
Syntactic Theory of Finitary Sets
Non well-founded sets

Denis Müller

Saarland University

10 April 2015

1 / 38

Introduction

Equivalence
Bisimulation Definition
Decidability

Membership
Reachability
Subgraphs

ZF Axioms

Anti-Foundation Axiom

References

2 / 38

Table of Contents

Introduction

Equivalence
Bisimulation Definition
Decidability

Membership
Reachability
Subgraphs

ZF Axioms

Anti-Foundation Axiom

References

3 / 38

Introduction

Non-well-founded sets
I may contain cycles, e.g. M∈ M
I can be represented by rooted graphs up to bisimulation
I Our Model : ZF - Regularity - Infinity + AFA

4 / 38

Representation

Consider graphs over a type X:
Inductive Graph X := G (xs : list X)(f : X → X → B)(r : X)

Reachability in a graph :

x −→
f
∗ x

x −→
f
∗ y f y z = true

x −→
f
∗ z

5 / 38

Representation

Non well-founded set ≈ rooted graph over X.

valid (G xs f r) :=
(∀x y , f x y = true =⇒ x ∈ xs ∧ y ∈ xs)∧
r ∈ xs ∧ ∀x ∈ xs.r −→

f
∗ x)

NSet := sig valid.
Non well-founded sets := NSet /≈

6 / 38

Examples

x

yz

z

not valid.

x

yz

valid.

7 / 38

Examples

x

y

z

z

not valid.

x

yz

valid.

7 / 38

Examples

x

y

z

z

not valid.

x

yz

valid.

7 / 38

Examples

x

y

z

z

not valid.

x

yz

valid.

7 / 38

Table of Contents

Introduction

Equivalence
Bisimulation Definition
Decidability

Membership
Reachability
Subgraphs

ZF Axioms

Anti-Foundation Axiom

References

8 / 38

Table of Contents

Introduction

Equivalence
Bisimulation Definition
Decidability

Membership
Reachability
Subgraphs

ZF Axioms

Anti-Foundation Axiom

References

9 / 38

Bisimulation
Natural equivalence relation on non well-founded sets:
bisimulation.
p : X → Y → B is a bisimulation for
((G xs f r) : Graph X) ((G ys g q) : Graph Y) :=

x p y

x’ y’p

(and vice-versa)

(G xs f r) ≈ (G ys g q) := exists p,
p is a bisimulation for (G xs f r) , (G ys g q) ∧
p r q = true.

10 / 38

Bisimulation
Natural equivalence relation on non well-founded sets:
bisimulation.
p : X → Y → B is a bisimulation for
((G xs f r) : Graph X) ((G ys g q) : Graph Y) :=

x p y

x’ y’p

(and vice-versa)

(G xs f r) ≈ (G ys g q) := exists p,
p is a bisimulation for (G xs f r) , (G ys g q) ∧
p r q = true.

10 / 38

Bisimulation
Natural equivalence relation on non well-founded sets:
bisimulation.
p : X → Y → B is a bisimulation for
((G xs f r) : Graph X) ((G ys g q) : Graph Y) :=

x p y

x’ y’p

(and vice-versa)

(G xs f r) ≈ (G ys g q) := exists p,
p is a bisimulation for (G xs f r) , (G ys g q) ∧
p r q = true.

10 / 38

Table of Contents

Introduction

Equivalence
Bisimulation Definition
Decidability

Membership
Reachability
Subgraphs

ZF Axioms

Anti-Foundation Axiom

References

11 / 38

Decide if p is a bisimulation

I transition functions limited to node list (assuming validity)
I test all - finitely many - nodes
I use list exists and forall decidability

dec((∀x , x ∈ xs =⇒ ∀y , y ∈ ys =⇒ p x y = true =⇒
(∀x ′, x ′ ∈ xs =⇒ f x x ′ = true =⇒
∃y ′, y ′ ∈ ys ∧ g y y ′ = true ∧ P x ′ y ′ = true)∧

(∀y ′, y ′ ∈ ys =⇒ g y y ′ = true =⇒
∃x ′, x ′ ∈ xs ∧ f x x ′ = true ∧ P x ′ y ′ = true)))

Proof. auto. Qed.

