Model	Extensionality	A type for non-well-founded sets	Choice

A Syntactic Theory Of Finitary Sets

Denis Müller

Saarland University

31.7.15

Overvie				
Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000		000000

- 3 Transitive closure
- A type for non-well-founded sets

5 Choice

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
●00000000	0000	000000		000000
Table o	f Conten	its		

- 2 Extensionality
- 3 Transitive closure
- A type for non-well-founded sets

5 Choice

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
o●ooooooo	0000	000000	0000000000	000000
Non-w	ell-found	led sets		

We give a constructive model for non-well-founded sets.

- Our Model : ZFC Regularity Infinity + AFA
- Non-well-founded sets can be represented by rooted graphs up to bisimulation

	all found		000000000	000000
Model 0●0000000	Extensionality	Transitive closure	A type for non-well-founded sets	Choice

We give a constructive model for non-well-founded sets.

- Our Model : ZFC Regularity Infinity + AFA
- Non-well-founded sets can be represented by rooted graphs up to bisimulation

Simplest example: $\Omega = \{\Omega\}$

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
oo●oooooo	0000	000000		000000
Graphs				

Definition

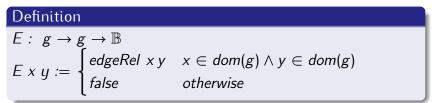
A (rooted) graph is a 4-tuple (X, edgeRel, dom, root), where

- *X* is a type with decidable equality
- $edgeRel : X \rightarrow X \rightarrow \mathbb{B}$ is the transition relation
- *dom* : [X] is the domain of the graph
- root : X denotes the root of the graph

We denote the type associated with a graph g by t g (or simply g) and the type of graphs by \mathbb{G} .

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
ooo●ooooo	0000	000000		000000
Edges				

We always only consider the subgraph induced by the domain, hence the following definition:

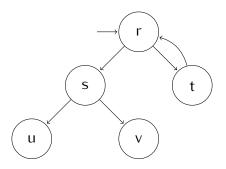


Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000		000000
Child r	ndes			

Child nodes : reachable from the root in one step.

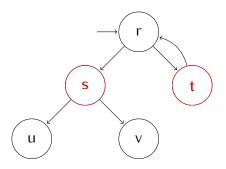
Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
0000●0000	0000	000000		000000
Child r	ndes			

Child nodes : reachable from the root in one step.



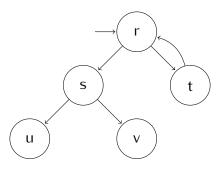
Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
0000●0000	0000	000000		000000
Child r	ndes			

Child nodes : reachable from the root in one step.

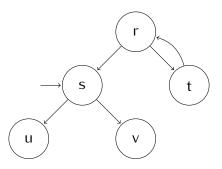


Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
ooooooooo	0000	000000		000000
Subgra	phs			

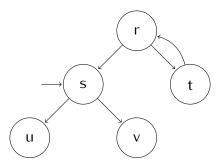
Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
ooooooooo	0000	000000		000000
Subgra	phs			



Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
ooooo●ooo	0000	000000		000000
Subgra	phs			



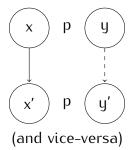
Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
ooooo●ooo	0000	000000		000000
Subgra	phs			



The children of a graph denote the subgraphs starting from its child nodes.

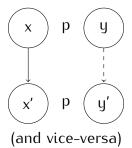
Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000●00	0000	000000		000000
Bisimu	lation			

A relation $p: \mathbb{G} \to \mathbb{G} \to \mathbb{B}$ is a bisimulation (bisim p) if



Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000●00	0000	000000		000000
Bisimu	lation			

A relation $p: \mathbb{G} \to \mathbb{G} \to \mathbb{B}$ is a bisimulation (**bisim p**) if



Two graphs g_1, g_2 are bisimilar $(g_1 \approx g_2)$ if $\exists p. bisim p \land p (root g_1) (root g_2)$.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice			
0000000●0	0000	000000		000000			
Flements and subsets							

Based on \approx and the children of a graph, we can define an element relation:

Definition

 $g_1 \stackrel{\cdot}{\in} g_2 := \exists g \in childreng_2. g_1 \approx g.$

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
0000000●0	0000	000000		000000
Elemer	nts and s	ubsets		

Based on \approx and the children of a graph, we can define an element relation:

Definition

$$g_1 \stackrel{\cdot}{\in} g_2 := \exists g \in childreng_2. g_1 \approx g.$$

Definition

$$g_1 \stackrel{.}{\subseteq} g_2 := \forall g. g \stackrel{.}{\in} g_1 \implies g \stackrel{.}{\in} g_2.$$

Definition

$$g_1 \equiv g_2 := g_1 \stackrel{.}{\subseteq} g_2 \wedge g_2 \stackrel{.}{\subseteq} g_1.$$

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
00000000●	0000	000000		000000
Outline				

Already known:

- How to decide $g_1 \approx g_2$, $g_1 \in g_2$, $g_1 \subseteq g_2$, $g_1 \equiv g_2$.
- How to decide reachability in a graph, i.e. $x \rightarrow^* y$.
- Constructions for all ZF axioms except Infinity, Regularity and Extensionality.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
00000000●	0000	000000		000000
Outline				

Already known:

- How to decide $g_1 \approx g_2$, $g_1 \in g_2$, $g_1 \subseteq g_2$, $g_1 \equiv g_2$.
- How to decide reachability in a graph, i.e. $x \rightarrow^* y$.
- Constructions for all ZF axioms except Infinity, Regularity and Extensionality.

Today:

- Extensionality
- Transitive closure
- Quotient type
- Choice function

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	●000	000000		000000
Table c	of Conter	nts		

- 2 Extensionality
- 3 Transitive closure
- A type for non-well-founded sets

5 Choice

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0●00	000000		000000
Extens	ionality			

The only missing ZF axiom that is admissible for our model is extensionality:

Theorem (Extensionality)

 $\forall g_1 g_2, g_1 \approx g_2 \iff g_1 \equiv g_2.$

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	00●0	000000		000000
Extens	ionality '	"⇒"		

" \Rightarrow " Let $g_1 \approx g_2$. We show $g_1 \subseteq g_2$.

- " \Rightarrow " Let $g_1 \approx g_2$. We show $g_1 \subseteq g_2$.
 - Let $g \in g_1$, i.e. there is a vertex $x \in dom g_1$ such that $E(root g_1)x = true \land g \approx subgraph x$.

" \Rightarrow " Let $g_1 \approx g_2$. We show $g_1 \subseteq g_2$.

- Let $g \in g_1$, i.e. there is a vertex $x \in dom g_1$ such that $E(root g_1)x = true \land g \approx subgraph x$.
- Since $g_1 \approx g_2$, there is some vertex $y \in dom g_2$ such that $E(root g_2) y = true \land p \times y = true$, where p is the witness of $g_1 \approx g_2$.

" \Rightarrow " Let $g_1 \approx g_2$. We show $g_1 \subseteq g_2$.

- Let $g \in g_1$, i.e. there is a vertex $x \in dom g_1$ such that $E(root g_1)x = true \land g \approx subgraph x$.
- Since $g_1 \approx g_2$, there is some vertex $y \in dom g_2$ such that $E(root g_2) y = true \land p \times y = true$, where p is the witness of $g_1 \approx g_2$.
- To show g ≈ subgraph y, it suffices to show subgraph x ≈ subgraph y. It is easy to see that the relation p is also a bisimulation for subgraph x and subgraph y.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	000●	000000		000000
Extens	ionality '	"⇐"		

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice				
000000000	000●	000000		000000				
Extens	Extensionality "⇐"							

- " \Leftarrow " Let $g_1 \equiv g_2$ and $p := \lambda x y$. subgraph $x \equiv$ subgraph y.
 - Obviously, p (root g_1) (root g_2) = true.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	000●	000000		000000
Extens	ionality '	'⇐"		

- Obviously, p (root g_1) (root g_2) = true.
- Consider $x, x' \in dom g_1$ such that $E \times x' = true$, $y \in dom g_2$ and $p \times y = true$.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice			
000000000	000●	000000		000000			
Extensionality "⇐"							

- Obviously, p (root g_1) (root g_2) = true.
- Consider $x, x' \in dom g_1$ such that $E \times x' = true$, $y \in dom g_2$ and $p \times y = true$.
- Since $subgraph x \equiv subgraph y$, there is some $y' \in dom g_2$ such that $E y y' = true \wedge subgraph x' \approx subgraph y'$.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	000●	000000		000000
Extens	ionality '	'⇐"		

