analogously to Autosubst 2 and Autosubst OCaml, using the provided AST
by MetaCoq,

1The implementation can be found at https://github.com/uds-psl/autosubst-metacoq.
In order run the program, consult the README.org

https://github.com/uds-psl/autosubst-metacoq
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• and constructing a TemplateMonad expression that unquotes the terms and
puts the inductive types and lemmas into the environment.

The main entrypoint of Autosubst MetaCoq is the function runAutosubst which
receives the language specification and the output syntax category, and returns a
TemplateMonad expression as described above.
We define a notation for it, so that a user can execute the command MetaCoq Run
Autosubst Unscoped for lang. for a language specification lang.

The architecture of the program is then mostly the same as Autosubst OCaml but
we replace the pretty-printers that give us the string representation of an abstract
syntax term with TemplateMonad constructors that unquote a term or create a new
inductive type or definition.

Since the program is implemented in Coq, it can use dependent types and certified
programming.
Generally, we think certified programming is a great idea, but you need enough
time for it. We experienced productivity slowdowns while developing Autosubst
MetaCoq using certified functions so we decided to go for a more traditional func-
tional programming approach.
However, there are some parts of the program that could benefit from a certified
programming style, like the dependency analysis and graph algorithms. We leave
this as future work.
Being implemented in MetaCoq, it might also be possible to verify the whole pro-
gram. But with about 3500 lines of code we expect it to be a lot of effort that is out
of scope for this work.

4.1.1 Parsing User Input

Because the user interacts with Autosubst MetaCoq in a running Coq instance we
cannot receive the language specification in a text file like in previous implemen-
tations. There are several possible ways how the user could transmit the language
specification to our program.

Inductive Types

One possibility is that a user implements the inductive types for their language
directly and we analyze them using MetaCoq.

Definition bind {X Y:Type} (a: X) (b: Y) := b.

Inductive tm : Type :=
| app : tm -> tm -> tm
| lam : (bind tm tm) -> tm.
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But there are multiple problems with this approach.

• Do we reuse the inductive type the user writes?
If yes, the user would have to additionally specify a variable constructor and
scope parameters depending on the output syntax.
If no, there would be two similar copies of the inductive types.

• Coq supports syntax for inductive types like Cumulative, Polymorphic, and
indices which we have to take care to not accept.

Custom Entry Notations
Another possibility is embedding a DSL for our input syntax in Coq using custom
entry notations [32]. This approach is based on Pit-Claudel et al. [22].
With custom entry notations we replace the Coq parser inside of designated delim-
iters (for example "{{" and "}}") so that we can define our own interpretation for
tokens.
In our case, the notations desugar to some inductive typesmodelling the input syn-
tax, analogous to those after the parsing step in Autosubst OCaml.

To enable a nice input syntaxwe redefine parsing for ’:’ and ’->’ to not be a typecast
or function arrow, respectively. Andwe also allow anyCoq identifier as constructor
and sort names2,3

Definition utlc : autosubstLanguage :=
{| al_sorts := <{ tm : Type }>;

al_ctors := {{ app : tm → tm → tm;
lam : (bind tm in tm) → tm }} |}.

Listing 4.1: Specification of sorts and constructors of the λ-calculus.

This allows a natural input syntax that looks almost the same as in the other imple-
mentations.

Dependency analysis is based on the same graph analysis as with Autosubst 2.
Except we precompute the sorts that have renamings because the function that
computes this in Autosubst 2 does not use structural recursion. To define a non-
structurally recursive function in Coq you need to prove termination which makes
it harder to port this function from OCaml to Coq.

For the graph analysis we write our own graph implementation based on finite
maps (that we also implement ourselves) with a couple of related algorithms.
The existing implementations in the Coq ecosystem for either one were not suitable

2The fact that we can write the identifier app instead of the string "app" is possible due to a
workaround described in [22].

3Note that "{|" is Coq’s syntax for a record and not one of our custom entry notations.
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for us4.
The one that comes closest is the FinMap implementation from the Coq standard
library. But it also has some problems with computation because it carries around
a proof that the map is ordered.
4.1.2 Programming in MetaCoq
Because Gallina is a functional language whose syntax is inspired by ML we can
use almost the same architecture aswithAutosubst OCaml. Some concessions have
to be made because theMetaCoq ASTworks differently than the constr_exprAST
we use in Autosubst OCaml. Instead, it is more like the econstr AST.
This means:

• References to globally bound variables are not strings but pointers into the
environment. A reference always uses a fully qualified name. We can use
MetaCoq functionality to compute the fully qualified names.

Technical Remark 4.1

Anything that is already in the environment before we run the pro-
gram can be quoted to retrieve a reference.

For any named term that our program constructs and that we
want to reference in some other term, we can compute the fully
qualified name.
The TemplateMonad constructor tmCurrentModPath returns the fully
qualified name of the current module. Any definition or inductive
type that we create using the TemplateMonad will be put into the
current module.
Therefore, we compute fully qualified names by prepending the
module name.

• Locally bound variables are not strings but de Bruijn indices. This has the
downside that it is harder to program in. Howwe deal with this is explained
below.

