Syntactic Theory of Finitary Sets

Non well-founded sets

Denis Miller

Saarland University

10 April 2015

/38

Introduction
Equivalence
Bisimulation Definition
Decidability
Membership
Reachability
Subgraphs
ZF Axioms

Anti-Foundation Axiom

References

Table of Contents

Introduction

3/38

Introduction

Non-well-founded sets
» may contain cycles, e.g Me M
» can be represented by rooted graphs up to bisimulation
» Our Model : ZF - Reqularity - Infinity + AFA

4/38

Representation

Consider graphs over a type X:
Inductive Graph X := G(xs : list X)(f : X = X — B)(r : X)

Reachability in a graph :

38

Representation

Non well-founded set = rooted graph over X.

valid (G xs fr) :=
(Vxy, fxy=true = x € xsA\y € xs)A
rExs/\VxExs.r?*x)

NSet := sig valid.
Non well-founded sets := NSet /.,

6/38

Examples

/38

Examples

(—

not valid.

/38

Examples

of

(—

not valid.

Jol

(—

()

/38

Examples

of

(—

not valid.

Jol

(—

valid.

()

/38

Table of Contents

Equivalence

8/38

Table of Contents

Equivalence
Bisimulation Definition

9/38

Bisimulation

Natural equivalence relation on non well-founded sets:
bisimulation.

p:X —Y — Bis a bisimulation for

(G xs fr): Graph X) ((G ys g q) : Graph Y) :=

10/38

Bisimulation

Natural equivalence relation on non well-founded sets:
bisimulation.

p:X —Y — Bis a bisimulation for

(G xs fr): Graph X) ((G ys g q) : GraphY)

o
I

(and vice-versa)

10/38

Bisimulation

Natural equivalence relation on non well-founded sets:
bisimulation.

p:X —Y — Bis a bisimulation for

(G xs fr): Graph X) ((G ys g q) : GraphY)

o
I

(and vice-versa)

(G xsfr)= (G ysgq):= exists p,
p is a bisimulation for (G xs fr), (G ys g q) A
p rq = true.

10/38

Table of Contents

Equivalence

Decidability

11/38

Decide if p is a bisimulation

» transition functions limited to node list (assuming validity)
> test all - finitely many - nodes

» use list exists and forall decidability

12/38

Decide if p is a bisimulation

» transition functions limited to node list (assuming validity)

> test all - finitely many - nodes
» use list exists and forall decidability
dec((Vx,x € xs = Vy,y Eys = pxy = true =

(VX' x" € xs = fxx = true =
Jy,y €eyshgyy =true NPx"y = true)\

(Vy',y €ys = gyy =true =
X', x" € xs AN fxx" = true N Px"y" = true)))

12/38

Decide if p is a bisimulation

» transition functions limited to node list (assuming validity)

> test all - finitely many - nodes
» use list exists and forall decidability

dec((Vx,x € xs = Vy,y Eys = pxy = true =
(VX' x" € xs = fxx = true =
Jy,y €eyshgyy =true NPx"y = true)\

(Vy',y €ys = gyy =true =
X', x" € xs AN fxx" = true N Px"y" = true)))

Proof. auto. Qed.

12/38

Decide if s & t

How to decide if (G xsfr) = (G ys g q)

13/38

Decide if s & t

How to decide if (G xsfr) = (G ys g q)

» only finitely many relations on xs x ys

Decide if s & t

How to decide if (G xsfr) = (G ys g q)
» only finitely many relations on xs x ys

> map(AAAxy.(x,y) € A)(P(xs X ys))

Decide if s & t

How to decide if (G xsfr) = (G ys g q)
» only finitely many relations on xs x ys
> map(AAAxy.(x,y) € A)(P(xs X ys))

» Check for a bisimulation among these relations (1 slide
ago)

Table of Contents

Membership

14/38

Table of Contents

Membership
Reachability

/38

Reachability

Goal : decide if a node x reaches a node y in a Graph (G xs f r).
Definition of x —* y rather unsuitable for decidability.

