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Introduction

Hereditarily finitary sets consist of finitely many hereditarily
finitary sets. Well-founded sets do not have cycles and can
hence be represented by binary trees.
Semantically, this is how we can map finitary sets in our
representation to ordinary sets:

I J∅K = ∅
I Js.tK = {JsK} ∪ JtK
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Functions on Trees

List of all elements of a tree:
L ∅ = []
L (s . t ) = s :: L t

Append: @
∅ @ t = t
(s.s ′) @ t = s . s’ @ t
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Properties of Equivalence Relations

Important properties that should be satisfied:
I Del : s.s.t ≡ s.t
I Swap : s.t.u ≡ t.s.u
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≡
We inductively define a first equivalence relation ≡ satisfying
the previous conditions

∅ ≡ ∅

s.s.t ≡ s.t

s.t.u ≡ t.s.u

s ≡ t s 6= ∅ 6= t
t ≡ s

s ≡ t t ≡ u
s ≡ u

s ≡ s ′ t ≡ t ′

s.t ≡ s ′.t ′

≡ is (basically) the least congruence satisfying Del and Swap.
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Properties of ≡

I Symmetry, Transitivity, as well as the Deletion, Swap and
Composition Rule are trivially fulfilled by ≡.

I Reflexivity is also admissible: s ≡ s is easily established
by induction on s.
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Motivation

Wanted: normal form and normalizer η s.t.
I normal (η s)
I normal s → normal t → s ≡ t → s = t

The goal is to proof decidability of ≡
≡ will be used to define set relations on trees.
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Lexicographic comparison

Order ::= LE | EQ | GT

cmp : Tree → Tree → Order
cmp ∅ ∅ = EQ
cmp ∅ t = LT
cmp s ∅ = GT
cmp (s1.s2) (t1.t2) = match (cmp s1 t1) with

| EQ → cmp (s2 t2)
| x → x end
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Normal

normalL []

normal (L s)
normalL [s]

normalL(t :: l) normalL (L s) cmp s t = LT
normalL (s :: t :: l)

normal is defined in terms of normalL as follows:
normal s := normalL (L s).
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Insertion Sort

insert s ∅ = s.∅
insert s (t1.t2) = match cmp s t1 with

|EQ → t1.t2
|LT → s.t1.t2
|GT→ t1 . insert s t2 end

sort ∅ = ∅
sort (s.t) = insert (sort s) (sort t)
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Properties of sort

We can prove the following properties by induction:
I s.t ≡ insert s t
I s ≡ sort s
I sort (s.s.t) = sort (s.t)
I sort(s.t.u) = sort(t.s.u)
I s ≡ t → sort s = sort t
I normal (sort s)
I normal s → sort s = s (→ Idempotency of sort)
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Decision Procedure

I two sorted sets are equivalent ⇐⇒ they are syntactically
equal

I sort s ≡ s
I ≡ is transitive
I s = t is decidable, since finitary sets are a simple

inductive type
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∈, ⊆

Element relationship
I s ∈ t := t ≡ s.t
I s ∈ t ⇐⇒ ∃ t’. t’ ∈ L t ∧ s ≡ t’.

Subset relationship
I s ⊆ t := t ≡ s @ t.
I s ⊆ t ⇐⇒ ∀ s’. s’ ∈ s → s’ ∈ t.
I s ⊆ t → t ⊆ s → s ≡ t
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Coinductive Bisimulation

s ∼ t :=
∀ s. s’ ∈ L(s) → ∃ t’. t ∈ L(t) ∧ s’ ∼ t’ ∧
∀ t. t’ ∈ L(t) → ∃ s’. s ∈ L(s) ∧ t’ ∼ s’.

Reflexivity, Symmetry, Swap and Del can be proven easily.
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Transitivity of ∼

Coinduction lemma needed:
Lemma TreeCoInd (R : Tree → Tree → Prop) :
(∀ s t, R s t →

(∀ s. s’ ∈ L(s) → ∃ t’. t ∈ L(t) ∧ R s’ t’ ∧
∀ t. t’ ∈ L(t) → ∃ s’. s ∈ L(s) ∧ R t’ s’. )) →

∀ s t, R s t → s ∼ t.

Transitivity follows by using the lemma with R := (∼ ◦ ∼)
⇒ s ≡ t → s ∼ t
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s ∼ t → s ≡ t

If suffices to show:
s ∼ t → s ⊆ t ∧ t ⊆ s
Stronger induction lemma:

Lemma TreeInduction (P : Tree → Prop) :
(∀ s , (∀ t, t ∈ (L s) → P t) → P s) → ∀s , P s.
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