• With the MetaCoq AST it’s not possible to write a function with implicit ar-
4There are several implementations of finite maps and graphs but they are for proving instead of

computing. We looked at the below implementations and even those that were able to compute did
not have satisfactory performance.
https://github.com/math-comp/finmap
https://github.com/coq-community/coq-ext-lib/blob/master/theories/Structures/Maps.v
https://gitlab.mpi-sws.org/iris/stdpp/-/blob/master/theories/fin_maps.v
https://github.com/coq-contribs/graph-basics
https://github.com/coq-community/graph-theory

https://github.com/math-comp/finmap
https://github.com/coq-community/coq-ext-lib/blob/master/theories/Structures/Maps.v
https://gitlab.mpi-sws.org/iris/stdpp/-/blob/master/theories/fin_maps.v
https://github.com/coq-contribs/graph-basics
https://github.com/coq-community/graph-theory
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guments. We also explain below how to work around this.
Implicit Arguments
Because the MetaCoq AST does not contain information about which arguments
of a function are implicit, we cannot generate functions with implicit arguments. If
one writes a function application in Coq and wants to treat certain arguments as
implicit, one can use underscores in their place like (f _ a _ b).
In the MetaCoq AST, we can analogously construct function applications that ex-
plicitly pass tHole nodes in place of arguments that should be implicit like (tApp
f_q [tHole; a_q; tHole; b_q])5

Technical Remark 4.2

Underscores are concrete syntax for existential variables (evarsa), which are
typed placeholders for some other term. The MetaCoq AST has a node for
evars, called tHole, so when we generate a function application we can put
tHoles in place of implicit arguments which turn into evars after unquoting
and are then inferred by Coq.
This is the same way that implicit arguments work in Coq except you don’t
have to explicitly pass a placeholder in Coq.
tHoles in an abstract term necessitate the use of tmUnquoteTyped to unquote
MetaCoqAST terms. There is also the tmUnquote commandwhich infers the
return type but it fails if the given term contains holes.
As far as we know this is undocumented in MetaCoq and we only found out
in private communication with Joomy Korkut and Kathrin Starkb.

ahttps://coq.github.io/doc/v8.14/refman/language/extensions/evars.html
bWe opened an issue for future reference.

https://github.com/MetaCoq/metacoq/issues/545

So to keep track of and correctly pass implicit arguments, for each function that we
generatewe remember a list of booleans that indicate implicit argument. Whenever
we encounter an application we look up if any implicit arguments are needed, and
if so, intersperse the tHoles.

5"_q" denotes a quoted term.

https://coq.github.io/doc/v8.14/refman/language/extensions/evars.html
https://github.com/MetaCoq/metacoq/issues/545
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De Bruijn Indices
The biggest difference to constr_expr is that the MetaCoq AST uses de Bruijn in-
dices for local variables. While de Bruijn indices work well in proofs, program-
mingwith them is complicated and error prone. When generating expressionswith
de Bruijn indices, one way of dealing with them is to use counters to keep track of
under how many binders a given term is. This results in code like the following,
which is both hard towrite and understand, as Ullrich also notes [33, Section 7.4.2].
let fpos := 1+ allIndCount in
let Hstart := fpos in
let Hpos := Hstart +( ctorCount -i) in
let ppos := 1+ Hstart+ctorCount in
let paramOffset := 1+ppos in
let recPos := paramOffset + trueParamCount in
...

Listing 4.2: Code excerpt from Ullrich’s Bachelor Thesis

Our solution is to implement a custom AST, nterm, that is based on the subset of
the theMetaCoq AST that we need. Except that it has named variables. This allows
us to build a termwith named variables and then translate it to de Bruijn indices at
once which makes the code generation functions much easier and in line with our
Autosubst OCaml implementation.
Inductive nterm : Type :=
| nRef : string → nterm (* turns into tRel , tConst , tInd

, tConstruct from the term type *)
| nHole : nterm
| nTerm : term → nterm (* embed MetaCoq AST terms *)
| nProd : string → nterm → nterm → nterm
| nArr : nterm → nterm → nterm
| nLambda : string → nterm → nterm → nterm
| nApp : nterm → list nterm → nterm
| nFix : mfixpoint nterm → N → nterm
| nCase : string → N → nterm → nterm → list (N *

nterm) → nterm.

Inductive term : Type :=
| tRel : N → term
| tEvar : N → list term → term
| tProd : aname → term → term → term
| tLambda : aname → term → term → term
| tApp : term → list term → term
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| tConst : kername → Instance.t → term
| tInd : inductive → Instance.t → term
| tConstruct : inductive → N → Instance.t → term
| tCase : (inductive * N) * relevance →

term → term → list (N * term) → term
| tFix : mfixpoint term → N → term
| ...

Listing 4.3: Our nterm AST in comparison to the MetaCoq AST (abridged)

4.1.3 Code Generation
The main architectural difference between Autosubst OCaml and Autosubst Meta-
Coq is that the latter uses twomonads instead of one: TemplateMonad and a custom
RWSEMmonad.
We give a graphical representation of their relationship in Figure 4.1.

We do not use a monad library to define a monad transformer stack. Instead, we
implement RWSEM from scratch as a combination of Reader, Writer, State, and
Error.

Code generation still advances topologically through the strongly connected com-
ponents of the dependency graph. For every component, the genCode function is
called, which returns an expression of the RWSEMmonad. This expression is evalu-
ated and gives the generated abstract syntax terms and the state of the code gener-
ation.
The abstract syntax terms are used with the TemplateMonad to put the generated
code into the environment.
The state of the code generation contains information like our implicit argument
tracking and is passed to the next call to genCode.

The genCode function implements the code generation for a component and is de-
fined analogously to Autosubst 2 and Autosubst OCaml.

Generating the automation proved to be uncomfortable because we cannot define
notations and tactics using the TemplateMonad. As aworkaround, we define simple
printers that generate the tactic code as a string.
This string is printed in the Coq message buffer and the user can then paste it back
into the Coq buffer to define tactics. The user can automatically format the output
this way, so we can omit formatting logic in our printer.
This detour is certainly not nice to use and a drawback of Autosubst MetaCoq.
We had problems with generating notations so we do not generate them at all.

To add the this functionality to the TemplateMonad would require a reification of
notations and tactics. But we do not believe this is in the scope of MetaCoq.
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TemplateMonad RWSEM

run genCode(component_1)

code, state

run genCode(component_n)

code, state

MetaCoq Run

Figure 4.1: Relationship of TemplateMonad and RWSEM.

