Towards formalizing T T-lifting in HOL-Nominal

Christian Doczkal

Advisor: Dr. Jan Schwinghammer
Supervisor: Prof. Gert Smolka

February 6, 2009

Introduction
[1}

What's the story?

How to prove strong normalization
and

how to implement the proof in Isabelle/HOL-Nominal

Introduction
oe

Strong Normalization

Usually: “A term t is strongly normalizing if there is no infinite
sequence t — t; — tp — ... of reduction steps beginning at t."

Implicit: reduction is finitely branching so there exists an upper
bound on the length of all possible reduction sequences.

For my formalization | use an inductive variant

Definition (strong normalization)

SNt=Vt't—t =SSNt

Introduction
®0

Moggi's computational metalanguage

@ terms and types:

Tu=blTr—7|T T

to=x|Ax.t|tt]|[t]|ttoxint
@ typing rules:

F=t:7 lFs:To x:obFt:TrT
Fefe]:Tr NlEstoxint: Tr

@ reductions:

T.3 [s] to x in t > t[x == 5]
T.n stoxin[x] —s
T.assoc (stoxint)toy in u+ sto x in (t to y in u)

Introduction
oe

What's difficult about strong normalization

@ [-reduction may increase the size (and depth) of a term
= no naive inductive proof

@ untyped A-calculus is not strongly normalizing
= need to exploit type structure

Introduction
oe

What's difficult about strong normalization

@ [-reduction may increase the size (and depth) of a term
= no naive inductive proof

@ untyped A-calculus is not strongly normalizing
= need to exploit type structure

=- Use logical relations proof technique

T T-lifting
(1)

The logical relations approach

@ Define a type indexed family of relations red;
@ Show by induction on the type structure
t € red; = SN(t)
tered. Nt —t =t € red:
neutral(t) AN (Vt'.t — t' =t € red,) = t € red;

© Prove 't :7 =t € red: by induction on the typing
derivation

T T-lifting
(1)

The logical relations approach

@ Define a type indexed family of relations red;
@ Show by induction on the type structure
t € red; = SN(t)
tered. Nt —t =t € red:
neutral(t) AN (Vt'.t — t' =t € red,) = t € red;
© Prove 't :7 =t € red: by induction on the typing
derivation
First attempt at defining reducibility:
tered,=SNt

t € red,_., =Vu € red,.t u € red;
teredr,=Vue Xttoxinue X

T T-lifting
(1)

The logical relations approach

@ Define a type indexed family of relations red;
@ Show by induction on the type structure

t € red; = SN(t)
tered. Nt —t =t € red:

URRSFISRY J 475 WV NIY AW Y AT AC S B W |

lEs: To Mx:obt: TT
lNEstoxint: Tt

tered,=SNt
t € red,_., =Vu € red,.t u € red;
teredr,=Vue Xttoxinue X

T T-lifting
oce

The logical relations approach

Definition (stack)

txld =t

K:u=1Id|(y)n:L tx((y)n::L)=(ttoyinn)xL

T T-lifting
oce

The logical relations approach

Definition (stack)

txld =t

Ku=1ld|(y)n:L tx((y)n::L)=(ttoyin n)xL

Definition (reducibility)

t € red,=SNt
t € red, . =Vu € red,.t u € red;
t € redr, = VK € red] .SN(t % K)

K € red] =Vs € red,.SN([s] * K)

Stacks in Isabelle
®000

Stacks

nominal_datatype stack = Id | St "<name>lam” "stack”

consts
length :: "stack = nat”
nominal_primrec
"length Id = 0"
"x § K= length (St x t K) = 1 + length K"
by (finite_guess+,auto simp add: fresh_nat)
(fresh_guess)

Stacks in Isabelle
oeo00

Stacks and Dismantling

HOL-Nominal only provides infrastructure for defining primitive
recursive functions

Stack dismantling () is not primitive recursive

txld =t
tx((y)n:L)=(ttoyinn)xL

Stacks in Isabelle
ocoeo

function

dismantle :: "lam = stack = lam" ("_ % " [80,80] 80)
where

"txld=1t" |

"x § (Kt) =t * (Stxs K) = (ttoxins)*K"
proof - — pattern completeness

{ fix P :: bool and arg::"lam x stack”
assume id: " At. arg = (t, Id) = P”
and st: "Ax K ts. [x £ (K, t); arg = (t, St xs K)] = P”
{ assume "snd arg = Id"
hence P by (metis id[of "fst arg”] surjective_pairing) }
moreover
{ fixy n L assume "snd arg = Sty n L" "y § (L, fst arg)”
hence P by (metis stjwhere t="fst arg”] surjective_pairing) }
ultimately show P using stack_exhaust’[of "snd arg” "fst arg”|
by(auto)