12 / 38

Decide if p is a bisimulation

I transition functions limited to node list (assuming validity)
I test all - finitely many - nodes
I use list exists and forall decidability

dec((∀x , x ∈ xs =⇒ ∀y , y ∈ ys =⇒ p x y = true =⇒
(∀x ′, x ′ ∈ xs =⇒ f x x ′ = true =⇒
∃y ′, y ′ ∈ ys ∧ g y y ′ = true ∧ P x ′ y ′ = true)∧

(∀y ′, y ′ ∈ ys =⇒ g y y ′ = true =⇒
∃x ′, x ′ ∈ xs ∧ f x x ′ = true ∧ P x ′ y ′ = true)))

Proof. auto. Qed.

12 / 38

Decide if p is a bisimulation

I transition functions limited to node list (assuming validity)
I test all - finitely many - nodes
I use list exists and forall decidability

dec((∀x , x ∈ xs =⇒ ∀y , y ∈ ys =⇒ p x y = true =⇒
(∀x ′, x ′ ∈ xs =⇒ f x x ′ = true =⇒
∃y ′, y ′ ∈ ys ∧ g y y ′ = true ∧ P x ′ y ′ = true)∧

(∀y ′, y ′ ∈ ys =⇒ g y y ′ = true =⇒
∃x ′, x ′ ∈ xs ∧ f x x ′ = true ∧ P x ′ y ′ = true)))

Proof. auto. Qed.

12 / 38

Decide if s ≈ t

How to decide if (G xs f r) ≈ (G ys g q)

I only finitely many relations on xs × ys
I map(λA.λx y .(x , y) ∈ A)(P(xs × ys))
I Check for a bisimulation among these relations (1 slide

ago)

13 / 38

Decide if s ≈ t

How to decide if (G xs f r) ≈ (G ys g q)
I only finitely many relations on xs × ys

I map(λA.λx y .(x , y) ∈ A)(P(xs × ys))
I Check for a bisimulation among these relations (1 slide

ago)

13 / 38

Decide if s ≈ t

How to decide if (G xs f r) ≈ (G ys g q)
I only finitely many relations on xs × ys
I map(λA.λx y .(x , y) ∈ A)(P(xs × ys))

I Check for a bisimulation among these relations (1 slide
ago)

13 / 38

Decide if s ≈ t

How to decide if (G xs f r) ≈ (G ys g q)
I only finitely many relations on xs × ys
I map(λA.λx y .(x , y) ∈ A)(P(xs × ys))
I Check for a bisimulation among these relations (1 slide

ago)

13 / 38

Table of Contents

Introduction

Equivalence
Bisimulation Definition
Decidability

Membership
Reachability
Subgraphs

ZF Axioms

Anti-Foundation Axiom

References

14 / 38

Table of Contents

Introduction

Equivalence
Bisimulation Definition
Decidability

Membership
Reachability
Subgraphs

ZF Axioms

Anti-Foundation Axiom

References

15 / 38

Reachability

Goal : decide if a node x reaches a node y in a Graph (G xs f r).
Definition of x −→

f
∗ y rather unsuitable for decidability.