4.2 Missing Features
In comparison to Autosubst OCaml there are some missing features that make this
implementation incomplete.

• We do not generate lemmas with functional extensionality.

• We do not organize generated code in modules. We suspect that is not possi-
ble with MetaCoq.

• We do not generate custom variable names. The feature is in the syntax but
it is ignored.

• We do not generate lemmas with pointwise_relation for the new asimpl.

4.3 Extension to MetaCoq
Tracking and generating implicit arguments as discussed in section 4.1.2 adds com-
plexity to the program. Also, it hurts performance because we do a string-keyed
association list lookup for every application node with a named variable, to check
if that variable has any implicit arguments.

As a possible fix we implement a TemplateMonad command corresponding to the
Coq Arguments vernacular command6. Using this command one can declare argu-
ments as implicit like so:

MetaCoq Run (tmArguments "f" ["x"; "y"]).
Arguments f {x} {y}. (* Equivalent to this *)

6https://github.com/addap/metacoq/blob/tmArguments/test.v

https://github.com/addap/metacoq/blob/tmArguments/test.v
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At the time of writing this thesis, it is just a proof-of-concept that can only declare
arguments as maximally-inserted implicit but in general it is possible to support
more functionality of the Arguments command.

Using this would reduce complexity and increase performance because we do not
have to instantiate implicit arguments with evars in MetaCoq. Instead, the Coq
runtime takes care of it.
We also think this would be a sensible addition the TemplateMonad so that other
MetaCoq users can use implicit arguments in their generated terms more comfort-
ably.

However, a proper implementation is left as future work due to time and scope
constraints.
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Case Studies

In this chapter we discuss the case studies that exist for Autosubst OCaml.

Stark has already implemented several case studies forAutosubst 2 [30, Part III].We
port a subset to Autosubst OCaml to ensure compatibility of our implementation.
Alsowe add one case study that arose naturallywhen the author tried tomechanize
a metatheorem found in the book "Types and Programming Languages" [20].

Stark’s case studies along with our own are part of our CI1 process on GitHub2 to
ensure that there are no regressions in Autosubst OCaml.

Unfortunately, we did not implement noteworthy case studies for Autosubst Meta-
Coq because of a lack of time and Autosubst MetaCoq is not as easy to use as Au-
tosubst OCaml at the time of writing this thesis.
We only test the code generation of Autosubst MetaCoq on some input languages
ensure that it is working3.

5.1 Stark’s Existing Case Studies
To show the usefulness of Autosubst, Stark has already implemented numerous
case studies for Autosubst 2 in her dissertation. We port4 only the subset that does
not deal with modular syntax, because Autosubst OCaml does not support this
feature. The case studies contain proofs of metatheorems mainly for the, simply
typed λ-calculus and System F with subtyping. And there are some short proofs
for other systems like variants of System F and the untyped λ-calculus.

• Instantiation preserves reduction in the untyped λ-calculus with pairs.

• Instantiation preserves reduction in System Fcbv.

1Continuous Integration
2https://github.com/uds-psl/autosubst-ocaml/actions
3https://github.com/uds-psl/autosubst-metacoq/tree/master/test/examples.v
4https://github.com/uds-psl/autosubst-ocaml/tree/master/case-studies/kathrin/coq

https://github.com/uds-psl/autosubst-ocaml/actions
https://github.com/uds-psl/autosubst-metacoq/tree/master/test/examples.v
https://github.com/uds-psl/autosubst-ocaml/tree/master/case-studies/kathrin/coq
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• Type preservation in the multivariate λ-calculus.

• Weak head normalization in the simply typed λ-calculus.

• Strong normalization via Raamsdonk’s Characterization [34] in the simply
typed λ-calculus with sums.

The most extensive case study is solving parts 1 and 2 of the POPLMark chal-
lenge [6].
Both parts of the challenge are about proving metatheorems for a variant of Sys-
tem F.
Part one uses System F extended with subtyping and part two uses System F ex-
tended with subtyping, record types and pattern matching.

We use our version of asimpl where possible in order to reduce reliance on the
functional extensionality axiom. Porting the code is straightforward because Auto-
subst OCaml provides a very similar interface to Autosubst 2.
Themajor differences that had to be accounted for are due to differences in behavior
of our new version of asimpl, further discussed in Section 6.1.

• Autosubst OCaml does not provide the asimpl in * version of asimpl be-
cause there is no setoid_rewrite in *.
The solution is to instead use asimpl in H for any hypothesis H that needs
to be simplified.

• We have to instantiate existential variables in a few places because asimpl
cannot deal with them.

• asimpl needs morphisms for certain user-defined types.
We discuss this below.

Stark defines the subtype relation sub for System F with record types as the follow-
ing.

(* chapter10/sysf_pat.v::10 *)
Inductive ty (n_ty : N) : Type :=

| var_ty : fin n_ty → ty n_ty
| top : ty n_ty
| arr : ty n_ty → ty n_ty → ty n_ty
| all : ty n_ty → ty (S n_ty) → ty n_ty
| recty : list (N * ty n_ty) → ty n_ty.

(* chapter10/POPLmark21.v::292 *)
Inductive sub {n} (Delta : fin n → ty n) :

ty n → ty n → P :=
...
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| SA_rec (xs ys : list (N * ty n)) :
(∀ l T’, In (l, T’) ys → ∃ T, In (l, T) xs ∧ sub

Delta T T’) →
unique xs → unique ys →
sub Delta (recty xs) (recty ys).

