Syntactic Theory of Finitary Sets

Denis Müller

Saarland University

10. Dezember 2014

Introduction

Equivalence

Properties

 \equiv

Order and Sorting

Motivation Comparison of Trees Normality Insertion Sort on Trees

Decidability of Equivalence

Decision Procedure

Set Properties

 \in , \subseteq

Bisimulation

Coinductive Definition

References

Introduction

Hereditarily finitary sets consist of finitely many hereditarily finitary sets. Well-founded sets do not have cycles and can hence be represented by binary trees. Semantically, this is how we can map finitary sets in our

representation to ordinary sets:

$$\blacktriangleright \llbracket s.t \rrbracket = \{\llbracket s \rrbracket\} \cup \llbracket t \rrbracket$$

Functions on Trees

List of all elements of a tree: L $\emptyset = []$ L (s . t) = s :: L t

Append: (a) \emptyset (a) t = t (s.s') (a) t = s . s' (a) t

Introduction

Equivalence Properties

_

Order and Sorting

Motivation Comparison of Trees Normality Insertion Sort on Trees

Decidability of Equivalence

Decision Procedure

Set Properties

 $=, \subseteq$

Bisimulation

Coinductive Definition

References

Properties of Equivalence Relations

Important properties that should be satisfied:

• Del : s.s.t
$$\equiv$$
 s.t

Swap : s.t.u \equiv t.s.u

Introduction

Equivalence

 \equiv

Properties

Order and Sorting

Motivation Comparison of Trees Normality Insertion Sort on Trees

Decidability of Equivalence

Decision Procedure

Set Properties

 $=, \subseteq$

Bisimulation

Coinductive Definition

References

We inductively define a first equivalence relation \equiv satisfying the previous conditions

=

$$\overline{\emptyset \equiv \emptyset}$$

$$\overline{s.s.t \equiv s.t}$$

$$\overline{s.t.u \equiv t.s.u}$$

$$\underline{s \equiv t \quad s \neq \emptyset \neq t}$$

$$\overline{t \equiv s}$$

$$\underline{s \equiv t \quad t \equiv u}$$

$$\underline{s \equiv s' \quad t \equiv t'}$$

$$\overline{s.t \equiv s'.t'}$$

 \equiv is (basically) the least congruence satisfying Del and Swap.

Properties of \equiv

- Symmetry, Transitivity, as well as the Deletion, Swap and Composition Rule are trivially fulfilled by ≡.
- ► Reflexivity is also admissible: s = s is easily established by induction on s.

Introduction

Equivalence

Properties

_

Order and Sorting Motivation

Comparison of Trees Normality Insertion Sort on Trees

Decidability of Equivalence

Decision Procedure

Set Properties

 $, \subseteq$

Bisimulation

Coinductive Definition

References

Motivation

Wanted: normal form and normalizer η s.t.

- normal (η s)
- normal $s \rightarrow$ normal $t \rightarrow s \equiv t \rightarrow s = t$

The goal is to proof decidability of \equiv \equiv will be used to define set relations on trees.

Introduction

Equivalence

Properties

_

Order and Sorting

Motivation

Comparison of Trees

Normality Insertion Sort on Trees

Decidability of Equivalence

Decision Procedure

Set Properties

 $, \subseteq$

Bisimulation

Coinductive Definition

References

Lexicographic comparison

```
Order ::= LE | EQ | GT

cmp : Tree \rightarrow Tree \rightarrow Order

cmp \emptyset \ \emptyset = EQ

cmp \emptyset \ t = LT

cmp s \emptyset = GT

cmp (s1.s2) (t1.t2) = match (cmp s1 t1) with

| EQ \rightarrow cmp (s2 t2)

| x \rightarrow x end
```

Introduction

Equivalence

Properties

_

Order and Sorting

Motivation Comparison of Trees Normality

Insertion Sort on Trees

Decidability of Equivalence

Decision Procedure

Set Properties

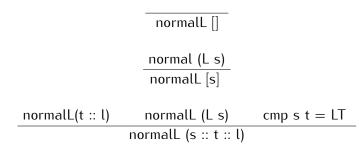
 $, \subseteq$

Bisimulation

Coinductive Definition

References

Normal



normal is defined in terms of normalL as follows: normal s := normalL (L s).