Use different characterizations :
I reachability in n steps (x−→

f
n y) obviously decidable

I explicit path as list

16 / 38

Explicit Path

Represent path as list of nodes

[x] : x −→
f
∗ x

x −→
f

y xs : y −→
f
∗ z

(x :: xs) : x −→
f
∗ z

17 / 38

Paths without loops

x y z

ρ [] := []
ρ (x :: xs) :=

let ys := ρ xs in
if (x ∈ ys) then remove until x ys else x :: ys

remove until x [] := []
remove until x (y :: ys) :=

if (x = y) then y :: ys else remove until x ys

18 / 38

Paths without loops

x y z

ρ [] := []
ρ (x :: xs) :=

let ys := ρ xs in
if (x ∈ ys) then remove until x ys else x :: ys

remove until x [] := []
remove until x (y :: ys) :=

if (x = y) then y :: ys else remove until x ys

18 / 38

Paths without loops

x y z

ρ [] := []
ρ (x :: xs) :=

let ys := ρ xs in
if (x ∈ ys) then remove until x ys else x :: ys

remove until x [] := []
remove until x (y :: ys) :=

if (x = y) then y :: ys else remove until x ys

18 / 38

Paths without loops

x y z

ρ [] := []
ρ (x :: xs) :=

let ys := ρ xs in
if (x ∈ ys) then remove until x ys else x :: ys

remove until x [] := []
remove until x (y :: ys) :=

if (x = y) then y :: ys else remove until x ys

18 / 38

Properties of ρ

I xs : x −→
f
∗ y =⇒ ρ xs : x −→

f
∗ y

I ρ xs does not contain duplicates
I xs ⊆ ys =⇒ |ρ xs | ≤ |ys|

19 / 38

Path decidability

Decide if there is a path from x to y in (G xs f r) , i.e. x −→
f
∗ y.

I Check if (x −→
f
|xs| y)

I If true, we have a path
I If false, there is no path: (assume x −→

f
∗ y)

I If x −→
f
∗ y, then there is a path ys from x to y

I Hence, ρ ys is also a path from x to y
I |ρ ys| ≤ |xs|, since ys ⊆ xs
I Hence, x −→

f
|xs| y = true, contradiction

20 / 38

Path decidability

Decide if there is a path from x to y in (G xs f r) , i.e. x −→
f
∗ y.

I Check if (x −→
f
|xs| y)

I If true, we have a path

I If false, there is no path: (assume x −→
f
∗ y)

I If x −→
f
∗ y, then there is a path ys from x to y

I Hence, ρ ys is also a path from x to y
I |ρ ys| ≤ |xs|, since ys ⊆ xs
I Hence, x −→

f
|xs| y = true, contradiction

20 / 38

Path decidability

Decide if there is a path from x to y in (G xs f r) , i.e. x −→
f
∗ y.

I Check if (x −→
f
|xs| y)

I If true, we have a path
I If false, there is no path: (assume x −→

f
∗ y)

I If x −→
f
∗ y, then there is a path ys from x to y

I Hence, ρ ys is also a path from x to y
I |ρ ys| ≤ |xs|, since ys ⊆ xs
I Hence, x −→

f
|xs| y = true, contradiction

20 / 38

Path decidability

Decide if there is a path from x to y in (G xs f r) , i.e. x −→
f
∗ y.

I Check if (x −→
f
|xs| y)

I If true, we have a path
I If false, there is no path: (assume x −→

f
∗ y)

I If x −→
f
∗ y, then there is a path ys from x to y

I Hence, ρ ys is also a path from x to y
I |ρ ys| ≤ |xs|, since ys ⊆ xs
I Hence, x −→

f
|xs| y = true, contradiction

20 / 38

Path decidability

Decide if there is a path from x to y in (G xs f r) , i.e. x −→
f
∗ y.

I Check if (x −→
f
|xs| y)

I If true, we have a path
I If false, there is no path: (assume x −→

f
∗ y)

I If x −→
f
∗ y, then there is a path ys from x to y

I Hence, ρ ys is also a path from x to y

I |ρ ys| ≤ |xs|, since ys ⊆ xs
I Hence, x −→

f
|xs| y = true, contradiction

20 / 38

Path decidability

Decide if there is a path from x to y in (G xs f r) , i.e. x −→
f
∗ y.

I Check if (x −→
f
|xs| y)

I If true, we have a path
I If false, there is no path: (assume x −→

f
∗ y)

I If x −→
f
∗ y, then there is a path ys from x to y

I Hence, ρ ys is also a path from x to y
I |ρ ys| ≤ |xs|, since ys ⊆ xs

I Hence, x −→
f
|xs| y = true, contradiction

20 / 38

Path decidability

Decide if there is a path from x to y in (G xs f r) , i.e. x −→
f
∗ y.