Use different characterizations :

» reachability in n steps (x?" y) obviously decidable

» explicit path as list

16/38

Explicit Path

Represent path as list of nodes

17 /38

Paths without loops

O——C

18/38

Paths without loops

OO

18/38

Paths without loops

pll=1

P (x i xs) =

let ys := p xs in
if (x € ys) then remove_until x ys else x :: ys

18/38

Paths without loops

pll=1

P (x i xs) =

let ys := p xs in
if (x € ys) then remove_until x ys else x :: ys

remove_until x [| := []

remove_until x (y :: ys) :=
if (x =y) then y :: ys else remove_until x ys

18/38

Properties of p

> xs:x?*g = pxs:x?*g
> p xs does not contain duplicates

> xs Cys = |pxs | < ys|

19/38

Path decidability

Decide if there is a path from x to y in (G xs fr), ie. x ?* y.

» Check if (x T>|X5| y)

20/38

Path decidability

Decide if there is a path from x to y in (G xs fr), ie. x ?* y.
» Check if (x T>|X5| y)

> If true, we have a path

20/38

Path decidability

Decide if there is a path from x to y in (G xs fr), ie. x ?* y.
» Check if (x ?"G' y)

> If true, we have a path
» If false, there is no path: (assume x T>* y)

20/38

Path decidability

Decide if there is a path from x to y in (G xs fr), ie. x ?* y.
» Check if (x ?"G' y)

> If true, we have a path
> If false, there is no path: (assume x —* y)
f

> If x ?* y, then there is a path ys from x to y

20/38

Path decidability

Decide if there is a path from x to y in (G xs fr), ie. x ?* y.
» Check if (x ?"G' y)

> If true, we have a path
> If false, there is no path: (assume x —* y)
f

> If x ?* y, then there is a path ys from x to y

» Hence, p ys is also a path from x to y

20/38

Path decidability

Decide if there is a path from x to y in (G xs fr), ie. x ?* y.

> Check if (x ?‘X5| y)
> If true, we have a path
» If false, there is no path: (assume x T>* y)

> If x ?* y, then there is a path ys from x to y

» Hence, p ys is also a path from x to y
lpys| < |xs|, since ys C xs

v

20/38

Path decidability

Decide if there is a path from x to y in (G xs fr), ie. x ?* y.
» Check if (x ?"G' y)

> If true, we have a path
> If false, there is no path: (assume x —* y)
f

> If x ?* y, then there is a path ys from x to y
» Hence, p ys is also a path from x to y

> |pys| < |xs|, since ys C xs

» Hence, x ?‘“' y = true, contradiction

20/38

Table of Contents

Membership

Subgraphs

21/38

Subgraphs

Limit transition function on a list of nodes :
trim f xs := Axy.ifx € xs Ay € xs then f x y else false

22/38

Subgraphs

Limit transition function on a list of nodes :
trim f xs := Axy.ifx € xs Ay € xs then f x y else false

Subgraph reachable from a node x :
» ys := all nodes reachable from x
> g :=trim fys

» root of subgraph : x

22 /38

Subgraphs

Limit transition function on a list of nodes :
trim f xs := Axy.ifx € xs Ay € xs then f x y else false

Subgraph reachable from a node x :
» ys := all nodes reachable from x
> g :=trim fys
» root of subgraph : x

Subgraph for x is always valid (provided x & xs).
children : Graph X — list (Graph X)

38

Element relation

Graph element relation :
s €t:=dx & children t. s = x
Same for NSet : child-sets, element relation
Future work :Mx N & (Vx.xeM < x & N).