- Obviously, p (root g_1) (root g_2) = true.
- Consider $x, x' \in dom g_1$ such that $E \times x' = true$, $y \in dom g_2$ and $p \times y = true$.
- Since subgraph $x \equiv$ subgraph y, there is some $y' \in dom g_2$ such that $E y y' = true \land$ subgraph $x' \approx$ subgraph y'.
- Due to the direction already proven, we know that subgraph $x' \equiv$ subgraph y'.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	●00000		000000
Table o	f Conten	its		

- 3 Transitive closure
- A type for non-well-founded sets

5 Choice

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
00000000	0000	o●oooo		000000
Transiti	ive closu	ire		

The transitive closure of a set is basically the set of all its successors w.r.t. the element relation. Its usual definition relies on the axiom of infinity: $tc M := \bigcup_{n \in \mathbb{N}} (\bigcup^n M)$

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	00●000		000000
Transit	ive closu	ire		

Successors of a graph (w.r.t \in) correspond to vertices that are reachable from its root.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	00●000		000000
Transit	tive closu	Ire		

Successors of a graph (w.r.t \in) correspond to vertices that are reachable from its root.

Definition

$$x \to^+ y := \exists x'. E x x' = true \land x' \to^* y.$$

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice				
000000000	0000	00●000		000000				
Transit	Transitive closure							

Successors of a graph (w.r.t \in) correspond to vertices that are reachable from its root.

Definition

$$x \to^+ y := \exists x'. E x x' = true \land x' \to^* y.$$

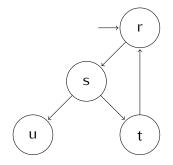
 $x \rightarrow^+ y$ is obviously decidable.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000●00		000000
Transit	ive closu	ire		

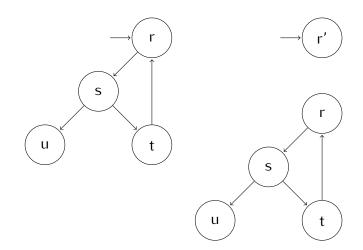
The construction works as follows:

- add a new root
- make the new root adjacent to every vertex v such that root $g \rightarrow^+ v$

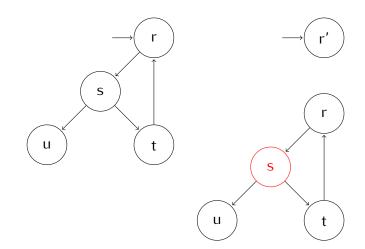
Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	0000€0		000000
Examp	le			



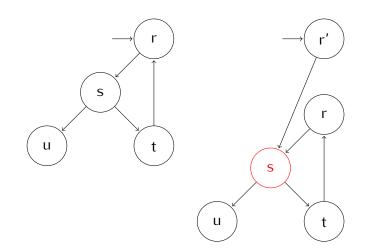
Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	0000€0		000000
Examp	le			



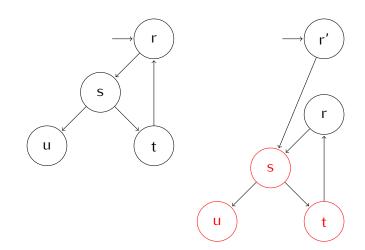
Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	0000€0		000000
Examp	le			



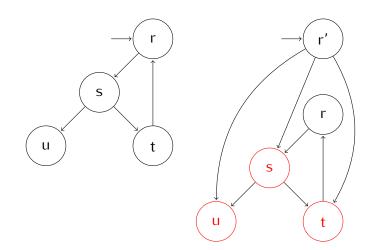
Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	0000●0		000000
Examp	le			



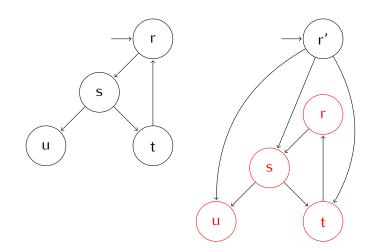
Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	0000●0		000000
Examp	le			



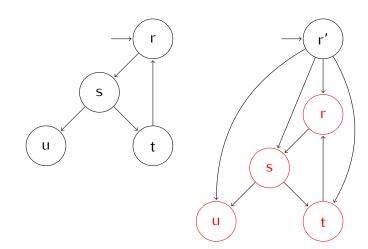
Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
00000000	0000	0000●0		000000
Exampl	e			



Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
00000000	0000	0000●0		000000
Exampl	e			



Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
00000000	0000	0000●0		000000
Exampl	e			



Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	00000●	0000000000	000000
Classic	cal chara	cterization	oftc	

We characterized the transitive closure as the set of all successors w.r.t. $\dot{\in}$. Furthermore, we can show that tc g contains exactly those elements.