Here sub is nested in an existential type.
To rewrite inside the subtype relation with asimpl we have to prove a morphism
for it. To do this, we first have to prove a stronger induction principle for sub.
Since sub has a nested recursive occurrence below an existential quantifier, Coq’s
automatically derived induction principle is not strong enough. We first tried to use
Marcel Ullrich’s MetaCoq plugin from his bachelor thesis [33] to generate a strong
induction principle. But unfortunately, it does not support nesting in an existential
quantifier, so we implemented the stronger induction lemma ourselves5.

In conclusion, our new version of asimpl is mostly a drop-in replacement. Some-
time it does not work however, which we discuss in Section 6.1.3.

5.2 TAPL Exercise 23.6.3
To experience how a user works with Autosubst OCaml we also add a case study
of our own6.
For thiswe choose tomechanize the first three steps of exercise 23.6.3 fromTAPL [20,
Page 378].

The exercise is about proving the non-typability of the term omega in System F.
The term is defined as:

omega = (λx. x x)(λy. y y)

It is not typable because omega reduces to itself and SystemF has the normalization
property, i.e. reduction of all well-typed terms terminates.
The exercise consists of seven steps and we mechanize the first three, but only the
second actually uses substitution lemmas.

We first use Autosubst OCaml to generate code for our specification of System F
(Appendix A.2). Then we define a typing relation, the exposed predicate, and
erasure into untyped λ-calculus using the generated inductive types. Finally, we
mechanize the three steps.

We use the automation of Autosubst mainly in the proofs of progress and preser-
vation for System F.

5From private communication we gather that his tool is planned to support existential quantifiers
in the future so users of the new asimpl tactic could eventually use it also for this use-case.

6The development can be found in https://github.com/uds-psl/autosubst-ocaml/tree/
master/case-studies/tapl-exercise

https://github.com/uds-psl/autosubst-ocaml/tree/master/case-studies/tapl-exercise
https://github.com/uds-psl/autosubst-ocaml/tree/master/case-studies/tapl-exercise
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In turn, we need the preservation property in the proof of step two.
Steps one and three can be proved without the automation of Autosubst because
no substitutions occur their proofs. Still, they of course use the language imple-
mentation provided by Autosubst.

We made the experience that Autosubst lowers the burden of starting to work on a
mechanization. If wewere not aware ofAutosubst at the time of solving the exercise
on paper, we would not have attempted to mechanize it.
This is due to the ratio of necessary boilerplate code to code of the exercise itself.
The boilerplate is much longer. Autosubst made it easy to just concentrate on the
exercise itself, so it has achieved its purpose for us.

Note that this development was done before Autosubst OCaml supported gener-
ation of the asimpl tactic. So initially, we proved everything using the rewriting
lemmas directly.
Therefore, even without the automation, Autosubst OCaml is helpful.



Chapter 6

Extensions

In this chapter we discuss extensions over the original Autosubst 2 that we imple-
mented in Autosubst OCaml and also what we fixed

6.1 Asimpl
6.1.1 Functional Extensionality
Functional extensionality (funext) is an axiom that states that two functions are
equal if they are extensionally equal, which means they are equal applied to all
arguments.

Axiom funext : ∀ (X Y: T) (f g : X → Y),
(∀ x : X, f x = g x) → f = g.

It is consistent as an axiom inCoq, however, introducing an axionwill hurt adoption
of a library. Weknowof at least twodevelopment that do not useAutosubst because
of its reliance on the funext axiom [15, 16].
This is why one of the targets of this work is to remove the dependency.

Note however, that funext is only needed for the automation of Autosubst. One can
still solve the same substitution equations by manually rewriting with lemmas that
do not use funext.
6.1.2 Asimpl with Functional Extensionality
Autosubst 2 uses funext for easier rewriting in the asimpl tactic1. There are a num-
ber of lemmas in the equational theory of a given de Bruijn algebra that state the
extensional equality of certain functions. In case of the λ-calculus (which we use
as a running example in this section), the following is one of them.

Lemma scons_comp (t: tm) (f: N → tm) (g: ty → tm) :
∀ n, ((t .: f) >> g) n = (t[g] .: f >> g) n.

1Which we call asimpl_fext in the following.
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Using funext we can promote the extensional equality of the functions to an equal-
ity of the functions.

Lemma scons_comp_fext (t: tm) (f: N → tm)
(g: ty → tm) :

(t .: f) >> g = t[g] .: f >> g.

Now, we can easily rewrite the function on the left-hand side to the function on the
right-hand side in arbitrary contexts, like in the following instantiation.

s[(t .: var_tm) >> g] = s[t[g] .: var_tm >> g]

However, funext does not give us strictly more power in the context of Autosubst
because we can also prove the equation above using an extensionality lemma com-
bined with scons_comp. The extensionality lemma states that instantiations with
extensionally equal functions are equal.

Lemma ext_tm (s: tm) (f g : N → tm) :
(∀ n, f n = g n) → s[f] = s[g]

Intuitively ext_tmmakes sense because a substitution replaces all free variables in
a term. If the two substitutions are equal for all free variables, the instantiations
must also result in the same term.
These extensionality lemmas are already generated by Autosubst 2 and our imple-
mentations.

But using funext is certainlymore convenient, becausewe canuse the normal rewrit-
ing facilities to replace one function with another. Whereas with the extensionality
lemma we need to apply it and then argue why the substitutions are extensionally
equal.
In the example above this is directly implied by scons_comp. But in general the
function we want to replace might be contained in a deeper context like in the fol-
lowing.

s[h >> ((t .: var_tm) >> g)] = s[h >> (t[g] .: var_tm >> g)]

To prove this substitution equation we also need to know that composing exten-
sionality equal functions results in extensionality equal functions.