Stacks in Isabelle
ocoeo

function

dismantle :: "lam = stack = lam" ("_ % " [80,80] 80)
where

"txld=1t" |

"x § (Kt) =t * (Stxs K) = (ttoxins)*K"
proof - — pattern completeness

{ fix P :: bool and arg::"lam X stack”
assume id: " At. arg = (t, I[d) = P”
and st: "Ax K ts. [xt (K, t); arg = (t, St x s K)] = P”
{ assume "snd arg = Id"
hence P by (metis id[of "fst arg”] surjective_pairing) }
moreover
{ fixy n L assume "snd arg = Sty n L" "y § (L, fst arg)”
hence P by (metis stjwhere t="fst arg”] surjective_pairing) }
ultimately show P using stack_exhaust’[of "snd arg” "fst arg”|
by(auto)

Stacks in Isabelle
ocoeo

function

lemma stack_exhaust’ :
fixes c :: "'a::fs_.name”
shows "b=1I1dV (I xtK.xgKAxfcAb=5StxtK)"

by(nominal_induct b avoiding: c rule: stack.strong_induct)
(auto)

hence P by (metis id[of "fst arg”] surjective_pairing) }
moreover
{ fixy n L assume "snd arg = Sty n L" "y § (L, fst arg)”
hence P by (metis stjwhere t="fst arg”] surjective_pairing) }
ultimately show P using stack_exhaust’[of "snd arg” "fst arg”|
by(auto)

Stacks in Isabelle
oooe

— right uniqueness
{
fix tt' :: lam and x x’ :: name and s s’ :: lam and K K’ :: stack
assume "x £ (K, t)" "x" § (K, t")"
and "(t, Stxs K) = (t’, Stx' s' K')"
hence eq: " (t to x in s,K) = (t' to x" in s",K")"
by (auto simp add: lam.inject stack.inject)
let 7g = dismantle_sumC — graph of dismantle
from eq show "7g (tto xins, K) = ?g (t' to x" in s, K")"
by (rule arg_cong)

}

qed (simp_all add: stack.inject)

termination dismantle
by(relation "measure (A(t,K). length K)")(auto)

Stacks in Isabelle
®000

Dismantling and Induction

Induction on a stack K has the cases K = Id and K = (y)n :: L
Facty: tx((y)n:: L) is of the form s to x in u

What is the connection between t, y, n, L and s, x, u?

Stacks in Isabelle
®000

Dismantling and Induction

Induction on a stack K has the cases K = Id and K = (y)n :: L
Facty: tx((y)n:: L) is of the form s to x in u

What is the connection between t, y, n, L and s, x, u? - None
Impossible to do case analysis like t x ((y)n :: L) —7?

Stacks in Isabelle
®000

Dismantling and Induction

Induction on a stack K has the cases K = Id and K = (y)n :: L
Facty: tx((y)n:: L) is of the form s to x in u

What is the connection between t, y, n, L and s, x, u? - None
Impossible to do case analysis like t x ((y)n :: L) —7?

Fact;: tx(L+H(y)n::ld)=(t*L) toy inn

Want a reverse induction principle for stacks.

Stacks in Isabelle

[o] Jlele}

The standard rule:

/\z. P z Id

/\yan. r ¢ z; yt L; /\z.PzLﬂ:>Pz(StynL)
Pz K

The reverse rule:

/\z. Pz Id

/\yan. Iy 8 z; y 8 L; /\z.PzL]]:>Pz(L++Stand)
Pz K

Stacks in Isabelle
ocoeo

lemma stack_reverse_strong_induct[case_names Id St]:
fixes z :: "'a::ifs_.name”
assumes id: "\ z. Pz Id"
and st:"AynlLz.[yfz;yfL;Az.PzL]
— Pz (L +4 Stynld)"
shows "P z K"
proof (subst srev_srev[THEN sym],
rule stack.strong_inductjwhere P="X\ z k . P z (srev k)"])
{ fix z show "P z (srev Id)" using id by simp }
{ fix y::name and n::lam and z::" ('a::fs_name)” and L
assume f: "yt Z" "y f L"
and ih: "\ (z:'a::fs_name) . P z (srev L)”
show "P z (srev (Sty n L))"
using f ih st[of y z "srev L" n]
by (auto simp add: fresh_srev) }
ged

Stacks in Isabelle
ocoeo

lemma stack_reverse_strong_induct[case_names Id St]:
fixes z :: "'a::ifs_.name”
assumes id: "\ z. Pz Id"
and st:"AynlLz.[yfz;yfL;Az.PzL]
— Pz (L +4 Stynld)"
shows "P z K"
proof (subst srev_srev[THEN sym],
rule stack.strong_inductjwhere P="X\ z k . P z (srev k)"])
{ fix z show "P z (srev Id)" using id by simp }
{ fix y::name and n::lam and z::" ('a::fs_name)” and L
assume f: "yt Z" "y f L"
and ih: "\ (z:'a::fs_name) . P z (srev L)”
show "P z (srev (Sty n L))"
using f ih st[of y z "srev L" n]
by (auto simp add: fresh_srev) }
ged