	1 1	cterization		
Model 000000000	Extensionality 0000	Transitive closure	A type for non-well-founded sets	Choice 000000

We characterized the transitive closure as the set of all successors w.r.t. $\dot{\in}$.

Furthermore, we can show that tc g contains exactly those elements.

The classical characterization of tc states that tc M is the least transitive superset of M, which is easy to prove from the above characterization.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000	●0000000000	000000
Table o	f Conter	nts		

- 2 Extensionality
- 3 Transitive closure
- A type for non-well-founded sets

5 Choice

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
00000000	0000	000000	0●000000000	000000
Basic io	dea			

 For any type X with a relation R and suitable conversion functions between X and N, we can construct the quotient type X /R

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000	0000000000	000000
Basic i	dea			

- For any type X with a relation R and suitable conversion functions between X and \mathbb{N} , we can construct the quotient type X/R
- Graphs have such conversion functions

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice		
000000000	0000	000000		000000		
Basic idea						

- For any type X with a relation R and suitable conversion functions between X and \mathbb{N} , we can construct the quotient type X/R
- Graphs have such conversion functions
- Lift constructions for $\mathbb G$ to $\mathbb G$ / $_{\approx}$

Model
occoccoccoExtensionality
occoccTransitive closure
occoccA type for non-well-founded sets
occocccoccoChoice
coccoccConstruction for the quotient type

Given any type X, a decidable equivalence relation R and conversion functions $f: X \to \mathbb{N}$, $f^{-1}: \mathbb{N} \to X$ such that

Given any type X, a decidable equivalence relation R and conversion functions $f: X \to \mathbb{N}$, $f^{-1}: \mathbb{N} \to X$ such that

•
$$\forall x y. Rxy \implies f x = f y$$

Given any type X, a decidable equivalence relation R and conversion functions f : $X \to \mathbb{N}$, $f^{-1} : \mathbb{N} \to X$ such that

•
$$\forall x y. Rxy \implies f x = f y$$

•
$$\forall x. R(f^{-1}(f x))x$$

Given any type X, a decidable equivalence relation R and conversion functions $f : X \to \mathbb{N}$, $f^{-1} : \mathbb{N} \to X$ such that

•
$$\forall x y. Rxy \implies f x = f y$$

•
$$\forall x. R(f^{-1}(f x))x$$

we can construct the quotient type X/R as follows:

Definition

$$X_{R} := \{n \mid f(f^{-1} n) = n\}$$

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice			
000000000	0000	000000		000000			
Equivalence classes							

Note that for any x, $f(f^{-1}(f x)) = f x$ holds, due to the properties of f and f^{-1} .

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice				
000000000	0000	000000		000000				
Equiva	Equivalence classes							

Note that for any x, $f(f^{-1}(f x)) = f x$ holds, due to the properties of f and f^{-1} .

Definition (equivalence classes)

norm x := (f x, A), where A is a proof that $f(f^{-1}(f x)) = f x$.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice				
000000000	0000	000000		000000				
Fauiva	Equivalence classes							

Note that for any x, $f(f^{-1}(f x)) = f x$ holds, due to the properties of f and f^{-1} .

Definition (equivalence classes)

norm x := (f x, A), where A is a proof that $f(f^{-1}(f x)) = f x$.

Definition (representative elements)

repr (n, _) := $f^{-1} n$

Model Extensionality Transitive closure occose occo

Properties of repr and norm

Equivalence classes and their representative elements work as expected, i.e.:

•
$$\forall x y. R x y \iff norm x = norm y$$

•
$$\forall a \ b. \ a = b \iff R(repr \ a)(repr \ b)$$

Conversion between \mathbb{G} and \mathbb{N}

Goal: construct suitable conversion functions $\mathbb{G} \leftrightarrow \mathbb{N}$.

 Model
 Extensionality
 Transitive closure
 A type for non-well-founded sets
 Choice

 conversion
 between G and N

Goal: construct suitable conversion functions $\mathbb{G} \leftrightarrow \mathbb{N}$.