Generally, substitutions (and renamings) in Autosubst can be composed of opaque
functions f, extension scons (or .:) and function composition funcomp (or >>).
Generally, we need some automated way of proving the extensional equality of
functions composed of those primitives.
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6.1.3 Asimpl with Setoid Rewriting
One possible way is to use Coq’s generalized rewriting – or setoid rewriting – li-
brary [27]. Setoid rewriting enables rewriting with relations other than equality,
for example with extensional equality.
In order to use setoid rewriting to replace the argument of a function f we have to
define a morphism morphf for it.
The morphism specifies that if the arguments are in some relation R_1 x y, then
the function values are in some other relation R_2 (f x)(f y).
Setoid rewriting can then automatically derive a strategy for composingmorphisms
so that for example starting from an assumption H : R_1 x ywe can prove R_3 (
g (f x))(g (f y)) using intermediate morphisms from R_1 to R_2 and from R_2
to R_3.

So we can implement asimpl with setoid rewriting if we define morphisms that
can compose to a strategy starting at one of our rewrite lemmas to a substitution
equation.

Morphisms
We need to define morphisms that can be composed to reduce substitution equa-
tions to one of the rewriting lemmas. In total we need morphisms for

• instantiation with substitutions,

• instantiation with renamings,

• extension,

• and function composition.

The proofs of the morphisms for the instantiations are applications of the exten-
sionality lemmas that we already generate and the other two morphisms can be
defined statically. The morphisms are instances of the Proper typeclass. We gener-
ate vernac_expr terms to construct the instances.

Lemmas
In general, we need extensional variants of all rewriting lemmas H that are used
with a rewrite H in the asimpl_fext tactic. These are the four compositionality
lemmas, the left-identity lemma for renamings and substitutions, and the right-
identity lemma for renamings and substitutions.

Technical Remark 6.1

Setoid rewriting has some problems rewriting with lemmas that use an ex-
tensional equality explicitly, like the following:
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Lemma renRen_tm ( xi_tm : N → N) ( zeta_tm : N → N) :
∀ (s : tm),
ren_tm zeta_tm ( ren_tm xi_tm s) = ren_tm ( funcomp zeta_tm

xi_tm) s.

It works better if we instead use the pointwise_relation predicate from the
Setoid library, which abstracts extensional equality.
Lemma renRen_tm_pointwise (xi_tm : N → N) ( zeta_tm : N → N) :

pointwise_relation _ eq ( funcomp ( ren_tm zeta_tm ) ( ren_tm
xi_tm))

( ren_tm ( funcomp zeta_tm xi_tm)).

We suspect it is a weakness of the strategy search used by setoid rewriting.
The pointwise_relationmight be easier than an explicit quantifier because
it does not mention a bound variable.
Sowhenwe speak of extensional variants of lemmas in this Section, wemean
those using the pointwise_relation predicate.

For the λ-calculus this means we need the following 8 extensional rewrite lemmas.

[σ][τ] ≡ [σ ◦ [τ]] var ◦ [σ] ≡ σ

[σ]⟨ζ⟩ ≡ [σ ◦ ⟨ζ⟩] var ◦ ⟨ξ⟩ ≡ ξ ◦ var
⟨ξ⟩[τ] ≡ [ξ ◦ τ] [var] ≡ id

⟨ξ⟩⟨ζ⟩ ≡ ⟨ξ ◦ ζ⟩ ⟨id⟩ ≡ id

The extensional versions of the compositionality lemmas are already generated by
Autosubst 2, with an explicit quantifier, so we wrap it in the pointwise_relation.
The extensional versions of the other lemmas are newly generated by our imple-
mentations.
Tactic
Wegenerate an ltac script that is similar to the original asimpl_fext. This is because
whenever asimpl_fext uses rewrite H, the new asimpl can use setoid_rewrite
H’with H’ being an extensional version of H.

Also, asimpl_fext unfolds function composition, which the new asimpl avoids
since it is one of the relations that setoid rewriting uses for the strategy search.
Evaluation
In our experience, working with setoid rewriting can be hard because sometimes it
is not obvious why it fails to infer a strategy the way that one has in mind2. Small

2Failure to infer a strategy is typeclass inference error, which are notoriously hard to decipher in
Coq.
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changes in the definition of a morphism or rewrite lemmas can easily introduce
regressions in asimpl’s power.
During the process of developing the new asimpl, our CI process turned out to be
very useful for catching these regressions by testing it on all case studies.

To conclude, our new version of asimpl works and successfully avoids the use of
functional extensionality for rewriting in Stark’s original case studies (Section 5.1).
But at the moment we can only give a weaker conjecture of completeness for this
decision procedure because for some suitably complex cases, setoid rewriting fails
to infer a strategy.

In the end we adopted a workflow that used both tactics. The new asimpl as long
as it works, and if it cannot solve the goal we check with asimpl_fext and help
manually.

This is sometimes necessary because goals can appear that confuse setoid rewrit-
ing. It happens when the relations that setoid rewriting needs for strategy search
– function composition and pointwise_relation – are unfolded. For example the
following goal is not immediately solved with our new asimpl.
Goal ∀ m n k l (s: tm l n) (σ: fin m → tm l n) (f: fin n → tm l k)

(x: fin (S m)),
subst_tm var_ty f ((s .: σ) x)
= ( subst_tm var_ty f s .: σ >> subst_tm var_ty f) x.

It only solves the goal if the left side is formulated with function composition and
the explicit extensionality is replaced with pointwise_relation.
Goal ∀ m n k l (s: tm l n) (σ: fin m → tm l n) (f: fin n → tm l k),

pointwise_relation _ eq ((s .: σ) >> ( subst_tm var_ty f))
( subst_tm var_ty f s .: σ >> subst_tm var_ty f).

6.2 Traced Syntax
Recall that Autosubst 2 supports generation of unscoped and wellscoped syntax as
discussed in Section 2.5.3.
To explore the extensibility of our implementation we explore how to implement
an additional syntax variant: traced syntax [12].

