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Introduction
[ 1}

Moggi's computational metalanguage

@ terms and types:

Tu=blTr—7|T T

to=x|Ax.t|tt]|[t]|ttoxint
@ typing rules:

F=t:7 lFs:To x:obFt:TrT
Fefe]:Tr NlEstoxint: Tr

@ reductions:

T.3 [s] to x in t > t[x == 5]
T.n stoxin[x] —s
T.assoc (stoxint)toy in u+ sto x in (t to y in u)
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Main Goal

Strong Normalization Theorem (Isar Version)

theorem typing-implies-SN:
assumes a: [ Ft: 7
shows SN(t)

@ Originally shown by Benton et al. [1998]
o | formalized the proof of Lindley and Stark [2005]



Introduction

@00

The Girard-Tait approach

@ Define a type indexed family of relations red;

@ Show by induction on the type structure
(CR1) t € red; = SN(t)
(CR2) tered, Nt t =t € red;
(CR3) neutral(t) A (Vt'.t —t' =t €red.) = t € red,

© Prove 't :7 =t € red: by induction on the typing

derivation
First attempt at defining reducibility:
tered,=SNt

t € red,_., =Vu € red,.t u € red;
teredr,=Vue Xttoxinue X
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The Girard-Tait approach

@ Define a type indexed family of relations red;
@ Show by induction on the type structure

(CR1) t € red; = SN(t)
(CR2) tered, Nt t =t € red;
(r D2\ PRI I 475 NN AW Y AN S S B W |

lEs: To Mx:obt: TrT
lNFstoxint: Tt

tered,=SNt
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T T-lifting

Definition (stack)

txld =t

K:u=Id|[[yln>L tx([yln>L)=(t toy in n)x L

t* ([yi]n > [y2]n2 > [ys]n3 > Id) =
((t to y1 in n1) to y» in my) to y3 in n3
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T T-lifting

Definition (stack)

txld =t

K:u=Id|[[yln>L tx([yln>L)=(t toy in n)x L

V.

Definition (reducibility)

t € red, = SN t
t € red, .. =Vu € red,.t u € red;
t € redr, = VK € red) .SN(t * K)

K € red] =Vs € red,.SN([s] x K)
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Strong Normalization

For my formalization | use an inductive characterization

Definition (strong normalization)

SNt=Vt't—t = SNt

Definition (stack strong normalization)

SSN k = Vk' .k —, k' = SSN K’

where k =, k' =Vt. txk— tx k'




A Case Study
[ Jelelelele]

Lemma (Properties of reducibility)

(CR1) t € red; = SN(t)
(CR2) tered, Nt t' =t € red;
(CR3)  neutral(t) N (Vt' .t — t' =t € red;) = t € red;

@ Proof by induction on the type structure
@ Consider case CR3 for T ¢ in detail

@ First the informal proof
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CR3 for T o

Let t be neutral such that t' € REDT, whenever t — t'. We have
to show that (t x k) is SN for each k € RED, .

(CR3): neutral(t) A (Vt'.t — t' =t € red;) = t € red; J
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CR3 for T o

Let t be neutral such that t' € REDT, whenever t — t'. We have
to show that (t x k) is SN for each k € RED] . First, we have
that [x] x k is SN, as x € RED,, by the induction hypothesis.
Hence k itself is SN, and we can work by induction on max(k).

Application t x k may reduce as follows:
a + 1l whare s+ which ic SN ac bk € REDT and

T.0 [s] to x in t — t[x 1= 5]
T.assoc (stox int)toy in u+ s to x in (t to y in u)

induction hypothesis t x k' is SN.
There are no other possibilities as t is neutral. Hence t x k is
strongly normalizing for every k € REDI, and so t € REDt, as
required.
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Closing the Gap

NEUT t = (3x.t=Varx)V (3uv.t=App uv)

tx ks r /\t’.[[t»—>t';r:t'*k]]:>P
NEUTt  NK. [k K ;r=txk]=P
P
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Closing the Gap

txkisr Nt [tethr=t«k=P
NK- Tk K;r=txk]=P
Nsynlllytliyts;t=I[s]:k=][yln>l;
r=(nly:=s))x 1] =P
/\uxvynl.[[xtt(y,u,n);ytt(v,u);t:utoxinv;
k=|yln>l;r=(utoxin(vtoyinn))*Il]= P
P

o Case k = Id is still easy

e Case k = [y]n > | We use the induction hypothesis with with
t"*=ttoyinn and k* =1
@ Most cases are easy but tedious
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One illustrative case:
In the case t to y in n+ r’ consider the case n+ n’