 \bullet Every graph is bisimilar to a graph over $\mathbb N$

 Model
 Extensionality
 Transitive closure
 A type for non-well-founded sets
 Choice

 conversion between G and N

Goal: construct suitable conversion functions $\mathbb{G} \leftrightarrow \mathbb{N}$.

- \bullet Every graph is bisimilar to a graph over $\mathbb N$
- We can construct a list of all such graphs up to any size

 Model
 Extensionality
 Transitive closure
 A type for non-well-founded sets
 Choice

 000000000
 0000
 00000
 00000
 00000
 000000

Conversion between \mathbb{G} and \mathbb{N}

Goal: construct suitable conversion functions $\mathbb{G} \leftrightarrow \mathbb{N}$.

- \bullet Every graph is bisimilar to a graph over $\mathbb N$
- We can construct a list of all such graphs up to any size
- \bullet Use the indices of such a list to convert between $\mathbb G$ and $\mathbb N$

 Model
 Extensionality
 Transitive closure
 A type for non-well-founded sets
 Choice

 00000000
 0000
 00000
 00000
 00000
 00000

Well-formed grpahs

Definition (well-formed)

We call a graph well-formed if its domain starts with its root and does not contain any duplicates.

 Model
 Extensionality
 Transitive closure
 A type for non-well-founded sets
 Choice

 000000000
 0000
 000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000</

Well-formed grpahs

Definition (well-formed)

We call a graph well-formed if its domain starts with its root and does not contain any duplicates.

Lemma (Reordering lemma)

Every graph is bisimilar to a well-formed graph. We call such a graph well-formed.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000		000000
Graphs	s over ℕ			

• For every vertex $v \in \text{dom } g$, index $v \in \text{dom } \overline{g}$.

- For every vertex $v \in \text{dom } g$, index $v \in \text{dom } \overline{g}$.
- For any x y, E (index x) (index y) := E x y.

- For every vertex $v \in \text{dom } g$, index $v \in \text{dom } \overline{g}$.
- For any x y, E (index x) (index y) := E x y.
- We can convert back from the index to the element it corresponds to by taking the nth element of the domain from g, since g is well-formed

- For every vertex $v \in \text{dom } g$, index $v \in \text{dom } \overline{g}$.
- For any x y, E (index x) (index y) := E x y.
- We can convert back from the index to the element it corresponds to by taking the nth element of the domain from g, since g is well-formed
- g and \overline{g} are isomorphic on their domains, hence bisimilar.

- For every vertex $v \in \text{dom } g$, index $v \in \text{dom } \overline{g}$.
- For any x y, E (index x) (index y) := E x y.
- We can convert back from the index to the element it corresponds to by taking the nth element of the domain from g, since g is well-formed
- g and \overline{g} are isomorphic on their domains, hence bisimilar.
- Note that 0 is the root of \overline{g} .

 Model
 Extensionality
 Transitive closure
 A type for non-well-founded sets
 Choice

 occoco
 occoco
 occoco
 occoco
 occoco

• For any xs, ys, we can construct a list of all relations between xs and ys.

- For any xs, ys, we can construct a list of all relations between xs and ys.
- In particular, this works for xs = ys = [0, 1, ..., n-1]

- For any xs, ys, we can construct a list of all relations between xs and ys.
 - In particular, this works for xs = ys = [0, 1, ..., n-1]
 - For every graph g that is well-formed and has $|dom g| = n, \overline{g}$ has this form.

- For any xs, ys, we can construct a list of all relations between xs and ys.
- In particular, this works for xs = ys = [0, 1, ..., n-1]
- For every graph g that is well-formed and has $|dom g| = n, \overline{g}$ has this form.
- We can then proceed to enumerate all such graphs up to a fixed domain size.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
00000000	0000	000000	000000000●0	000000
$\mathbb{G} \leftrightarrow \mathbb{N}$				

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000		000000
$\mathbb{G} \leftrightarrow \mathbb{N}$				

 f: Given a graph g, we find the index of the first graph g' in a large enough list of graphs over N such that g ≈ g'.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000		000000
$\mathbb{G} \leftrightarrow \mathbb{N}$				