Traced syntax can be regarded as a generalization of wellscoped syntax.
Recall that in wellscoped syntax an inductive type is parameterized by a natural
number that is the upper bound of free variables that can appear in terms of this
type.
In contrast, in traced syntax an inductive type is parameterized by a list of natural
numbers which specify exactly which free variables can appear inside terms of this
type.
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Our idea of traced syntax is inspired by [12] but we have to adapt several aspects
so that it works with our use-case.

• Herbelin et al. explicitly renounce de Bruijn indices while we use them ex-
tensively.

• They carry a proof in the variable constructor, that a given name is in the list
of free variables, while are just interested in carrying the number itself.

• They define substitutions to only insert closed terms, which Autosubst does
not do.

This formalization is based on the existing formalization of wellscoped syntax.

Terms are readily defined as follows

Inductive tm (vs: list N) : Type :=
| var_tm : finL vs → tm vs
| app : tm vs → tm vs → tm vs
| lam : tm (0 :: vs) → tm vs.

The three differences to an analogous definition inwellscoped syntax (Section 2.5.3)
are:

• The type tm is indexed by a list of natural numbers.

• The variable constructor takes a value of type finL vs.
This type represents numbers in the list vs.

• The body argument of the binder lam is lifted by prepending a zero to the list
vs.
We discuss our reasoning for this lifting in Section 6.2.1.

Note that, analogous to the n parameter in wellscoped syntax, the list vs is only a
superset of the allowed free variables in terms.
That means it can contain numbers that do not appear in a given term, e.g. the term
(lambda . 0 1) can be typed with (tm [0; 4])3.

This means that wellscoped syntax can be regarded as a special case of traced syn-
tax where the list represents all de Bruijn indices up to some number n.
This observation leads us to our formalization of traced syntax.

3The 0 in the list corresponds to the variable 1 in the term, because the 1 appears under a binder
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6.2.1 Formalization

In traced syntax, de Bruijn indices have the type finL vs that is parameterized by
a list of natural numbers.
There are exactly as many inhabitants of finL vs as members in the list vs.

Definition 6.1 (finL)

wrapNat(v : N) : T ::= wN

finL [] = ⊥
finL (v :: vs ′) = (wrapNat v) + (finL vs ′)

finL is implemented as a recursive function definition on the given list. And it uses
wrapNat to lift a given natural number to the type level, so that for example the type
finL [1;2] can intuitively be read as "1 or 2 or ⊥".

But a key simplification that we do from an intuitive interpretation of finL vs is
the natural numbers in vs do not immediately specify the de Bruijn indices that
finL vs represents.
Instead, for a list vs = [v0; . . . ; vi; vi+1; . . . ; vn], the number vi+1 represents a deBruijn
index wi+1 = wi + vi+1 + 1. So vi+1 specifies the gap of missing de Bruijn indices
(plus one) since vi.
For example the type finT [0;0;0] represents the de Bruijn indices 0, 1, and 2.
And the type finT [0;2;1] represents the de Bruijn indices 0, 3, and 5 (and not
literally 0, 2, and 1).
This simplification is done so that the represented set of de Bruijn indices is implic-
itly strictly ordered. And so that lifting by prepending a zero implicitly shifts the
de Bruijn indices so that we do not have to change vs.

We want it to be strictly ordered to ensure that there is only a single type for a set
of de Bruijn indices.
With a literal treatment of vs, ordering would have to be ensured some other way
and lifting the list, like in the body of the lam constructor, would have to increase
all numbers.

| lam : tm (0 :: map S vs) → tm vs

This transformation on vs makes code generation harder because in some places
we then have to "unshift" it to remove the mapping.
Therefore, to make code generation simpler, we opt for the more complex interpre-
tation.
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Technical Remark 6.2

The definition of the finite type finL has a big impact on the ease of code gen-
eration. There are other possible definitions with different trade-offs [17].
We also tried one formalization with an indexed inductive type. But this re-
sults in conflicts with Coq’s index condition [26, Section 21.2] which makes
code generation harder.
Therefore, we opt for a recursive definition that is derived from fin of
wellscoped syntax using the algebraic properties of Coq’s inductive types.
Recall that fin is defined as follows.

Fixpoint fin (n: N) : Type :=
match n with
| O ⇒ ⊥
| S n’ ⇒ option (fin n’)
end.

So fin 0 is not inhabited and for each iteration of the S constructor, the type
gets one new member due to the None constructor.
For finLwewant a similar behavior that gives the type one newmember for
each iteration of the cons constructor. To arrive at this we start by inlining
the option type, and then replacing the unit type with a type wrapNat n
that represents single natural number.

Fixpoint fin ’ (n: N) : Type :=
match n with
| O ⇒ ⊥
| S n’ ⇒ unit + fin ’ n’
end.

Inductive wrapNat (n: N) := wN : wrapNat n.
Fixpoint finL (vs: list N) : Type :=

match vs with
| [] ⇒ ⊥
| v :: vs ’ ⇒ wrapNat v + finL vs’
end.

Using this formalization the code generation has to be amended in only a fewways.

• Generating the type of scope variables as list N.

• Generating the type finT instead of fin.

• Inserting a match on the wrapNat constructor in certain places.
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This exemplifies that our formalization of traced syntax is very similar towellscoped
syntax, since it is a natural generalization.

The primitives for the de Bruijn index 0L, shifting (↑L), and stream extension (·L)
are defined very similarly to wellscoped syntax (Figure 2.8).

Definition 6.2 (Traced Syntax Primitives)

ZL : finL (0 :: vs)

ZL = inl (wN 0)

↑L : finL vs→ finL (0 :: vs)

↑L m = inl m

·L : X→ (finL vs→ X)→ finL (0 :: vs)→ X

(x ·L f)(inl (wN 0)) = x

(x ·L f)(inr m) = f m

We have not evaluated the merits of our formalization on a case study and we con-
jecture that our special interpretation of the list vs makes traced syntax harder to
use than with a literal interpretation.
However, in the future we want to explore different formalization, with a literal
treatment of vs, and with different primitives.
We implement formalization in this section manually for one language4. It is not
part of code generation in Autosubst OCaml.