Introduction

Equivalence

Properties

_

Order and Sorting

Motivation Comparison of Trees Normality Insertion Sort on Trees

Decidability of Equivalence Decision Procedure Set Properties ∈, ⊆ Bisimulation

Colnductive Der

References

Insertion Sort

insert s
$$\emptyset$$
 = s. \emptyset
insert s (t1.t2) = match cmp s t1 with
|EQ \rightarrow t1.t2
|LT \rightarrow s.t1.t2
|GT \rightarrow t1 . insert s t2 end

sort $\emptyset = \emptyset$ sort (s.t) = insert (sort s) (sort t)

Properties of sort

We can prove the following properties by induction:

- s.t ≡ insert s t
- s ≡ sort s
- sort (s.s.t) = sort (s.t)
- sort(s.t.u) = sort(t.s.u)
- $s \equiv t \rightarrow sort s = sort t$
- normal (sort s)
- normal $s \rightarrow sort s = s (\rightarrow Idempotency of sort)$

Introduction

Equivalence

Properties

=

Order and Sorting

Motivation Comparison of Trees Normality Insertion Sort on Trees

Decidability of Equivalence Decision Procedure

Set Properties

 \in, \subseteq

Bisimulation

Coinductive Definition

References

Decision Procedure

- two sorted sets are equivalent they are syntactically equal
- sort s ≡ s
- ► ≡ is transitive
- s = t is decidable, since finitary sets are a simple inductive type

Introduction

Equivalence

Properties

_

Order and Sorting

Motivation Comparison of Trees Normality Insertion Sort on Trees

Decidability of Equivalence

Decision Procedure

Set Properties

\in , \subseteq

Bisimulation

Coinductive Definition

References

Element relationship

► $s \in t := t \equiv s.t$

$$\bullet \ s \in t \iff \exists t'. t' \in L t \land s \equiv t'.$$

Subset relationship

Introduction

Equivalence

Properties

=

Order and Sorting

Motivation Comparison of Trees Normality Insertion Sort on Trees

Decidability of Equivalence

Decision Procedure

Set Properties

, ⊆

Bisimulation

Coinductive Definition

References References

Coinductive Bisimulation

```
\begin{split} s &\sim t := \\ \forall \ s. \ s' &\in L(s) \rightarrow \exists \ t'. \ t \in L(t) \land s' \sim t' \land \\ \forall \ t. \ t' &\in L(t) \rightarrow \exists \ s'. \ s \in L(s) \land t' \sim s'. \end{split}
```

Reflexivity, Symmetry, Swap and Del can be proven easily.

Transitivity of \sim

 $\begin{array}{l} \mbox{Coinduction lemma needed:} \\ \mbox{Lemma TreeCoInd (R : Tree \rightarrow Tree \rightarrow Prop) :} \\ (\forall \ s \ t, \ R \ s \ t \rightarrow \\ (\forall \ s. \ s' \in L(s) \rightarrow $\exists \ t'. \ t \in L(t) \land $R \ s' \ t' \land \\ \forall \ t. \ t' \in L(t) \rightarrow $\exists \ s'. \ s \in L(s) \land $R \ t' \ s'.)) \rightarrow \\ \forall \ s \ t, \ R \ s \ t \rightarrow $s \sim t. \\ \end{array}$

Transitivity follows by using the lemma with R := (~ \circ ~) \Rightarrow s = t \rightarrow s ~ t If suffices to show: $s \sim t \rightarrow s \subseteq t \land t \subseteq s$ Stronger induction lemma:

 $\begin{array}{l} \text{Lemma TreeInduction } (\mathsf{P}:\mathsf{Tree}\to\mathsf{Prop}):\\ (\forall \ \mathsf{s} \ , (\forall \ \mathsf{t}, \ \mathsf{t}\in(\mathsf{L}\ \mathsf{s})\to\mathsf{P}\ \mathsf{t})\to\mathsf{P}\ \mathsf{s})\to\forall \mathsf{s}, \ \mathsf{P}\ \mathsf{s}. \end{array}$

Introduction

Equivalence

Properties

_

Order and Sorting

Motivation Comparison of Trees Normality Insertion Sort on Trees

Decidability of Equivalence

Decision Procedure

Set Properties

 $=, \subseteq$

Bisimulation

Coinductive Definition

References

References

🛸 Sangiorgi, Davide. Introduction to bisimulation and coinduction. Cambridge University Press, 2011.