- f: Given a graph g, we find the index of the first graph g' in a large enough list of graphs over N such that g ≈ g'.
- f^{-1} : Given $n \in \mathbb{N}$, we return the nth graph in a large enough list of graphs over \mathbb{N}

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000		000000
$\mathbb{G} \leftrightarrow \mathbb{N}$				

- f: Given a graph g, we find the index of the first graph g' in a large enough list of graphs over N such that g ≈ g'.
- f^{-1} : Given $n \in \mathbb{N}$, we return the nth graph in a large enough list of graphs over \mathbb{N}

•
$$\forall g. g \approx f^{-1}(fg).$$

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000		000000
$\mathbb{G} \leftrightarrow \mathbb{N}$				

- f: Given a graph g, we find the index of the first graph g' in a large enough list of graphs over N such that g ≈ g'.
- f^{-1} : Given $n \in \mathbb{N}$, we return the nth graph in a large enough list of graphs over \mathbb{N}
- $\forall g. g \approx f^{-1}(fg).$

•
$$\forall g g' \cdot g \approx g' \iff f g = f g'.$$

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000	0000000000	000000
\mathcal{N}				

We know that \mathbb{G} with the decidable equivalence relation \approx has suitable conversion functions f, f^{-1} . Hence, we can construct the quotient type $\mathcal{N} := \mathbb{G} /_{\approx}$. We can lift the definitions and constructions we have for \mathbb{G} to \mathcal{N} by using the conversion functions norm and repr.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000		•00000
Table o	of Conter	nts		

- 2 Extensionality
- 3 Transitive closure
- A type for non-well-founded sets

	function			
Model 000000000	Extensionality	Transitive closure	A type for non-well-founded sets	Choice 000000

Choice function on graphs has to respect \approx . We have done that already by constructing \mathbb{G} / $_{\approx}.$

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000	0000000000	o●oooo
Choice	function			

Choice function on graphs has to respect \approx . We have done that already by constructing \mathbb{G} $/_{\approx}.$

Definition $\gamma M := \begin{cases} \emptyset & child_nodes (repr M) = []\\ norm (subgraph x) & child_nodes (repr M) = x :: xs \end{cases}$

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000	0000000000	o●oooo
Choice	function			

Choice function on graphs has to respect $\approx.$ We have done that already by constructing \mathbb{G} $/_{\approx}.$

Definition $\gamma M := \begin{cases} \emptyset & child_nodes (repr M) = []\\ norm (subgraph x) & child_nodes (repr M) = x :: xs \end{cases}$

It is easy to see that $\forall M \neq \emptyset$. $\gamma M \in M$.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000		oo●ooo
Future	Work			

- \bullet Enumerability of $\mathbb T$ using Ackermann's encoding
- Quotient type ${\mathbb T}$ /=
- ZF(C) constructions for ${\mathbb T}$
- \bullet Relation between CCS with recursion and ${\cal N}$

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000		000000
Bibliog	raphy I			

- Samson Abramsky, *A Cook's Tour of the Finitary Non-Well-Founded Sets*, CoRR **abs/1111.7148** (2011).
- W. Ackermann, *Die Widerspruchsfreiheit der allgemeinen Mengenlehre*, Mathematische Annalen 114 (1937), 305–315.
- Peter Aczel, Non-well-founded sets, Lecture Notes, no. 14, Center for the Study of Language and Information, Stanford University, 1988.
- Michael Baldamus, A Non-well-founded Sets Semantics for Observation Congruence over Full CCS, Tech. report, 1994.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice
000000000	0000	000000		000000
Bibliog	raphy II			

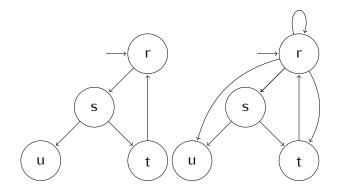
- Chad Brown, Ackermann Encoding of Decidable Hereditarily Finite Sets, https: //www.ps.uni-saarland.de/settheory/HF/HF.v, [Online; accessed 19-July-2015].
- Dominik Kirst, *Formalised Set Theory: Well-Orderings and the Axiom of Choice*, Bachelor's thesis, Saarland University, August 2014.
- R. Milner, A calculus of communicating systems, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1982.