I Check if (x −→
f
|xs| y)

I If true, we have a path
I If false, there is no path: (assume x −→

f
∗ y)

I If x −→
f
∗ y, then there is a path ys from x to y

I Hence, ρ ys is also a path from x to y
I |ρ ys| ≤ |xs|, since ys ⊆ xs
I Hence, x −→

f
|xs| y = true, contradiction

20 / 38

Table of Contents

Introduction

Equivalence
Bisimulation Definition
Decidability

Membership
Reachability
Subgraphs

ZF Axioms

Anti-Foundation Axiom

References

21 / 38

Subgraphs

Limit transition function on a list of nodes :
trim f xs := λxy .if x ∈ xs ∧ y ∈ xs then f x y else false

Subgraph reachable from a node x :
I ys := all nodes reachable from x
I g := trim f ys
I root of subgraph : x

Subgraph for x is always valid (provided x ∈ xs).
children : Graph X → list (Graph X)

22 / 38

Subgraphs

Limit transition function on a list of nodes :
trim f xs := λxy .if x ∈ xs ∧ y ∈ xs then f x y else false

Subgraph reachable from a node x :
I ys := all nodes reachable from x
I g := trim f ys
I root of subgraph : x

Subgraph for x is always valid (provided x ∈ xs).
children : Graph X → list (Graph X)

22 / 38

Subgraphs

Limit transition function on a list of nodes :
trim f xs := λxy .if x ∈ xs ∧ y ∈ xs then f x y else false

Subgraph reachable from a node x :
I ys := all nodes reachable from x
I g := trim f ys
I root of subgraph : x

Subgraph for x is always valid (provided x ∈ xs).
children : Graph X → list (Graph X)

22 / 38

Element relation

Graph element relation :
s ∈ t := ∃ x ∈ children t. s ≈ x

Same for NSet : child-sets, element relation
Future work : M ≈ N ⇐⇒ (∀ x. x ∈ M ⇐⇒ x ∈ N).

23 / 38

Table of Contents

Introduction

Equivalence
Bisimulation Definition
Decidability

Membership
Reachability
Subgraphs

ZF Axioms

Anti-Foundation Axiom

References

24 / 38

Empty

∀ u, u /∈ empty x.
empty graph : Graph Unit
Inductive Unit := tt.
empty graph := G [tt] (λxy .false) tt

tt

25 / 38

From lists to Graphs

list to graph : list Graph → Graph
I [] ⇒ empty graph
I (x :: xs) ⇒ add x as a child to list to graph xs

r

x1 x2 x3 ...

...
...

x0

... ...

Same for list to set : list NSet → NSet

26 / 38

From lists to Graphs

list to graph : list Graph → Graph
I [] ⇒ empty graph
I (x :: xs) ⇒ add x as a child to list to graph xs

r

x1 x2 x3 ...

...
...

x0

... ...

Same for list to set : list NSet → NSet

26 / 38

From lists to Graphs

list to graph : list Graph → Graph
I [] ⇒ empty graph
I (x :: xs) ⇒ add x as a child to list to graph xs

r

x1 x2 x3 ...

...
...

x0

... ...

Same for list to set : list NSet → NSet

26 / 38

From lists to Graphs

list to graph : list Graph → Graph
I [] ⇒ empty graph
I (x :: xs) ⇒ add x as a child to list to graph xs

r

x1 x2 x3 ...

...
...

x0

... ...

Same for list to set : list NSet → NSet

26 / 38

NSets and Lists

NSet X → list NSet:
I Take the children of the underlying graph
I Convert children to NSets (all children are valid)

list NSet → NSet
I Transform list of Graphs to Graph
I Validity is preserved

27 / 38

Other Axioms

Known : Empty, Conversions NSet ⇐⇒ list NSet

Missing ZF-Axioms : Upair, Union, Adjunction, Separation,
Replacement, Power
(no Regularity or Infinity here)
Idea : convert to list, transform list, convert back

28 / 38

Other Axioms

Known : Empty, Conversions NSet ⇐⇒ list NSet
Missing ZF-Axioms : Upair, Union, Adjunction, Separation,
Replacement, Power
(no Regularity or Infinity here)

Idea : convert to list, transform list, convert back

28 / 38

Other Axioms

Known : Empty, Conversions NSet ⇐⇒ list NSet
Missing ZF-Axioms : Upair, Union, Adjunction, Separation,
Replacement, Power
(no Regularity or Infinity here)
Idea : convert to list, transform list, convert back