6.3 Autosubst 2
We found one bug in Autosubst 2 during our reimplementations.

If the first sort in a component of size⩾ 2 is not recursive5, the substitution operation
is falsely generated as a Definition instead of a Fixpoint while still containing
multiple bodies. This concrete syntax is not parseable by Coq.

Definition subst_vl ... := ...
with subst_tm ... := ...

Listing 6.1: Instantiation with substitution if the sysf_cbv.sig signature is
changed to declare vl before tm.

4https://github.com/addap/autosubst-ocaml/blob/master/traced/utlc_traced.v
5the sort occurs in itself

https://github.com/addap/autosubst-ocaml/blob/master/traced/utlc_traced.v
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The bug was reported6 and the solution was to drop the check for recursivity. It
was not needed anyways and the bug just never surfaced because it depends on the
exact signature definition.

In comparison to Autosubst 2 we also cleanup up the static files to remove unused
code, put notations into a separate module to only include them optionally, and
factor out the code that uses the functional extensionality axiom into a different file
to also only include it optionally7.

6in private email communication with Kathrin Stark
7The updated static files can be found in https://github.com/addap/autosubst-ocaml/tree/

master/share/autosubst

https://github.com/addap/autosubst-ocaml/tree/master/share/autosubst
https://github.com/addap/autosubst-ocaml/tree/master/share/autosubst
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Conclusion

To conclude the thesis we summarize our main results.

7.1 Autosubst OCaml
We reimplement Autosubst 2 in OCaml to reuse code from the Coq library for code
generation.
Autosubst OCaml supports all syntax features of Autosubst 2 except modular syn-
tax.
By default, it does not generate lemmas and tactics with functional extensionality,
but they can be enabled so that Autosubst OCaml can be a drop-in replacement for
Autosubst 2.

Autosubst OCaml generates a new kind of asimpl tactic, which is based on setoid
rewriting and can normally replace the old asimpl_fext. We adjust the case studies
by Stark to use the new asimpl almost everywhere1. This shows it is an adequate
replacement of asimpl_fext in most cases.

But there are certain goals that confuse setoid rewriting. If that happens, a user can
either solve the goal manually, fall back on asimpl_fext, or try to change the goal
so that setoid rewriting works again. So the new asimpl is not a perfect solution.

7.2 Autosubst MetaCoq
Wepartially reimplement Autosubst 2 inMetaCoq to useMetaCoq’smetaprogram-
ming facilities for code generation.
Autosubst MetaCoq supports most syntax features of Autosubst 2. It does not sup-
port modular syntax and has limited support for functors because for languages
with functors it cannot define the inductive type due to universe constraint errors.

Autosubst MetaCoq generates the basic rewrite lemmas for a given input language.
But it generates neither rewrite lemmas with functional extensionality, nor rewrite

1variadic_fin.v uses the cod functor, which implies functional extensionality
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lemmas using the pointwise_relation predicate. Furthermore, we have only an
experimental generation of tactics in Autosubst MetaCoq because there is no pre-
defined tactic AST provided.

This precludes users of AutosubstMetaCoq from using any automation, until these
lemmas are generated along with the correct tactics.
7.3 Future Work
Our main focus for future work lies in Autosubst OCaml. After working on both
projects we can decidedly say that it is much easier to understand, extend, and use
Autosubst OCaml.

Themain reasons are because we think OCaml is a better language than Gallina for
implementing programs:

• TheOCaml language is easier to understand thanGallina. Gallina sometimes
has counter-intuitive reduction behavior which can make terms explode in
size, or not reduce at all, if some definition uses Qed instead of Defined.

• OCaml is more efficient than Gallina. Even on relatively small languages like
System Fcbv, Autosubst MetaCoq is a lot slower than Autosubst OCaml.

• Development tools for OCaml are better and allow easier programming.

• OCaml has a fairly large standard library. For Coq, most libraries help with
proofs. So to implement computation in Gallina, one often has to reinvent
wheels which places an additional burden on the programmer.

In Autosubst OCaml we want to further explore:

• An implementation of traced syntax.

• An implementation of asimpl thatmatches on the syntax of goals. This should
give us more control than relying on setoid rewriting to find a solution.

In Autosubst MetaCoq we want to at least generate the lemmas with functional
extensionality. We expect this is not much work because we already generate the
corresponding lemmas with extensional equality.

Finally, both programs need a lot more documentation in order to be understand-
able to other people. This is a failure of our implementations. We postponed
writing documentation for too long. Some parts of Autosubst OCaml are well-
documented, mostly parts that were newly implemented by us.
But the code generation itself still needs more documentation.
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A.1 System Fcbv

We define System Fcbv that we use throughout the thesis.
Also, we give its specification in our input syntax and its associated de Bruijn alge-
bra.

Definition A.1 (System Fcbv)

T,U ∈ ty := n | T → U | ∀.T n ∈ N
s, t ∈ tm := s t | s T | v

v ∈ vl := n | λ.s | Λ.s n ∈ N

λ.s is a term-abstraction and its type is an arrow type T → U.
Λ.s is a type-abstraction and its type is a quantifier ∀.T .
ty : Type
tm : Type
vl : Type

arr : ty -> ty -> ty
all : (bind ty in ty) -> ty

app : tm -> tm -> tm
tapp : tm -> ty -> tm
vt : vl -> tm

lam : ty -> (bind vl in tm) -> vl
tlam : (bind ty in tm) -> vl

Listing A.1: Specification of System Fcbv in our input syntax.