Model	Extensionality	Transitive closure	A type for non-well-founded sets	Choice			
00000000	0000	000000		000000			
Bibliography III							

- Alexandre Miquel, Inconsistent Type Systems, http://www.cse.chalmers.se/research/group/ logic/TypesSS05/Extra/miquel_s13.pdf, August 2005, [Online; accessed 19-July-2015].
- Kathrin Stark, *Quantitative Recursion-Free Process Axiomatization in Coq*, Bachelor's thesis, Saarland University, May 2014.
- The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Mathematics, http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

Faulty construction for tc

Not adding a new root, but changing the edges going out from the old root does not work:



On the right hand side, the original graph structure is lost!

We can use E to define the children of a graph, which are basically its elements (modulo bisimulation).

Definition

child_nodes $g := filter (\lambda x. E(rootg)x = true) (dom g)$ subgraph (x : g) := G (edgeRel g) (dom g) x children g := map subgraph (child_nodes g)

The notion of successors w.r.t. \in can be captured inductively:

Definition ($\stackrel{:}{\in}$ ⁿ) $\frac{g_1 \approx g_2}{g_1 \stackrel{:}{\in} {}^0 g_2}$ $\underline{g_1 \stackrel{:}{\in} g_2 \quad g_2 \stackrel{:}{\in} {}^n g_3}{g_1 \stackrel{:}{\in} {}^{Sn} g_3}$

Correspondence between \rightarrow^* and $\dot{\in}^n$

Definition (transitive closure)

tc g := G f (None :: (map Some (dom g))) (None) where f (Some x) (Some y) := edgeRel x y f None (Some y) := (root g) \rightarrow^+ y. f _ _ := false

Due to the correspondence between \rightarrow^n and $\stackrel{.}{\in}$ ^{*n*}, it is easy to see that $\forall g g'. g' \stackrel{.}{\in} (tc g) \iff \exists n > 0. g' \stackrel{.}{\in} {}^ng.$

Definition (transitive graph)

 $g_1 \text{ is transitive} := \forall g_2 g_3. g_3 \stackrel{.}{\in} g_2 \implies g_2 \stackrel{.}{\Longrightarrow} g_2 \stackrel{.}{\Longrightarrow} g_3 \stackrel{.}{\in} g_1.$

Lemma

tc g is transitive.

Definition (transitive graph)

 g_1 is transitive := $\forall g_2 g_3 . g_3 \doteq g_2 \implies g_2 \doteq g_1 \implies g_3 \doteq g_1$.

Lemma

tc g is transitive.

Let $g'' \in g' \in tc g$. We know that $g' \in {}^n g$ for some n > 0. Hence, $g'' \in {}^{s_n} g$, which in turn implies $g'' \in tc g$.

Lemma

 $g \subseteq tc g.$

Let g' \in g, i.e. there is x : g such that E (root g) x = true and g' \approx subgraph g. Note that root g \rightarrow^+ x, hence E None (Some x) = true. g' \in tc g follows from the fact that subgraph x \approx subgraph (Some x).

Lemma

$$\forall g^*. transitive g^* \implies g \stackrel{.}{\subseteq} g^* \implies tc g \stackrel{.}{\subseteq} g^*$$

Let g^* be transitive and $g \subseteq g^*$.

Lemma

$$\forall g^*. \ transitive \ g^* \implies g \stackrel{\scriptscriptstyle{\scriptstyle \leftarrow}}{=} g^* \implies tc \ g \stackrel{\scriptscriptstyle{\scriptstyle \leftarrow}}{=} g^*$$

Let g^* be transitive and $g \subseteq g^*$. We show $\forall n > 0 \forall g' . g' \in {}^ng \implies g' \in g^*$ by induction on n. The base case is trivial. In the inductive case, n = S n' and $g' \in {}^{Sn'}g$.

Lemma

$$\forall g^*. \ transitive \ g^* \implies g \stackrel{\scriptscriptstyle{\scriptstyle \leftarrow}}{=} g^* \implies tc \ g \stackrel{\scriptscriptstyle{\scriptstyle \leftarrow}}{=} g^*$$

Let g^* be transitive and $g \subseteq g^*$. We show $\forall n > 0 \forall g' . g' \in {}^ng \implies g' \in g^*$ by induction on n. The base case is trivial. In the inductive case, n = S n' and $g' \in {}^{Sn'}g$.