3/38

Table of Contents

/F Axioms

24/38

Empty

YV u, u & empty x.

empty graph : Graph Unit
Inductive Unit := tt.

empty graph := G [tt] (Axy.false) tt

()

25/ 38

From lists to Graphs

list_to_graph : list Graph — Graph
> [] = empty graph

> (x = xs) = add x as a child to list_to_graph xs

26/38

From lists to Graphs

list_to_graph : list Graph — Graph
> [] = empty graph

> (x = xs) = add x as a child to list_to_graph xs

26/38

From lists to Graphs

list_to_graph : list Graph — Graph
> [] = empty graph

> (x = xs) = add x as a child to list_to_graph xs

26/38

From lists to Graphs

list_to_graph : list Graph — Graph
> [] = empty graph

> (x = xs) = add x as a child to list_to_graph xs

Same for list_to_set : list NSet — NSet

26/38

NSets and Lists

NSet X — list NSet:

» Take the children of the underlying graph

» Convert children to NSets (all children are valid)
list NSet — NSet

» Transform list of Graphs to Graph

» Validity is preserved

27 /38

Other Axioms

Known : Empty, Conversions NSet <= list NSet

28/38

Other Axioms

Known : Empty, Conversions NSet <= list NSet
Missing ZF-Axioms : Upair, Union, Adjunction, Separation,
Replacement, Power

(no Regularity or Infinity here)

28 /38

Other Axioms

Known : Empty, Conversions NSet <= list NSet
Missing ZF-Axioms : Upair, Union, Adjunction, Separation,
Replacement, Power

(no Regularity or Infinity here)

Idea : convert to list, transform list, convert back

28 /38

Upatir, Singleton

N e {NM} < NxNVN =M
» Take xs := [N,M] : list NSet

» Transform to NSet

29/38

Upatir, Singleton

N e {NM} < NxNVN =M
» Take xs := [N,M] : list NSet
» Transform to NSet

N e {M} < N=xM

{M} == {M, M}

29/38

Union

NeUM < dM € M.N € M.
U M := list_to_set (flatten (map child_sets (child_sets M)))

30/38

Adjunction

NeNM < NeNVNzxM
N;M = U{N, {M}}

31/38

Separation

P : NSet — Prop
Ne{MeMPM} < IM e MPM AN=x=M
{M" € M|P M’} := list_to_set (filter P (child_sets M))
P decidable, P extensional

Replacement

f: NSet —» NSet
Ne{fM|M e M} & IM e MN~fM
{f M'IM" € M} := list_to_set (map f (child_sets M))
YVMNMxN->{I{Nx M

Power

NePM) < NIM
P(M) := list_to_set (map list_to_set (P (child_sets M)))

34/38

Table of Contents

Anti-Foundation Axiom

35/38

Anti-Foundation Axiom

Azcel : Every non well-founded set that has an apg (accessible
pointed graph) exists.

Our model for non well-founded sets : apgs

Only restriction : transition function.

36 /38

Anti-Foundation Axiom

Azcel : Every non well-founded set that has an apg (accessible
pointed graph) exists.

Our model for non well-founded sets : apgs
Only restriction : transition function.
AFA : Vxsfx.x € xs =

(Jys g.valid(G ys g x)A\

(Vab.gab=true < fab= trueAaT* b))
rum T xs

36 /38

Anti-Foundation Axiom

Azcel : Every non well-founded set that has an apg (accessible
pointed graph) exists.
Our model for non well-founded sets : apgs
Only restriction : transition function.
AFA : Vxsfx.x € xs =
(Jys g.valid(G ys g x)A\
(Vab.gab=true < fab=trueNa———" b))

trim f xs

AFA xs f r := subgraph (G xs fr) r

36 /38

Table of Contents

References

37/38

References

¥ Peter Aczel. Non-Well-Founded Sets. CSLI Lecture Notes
Vol. 14. Stanford University, 1988.

¥ S. Abramski. A Cook’s Tour of the Finitary
Non-Well-Founded Sets, 2011.

¥ Sangiorgi, Davide. Introduction to bisimulation and
coinduction. Cambridge University Press, 2011.

¥ Kathrin Stark. Quantitative Recursion-Free Process
Axiomatization in Coq, 2014.

38/38

	Introduction
	Equivalence
	Bisimulation Definition
	Decidability

	Membership
	Reachability
	Subgraphs

	ZF Axioms
	Anti-Foundation Axiom
	References