Stacks in Isabelle
ocoeo

lemma stack_reverse_strong_induct[case_names Id St]:
fixes z :: "'a::ifs_.name”
assumes id: "\ z. Pz Id"
and st:"AynlLz.[yfz;yfL;Az.PzL]
— Pz (L +4 Stynld)"
shows "P z K"
proof (subst srev_srev[THEN sym],
rule stack.strong_inductwhere P="X\ z k . P z (srev k)"])
{ fix z show "P z (srev Id)" using id by simp }
{ fix y::name and n::lam and z::" ('a::fs_name)” and L
assume f: "yt Z" "y f L"
and ih: "\ (z:'a::fs_name) . P z (srev L)”
show "P z (srev (Sty n L))"
using f ih st[of y z "srev L" n]
by (auto simp add: fresh_srev) }
ged

Stacks in Isabelle
oooe

Application

K+, K' = length K > length K’
where K —, K' =Vt. t« K — tx K’

Proof on Paper: “Suppose x x K — x % K’
and K = (y1)n = (o) ... ld”
“There are only two reductions that might change the length of K"

Isabelle/HOL-Nominal: Roughly 90 lines inductive proof

Stacks in Isabelle
oooe

Application

l T.p [s] to x in t — t[x = s]
T.n stox in[x] — s
T.assoc (stox int)toy in u+r— s to x in (t to y in u)

Proof on Paper: “Suppose x x K — x % K’
and K = (y1)n = (o) ... ld”
“There are only two reductions that might change the length of K"

Isabelle/HOL-Nominal: Roughly 90 lines inductive proof

Stacks in Isabelle
oooe

Application

K+, K' = length K > length K’
where K —, K' =Vt. t« K — tx K’

Proof on Paper: “Suppose x x K — x % K’
and K = (y1)n = (o) ... ld”
“There are only two reductions that might change the length of K"

Isabelle/HOL-Nominal: Roughly 90 lines inductive proof

Conclusion
°

Current State

@ Define a type indexed family of relations red;

@ Show by induction on the type structure

t € red. = SN(t)
tered. Nt —t =t € red;
neutral(t) AN (Vt'.t — t' =t € red,) = t € red;

© Prove '+t :7 =t € red: by induction on typing derivations

Conclusion
°

Current State

@ Formalize A, incl. substitution, reduction, and types
@ Define a type indexed family of relations red;

© Show by induction on the type structure

t € red; = SN(t)
tered. Nt —t =t € red;
neutral(t) A (Vt'.t — t' =t € red,) = t € red;

@ Prove '+t :7 =t € red: by induction on typing derivations

Conclusion
°

Current State

@ Formalize A, incl. substitution, reduction, and types
@ Formalize stacks and their properties

© Define a type indexed family of relations red-

@ Show by induction on the type structure

t € red; = SN(t)
tered. Nt —t =t € red:
neutral(t) A (Vt'.t — t' = t' € red,) = t € red;

© Provel-t:7 =t € red; by induction on typing derivations

Conclusion
°

Current State

@ Formalize A\, incl. substitution, reduction, and types (280)
@ Formalize stacks and their properties (700)

© Define a type indexed family of relations red; (30)

© Show by induction on the type structure (400 incl. A-cases))

t € red. = SN(t)
tered. Nt —t =t € red:
neutral(t) A (Vt'.t — t' = t' € red,) = t € red;

© Provel-t:7 =t € red; by induction on typing derivations
(central part of the paper)

Conclusion
°0

References

E T.Nipkow, L.C. Paulson, M. Wenzel A Proof Assistant for
Higher-Order Logic,
http://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf

[§ T.Nipkow, A Tutorial Introduction to Structured lsar Proofs
http://isabelle.in.tum.de/dist/lIsabelle/doc/isar-overview.pdf

[@ C. Urban, Nominal Techniques in Isabelle/HOL, Journal of
Automatic Reasoning, Vol. 40(4), pp: 327-356, 2008

[@ S. Lindley and |. Stark, Reducibility and TT-lifting for
Computation Types, Typed Lambda Calculi and Applications,
LNCS Vol. 3461, pp: 262-277, Springer-Verlag, 2005.

Thank Youl

	Introduction
	inro
	Moggi's computational metalanguage

	-lifting
	lifting

	Stacks in Isabelle
	dismantling
	reverse induction

	Conclusion
	Current State
	References