Definition A.2 (Rewrite Lemmas of the de Bruijn algebra of System Fcbv)
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A.2 System F
We define System F. Also, we give its specification in our input syntax.

Definition A.3 (System F)

T,U ∈ ty := n | T → U | ∀.T n ∈ N
s, t ∈ tm := s t | s T | λ.s | Λ.s n ∈ N

λ.s is a term-abstraction and its type is an arrow type T → U.
Λ.s is a type-abstraction and its type is a quantifier ∀.T .
ty : Type
tm : Type

arr : ty -> ty -> ty
all : (bind ty in ty) -> ty

app : tm -> tm -> tm
tapp : tm -> ty -> tm
lam : ty -> (bind tm in tm) -> tm
tlam : (bind ty in tm) -> tm

Listing A.2: Specification of System F in our input syntax.

A.3 σSP-calculus
We define the σSP-calculus and its reduction1 (taken from [30, Figure 4.1]).

s, t ∈ exp := 0 | app s t | λ.s | s[σ] | vexp vexp ∈ N
σ, τ ∈ subst := I | S | s · σ | σ ◦ τ | vsubst vsubst ∈ N

0[s · σ] ≻ s S ◦ (s · σ) ≻ σ

(app s t)[σ] ≻ app s[σ] t[σ] s[I] ≻ s

(λ.s)[σ] ≻ λ.(s[0 · (σ ◦ S)]) s[σ][τ] ≻ s[σ ◦ τ]
I ◦ σ ≻ σ (s · σ) ◦ τ ≻ (s[τ]) · (σ ◦ tau)
σ◦ ≻ σ 0 · S ≻ I

(σ ◦ τ) ◦ θ ≻ σ ◦ (τ ◦ θ) 0[σ] · (S ◦ σ) ≻ σ

1This relation excludes β-reduction. When adding β-reduction, we explicitly write λσSP-calculus.
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There have been a range of calculi of explicit substitutions proposed (summarized
in [4]), starting with the original σ-calculus by Abadi et al. [1].

Note that the reduction rules of the σSP-calculus correspondwith the lemmas about
substitution of the de Bruijn algebra of the λ-calculus from Section 2.3, so it is intu-
itive that the de Bruijn algebra models the σSP-calculus.
A.4 Rewrite Laws of the de Bruijn Algebra of the λ-calculus
Lemma A.4 (Interaction Laws [30, Fact 3.1])

id ◦ f ≡ f ≡ f ◦ id (A.1)
(f ◦ g) ◦ h ≡ f ◦ (g ◦ h) (A.2)
(s · σ) ◦ f ≡ (f s) · (σ ◦ f) (A.3)
↑ ◦ (s · σ) ≡ σ (A.4)

0 · ↑ ≡ id (A.5)
(σ 0) · (↑ ◦ σ) ≡ σ (A.6)

Lemma A.5 (Monad Laws [30, Page 26])

s[var] = s (A.7)
s[σ][τ] = s[σ ◦ [τ]] (A.8)

Lemma A.6 (Compositionality Laws [30, Lemma 3.4])

s⟨ξ⟩⟨ζ⟩ = s⟨ξ ◦ ζ⟩ (A.9)
s⟨ξ⟩[τ] = s[ξ ◦ τ] (A.10)
s[σ]⟨ζ⟩ = s[σ ◦ ⟨ζ⟩] (A.11)
s[σ][τ] = s[σ ◦ [τ]] (A.12)

Lemma A.7 (Supplementary Laws [30, Fact 3.5])

var ◦ [σ] ≡ σ (A.13)
(σ ◦ [τ]) ◦ [θ] ≡ σ ◦ [τ ◦ [θ]] (A.14)

σ ◦ [var] ≡ σ (A.15)

Lemma A.8 (Extensionality Laws [30, Lemma 3.7])

If ξ ≡ ζ, then s⟨ξ⟩ = s⟨ζ⟩ (A.16)
If σ ≡ τ, then s[σ] = s[τ] (A.17)

Lemma A.9 (Coincidence Laws [30, Lemma 3.8])

⇑∗ ξ ◦ var ≡ ⇑ (ξ ◦ var) (A.18)
s[ξ ◦ var] = s⟨ξ⟩ (A.19)
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A.5 Reuse from the Coq Implementation
One goal of Autosubst OCaml is to reuse code from the Coq implementation.
Here we list a table containing the most important types and definitions from the
Coq implementation that we reuse.

Constrexpr.constr_expr Gallina terms
Constrexpr.local_binder_expr Binders of dependent products or lambdas
Constrexpr.branch_expr Branch of a match expression
Vernacexpr.vernac_expr Vernacular command terms
Vernacexpr.vernac_control Vernacular command terms with attributes
Vernacexpr.opacity_flag Whether a definition is opaque or transparent
Vernacexpr.proof_end End of a proof
Vernacexpr.syntax_modifier Notation arguments like "at level n"
Attributes.vernac_flag Attributes of vernacular commands
Tacexpr.raw_tactic_expr Ltac tactic terms
Locus.clause_expr Location annotations like "in *"
Glob_term.binding_kind If a binder is explicit or implicit
Name.t, Id.t, lident, qualid Different kinds of identifiers
ident_decl, name_decl Different kinds of identifiers with attached universe declaration
Ppconstr.pr_lconstr_expr Printing a Gallina term
Ppvernac.pr_vernac Printing a vernacular command with attributes
Ppvernac.pr_vernac_expr Printing a vernacular command
Tacexpr.pr_raw_tactic Printing a tactic term
Global.env Global environment
Evd.from_env Evar management
Notations.declare_scope Declaring notation scopes
Metasyntax.add_notation Adding a new notation
Pp.seq, Pp.str Primitive pretty-printing functions
CAst.make Wrapper for AST terms that adds source file location
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