@ Foranyu, utoy inn+— utoy in n’
@ Hence, (utoy inn)*x/+— (utoy in n') %/
e Thisis ux([yln>1)— ux([y]n > 1)

tx([yln>L)=(ttoyinn)xL
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Closing the Gap

One illustrative case:
In the case t to y in n+ r’ consider the case n+ n’

@ Forany u,utoy inn+— utoy in n’
Hence, (utoy in n)x/+— (uto y in n') x|/
Thisis u* ([yln > 1) — ux ([y]n' > 1)
(Wln>1) =i (Iyln" > 1)

KK =Vt. txK — tx K’
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Closing the Gap

One illustrative case:
In the case t to y in n+ r’ consider the case n+ n’

@ Foranyu, utoy inn+— utoy in n’

@ Hence, (utoy inn)*x/+— (utoy in n') %/
e Thisis ux([yln>1)— ux*([y]n’ > 1)

o (10> 1) i (W1 1)

@ Since k = ([y]n > I) we have P.

AK. [k—k';r=txk] =P
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CR3 for T o

@ We have everything in place to show:
(CR3): neutral(t) A (Vt'.t — t = t' € redr,) =t € redT,

Using only (CR1-3) for 7.
e (CR1) and (CR2) are much easier.

@ Cases for b and ¢ — 7 could be “imported” from
simply-typed A-calculus.
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Looking at it through Isabelle

Isabelle Demo...
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Fundamental Theorem

The genaralized case rule can also be applied in the FTLR

lemma to-RED:
assumes m: m € RED (T o)
andn: V p e RED o . njx:=p] € RED (T 7)
shows m to x in n € RED (T 7)

Which boils down to the following lemma to-RED-aux:

assumes SN p and SN (n[x:=p]xk) and xfp xtk
shows SN (([p] to x in n) % k)
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The SN(p) predicate does not provide a bound max(p)
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Digression — Reverse Stack Induction Rule

The standard rule:

Nz Pzid
/\yan. vtz yt L /\z.PzL]]:>Pz(StynL)
PzK

The reverse rule:

Azpzm

/\yan. Iyt zyt L /\z.PzL]]:>Pz(L++5tyn/d)
PzK
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Application

K — K' = length K > length K’
where K — K' =Vt. tx K — tx K’

Proof on Paper: “Suppose x x K — x x K’

and K = (y1)n1 = (y2)mp ... Id”
“There are only two reductions that might change the length of K"

Isabelle/HOL-Nominal: Roughly 90 lines inductive proof
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Application

K ., K' = lenoth K > lenoth K/ \

We don't need this!

and K = (y1)n1 = (y2)mp ... Id”
“There are only two reductions that might change the length of K"

Isabelle/HOL-Nominal: Roughly 90 lines inductive proof



Reverse Stack Induction Rule

The standard rule:

Aszm

A L ‘-~

We don’'t need thls elther|

Azpzm

/\yan. Iyt zyt L /\z.PzL]]:>Pz(L++5tyn/d)
PzK
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Nominal?

How much did | profit from the nominal package?
@ Basic definitions straightforward:

e Terms, Types, Substitution, Reductions, Typing,
e Require more freshness conditions than one uses on paper
e Variable convention also in rule inductions and strong inversion

@ Very low coding gap
e Lemmas can be stated exactly as on paper

@ Additional Freshness conditions sometimes cumbersome and
require alpha renaming.
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Faithful?

How faithful is the formalization?

@ Reduction stated with additional freshness conditions
e | have shown adequacy

e Different characterization of strong normalization
o | have also shown adequacy

@ The lemmas/cases spelled out in Lindley Stark[2005]:
e rather close / one has to deal with freshness conditions

@ Need many additional lemmas

e Most have two line proofs using nominal _induct and auto
o Notable Exception: case rule on tx k — r
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