28 / 38

Upair, Singleton

N’ ∈ {N, M} ⇐⇒ N’ ≈ N ∨ N’ ≈ M
I Take xs := [N,M] : list NSet
I Transform to NSet

N ∈ {M} ⇐⇒ N ≈ M.
{M} := {M, M}

29 / 38

Upair, Singleton

N’ ∈ {N, M} ⇐⇒ N’ ≈ N ∨ N’ ≈ M
I Take xs := [N,M] : list NSet
I Transform to NSet

N ∈ {M} ⇐⇒ N ≈ M.
{M} := {M, M}

29 / 38

Union

N ∈ ∪ M ⇐⇒ ∃M’ ∈ M. N ∈ M’.
∪ M := list to set (flatten (map child sets (child sets M)))

30 / 38

Adjunction

N ′ ∈ N ;M ⇐⇒ N ′ ∈ N ∨ N ′ ≈ M
N;M := ∪{N, {M}}

31 / 38

Separation

P : NSet → Prop
N ∈ {M ′ ∈ M|P M ′} ⇐⇒ ∃M ′ ∈ M.P M ′ ∧ N ≈ M ′

{M ′ ∈ M|P M ′} := list to set (filter P (child sets M))
P decidable, P extensional

32 / 38

Replacement

f : NSet → NSet
N ∈ {f M ′|M ′ ∈ M} ⇐⇒ ∃M ′ ∈ M.N ≈ f M ′

{f M ′|M ′ ∈ M} := list to set (map f (child sets M))
∀ M N. M ≈ N → f N ≈ f M.

33 / 38

Power

N ∈ P(M) ⇐⇒ N ⊆ M.
P(M) := list to set (map list to set (P (child sets M)))

34 / 38

Table of Contents

Introduction

Equivalence
Bisimulation Definition
Decidability

Membership
Reachability
Subgraphs

ZF Axioms

Anti-Foundation Axiom

References

35 / 38

Anti-Foundation Axiom

Azcel : Every non well-founded set that has an apg (accessible
pointed graph) exists.
Our model for non well-founded sets : apgs
Only restriction : transition function.

AFA : ∀xs f x .x ∈ xs =⇒
(∃ys g .valid (G ys g x)∧

(∀a b.g a b = true ⇐⇒ f a b = true ∧ a −−−−→
trim f xs

∗ b))
AFA xs f r := subgraph (G xs f r) r

36 / 38

Anti-Foundation Axiom

Azcel : Every non well-founded set that has an apg (accessible
pointed graph) exists.
Our model for non well-founded sets : apgs
Only restriction : transition function.
AFA : ∀xs f x .x ∈ xs =⇒

(∃ys g .valid (G ys g x)∧
(∀a b.g a b = true ⇐⇒ f a b = true ∧ a −−−−→

trim f xs
∗ b))

AFA xs f r := subgraph (G xs f r) r

36 / 38

Anti-Foundation Axiom

Azcel : Every non well-founded set that has an apg (accessible
pointed graph) exists.
Our model for non well-founded sets : apgs
Only restriction : transition function.
AFA : ∀xs f x .x ∈ xs =⇒

(∃ys g .valid (G ys g x)∧
(∀a b.g a b = true ⇐⇒ f a b = true ∧ a −−−−→

trim f xs
∗ b))

AFA xs f r := subgraph (G xs f r) r

36 / 38

Table of Contents

Introduction

Equivalence
Bisimulation Definition
Decidability

Membership
Reachability
Subgraphs

ZF Axioms

Anti-Foundation Axiom

References

37 / 38

References

Peter Aczel. Non-Well-Founded Sets. CSLI Lecture Notes
Vol. 14. Stanford University, 1988.

S. Abramski. A Cook’s Tour of the Finitary
Non-Well-Founded Sets, 2011.
Sangiorgi, Davide. Introduction to bisimulation and
coinduction. Cambridge University Press, 2011.

Kathrin Stark. Quantitative Recursion-Free Process
Axiomatization in Coq, 2014.

38 / 38

	Introduction
	Equivalence
	Bisimulation Definition
	Decidability

	Membership
	Reachability
	Subgraphs

	ZF Axioms
	Anti-Foundation Axiom
	References