Lemma

$$\forall g^*. \ transitive \ g^* \implies g \stackrel{\scriptstyle :}{\subseteq} g^* \implies tc \ g \stackrel{\scriptstyle :}{\subseteq} g^*$$

Let g^* be transitive and $g \subseteq g^*$. We show $\forall n > 0 \forall g'. g' \in {}^ng \implies g' \in g^*$ by induction on n. The base case is trivial. In the inductive case, n = S n' and $g' \in {}^{Sn'}g$.

• If n' = 0, i.e. n = 1, $g' \in {}^1g \iff g' \in g$, which immediately gives us that $g' \in g^*$, since $g \subseteq g^*$.

Lemma

 $\forall g^*. transitive g^* \implies g \subseteq g^* \implies tc g \subseteq g^*$

Let g^* be transitive and $g \subseteq g^*$. We show $\forall n > 0 \forall g' . g' \in {}^ng \implies g' \in g^*$ by induction on n. The base case is trivial. In the inductive case, n = S n' and $g' \in {}^{Sn'}g$.

- If n' = 0, i.e. n = 1, $g' \in {}^{1}g \iff g' \in g$, which immediately gives us that $g' \in g^{*}$, since $g \subseteq g^{*}$.
- Otherwise, n' = S m. Since $g' \in {}^{Sn'}g$, there is some graph h such that $g' \in h$ and $h \in {}^{Sm}g$.

Lemma

 $\forall g^*. transitive g^* \implies g \subseteq g^* \implies tc g \subseteq g^*$

Let g^* be transitive and $g \subseteq g^*$. We show $\forall n > 0 \forall g'. g' \in {}^ng \implies g' \in g^*$ by induction on n. The base case is trivial. In the inductive case, n = S n' and $g' \in {}^{Sn'}g$.

- If n' = 0, i.e. n = 1, $g' \in {}^1g \iff g' \in g$, which immediately gives us that $g' \in g^*$, since $g \subseteq g^*$.
- Otherwise, n' = S m. Since $g' \in {}^{Sn'}g$, there is some graph h such that $g' \in h$ and $h \in {}^{Sm}g$.
- By IH, we know that $h \in g^*$, hence $h \subseteq g^*$.

Lemma (Reordering lemma)

Every graph is bisimilar to a well-formed graph.

- If dom g = [], we know that g ≈ Ø.
 (Recall that Ø := G true [tt] tt, hence we now have one more element in the domain).
- Otherwise, reorder as follows: dom g' = root (dom g) :: rem (root g) (undup dom g) (In this step, the domain size can only decrease, not increase)

This gives us even more: Every graph is bisimilar to a well-formed graph whose domain contains at most one more vertex. We know that

allFuns xs ys := $map(\lambda A.\lambda x y.(x, y) \in A)(\mathcal{P}(xs \times ys))$

contains all possible relations on xs and ys.

We can use this to construct all transition functions for a given graph.

Definition

range n := [0, 1, ..., n-1]

Note that for any well-formed graph g with |dom g| = n, dom \overline{g} = range n.

Definition

 α n := map (λ f. G f (range n) 0) (allFuns (range n) (range n))

 α *n* yields a list of all graphs over natural numbers with domain range n and 0 as the root.

Definition

 $\beta n := mapcat \alpha [1..n]$

 β *n* contains a list of all such graphs whose domain has size at most n.

There are a few important properties of α and β :

- Note that $\forall g. \overline{g} \in \beta(S|dom g|)$.
- Likewise, since $|\alpha n| \ge 1$ for any n, $|beta n| \ge n$.
- This means that for any n, $\beta(Sn)$ supports indices from 0 to at least n.

Conversion functions with exact numbers:

- f : Given a graph g, we find the index of the first graph g' in $\beta(S | dom g|)$ such that $g \approx g'$.
- f^{-1} : Given $n \in \mathbb{N}$, we return the nth graph in $\beta(S n)$

•
$$\forall g.g \approx f^{-1}(fg).$$

• $\forall g g'. g \approx g' \iff f g = f g'.$

Note the following important properties of repr and norm:

- $\forall x y. R x y \iff repr(norm x) = repr(norm y)$
- ∀x y.repr (norm x) = repr (norm y) ⇔ norm x = norm y

Second point rather technical:

Lemma eq_dep_dec_sig (x y : X) (h : P x) (h' : P y) (p : x = y) (q : match p with eq_refl \Rightarrow h end = h') : exist P x h = exist P y h'. Proof. now destruct p.g. Qed.