Introduction	A Case Study	Isabelle	Fundamental Theorem	Closing Remarks

Formalizing $\top \top$ -lifting in HOL-Nominal

Christian Doczkal

Advisor: Dr. Jan Schwinghammer Supervisor: Prof. Gert Smolka

May 15, 2009

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
●0000	000000	O	0000	
Moggi's co	omputationa	al metalan	guage	

• terms and types:

$$egin{array}{ll} au ::= b \mid au
ightarrow au \mid T \; au \ t ::= x \mid \lambda x.t \mid t \; t \mid [t] \mid t \; ext{to } x \; ext{in } t \end{array}$$

• typing rules:

 $\frac{\Gamma \vdash t : \tau}{\Gamma \vdash [t] : T \tau} \qquad \frac{\Gamma \vdash s : T \sigma \quad \Gamma, x : \sigma \vdash t : T \tau}{\Gamma \vdash s \text{ to } x \text{ in } t : T \tau}$

reductions:

 $\begin{array}{ll} T.\beta & [s] \text{ to } x \text{ in } t \mapsto t[x ::= s] \\ T.\eta & s \text{ to } x \text{ in } [x] \mapsto s \\ T.assoc & (s \text{ to } x \text{ in } t) \text{ to } y \text{ in } u \mapsto s \text{ to } x \text{ in } (t \text{ to } y \text{ in } u) \end{array}$

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
○●○○○	000000	O	0000	
Main Goal				

Strong Normalization Theorem (Isar Version)

```
theorem typing-implies-SN:
assumes a: \Gamma \vdash t : \tau
shows SN(t)
```

- Originally shown by Benton et al. [1998]
- I formalized the proof of Lindley and Stark [2005]

Introduction A Case Study Isabelle Fundamental Theorem Closing Remarks 0000 The Girard-Tait approach

- **①** Define a type indexed family of relations red_{τ}
- Show by induction on the type structure
 - $\begin{array}{ll} (\mathsf{CR1}) & t \in \mathit{red}_{\tau} \Rightarrow \mathit{SN}(t) \\ (\mathsf{CR2}) & t \in \mathit{red}_{\tau} \land t \mapsto t' \Rightarrow t' \in \mathit{red}_{\tau} \\ (\mathsf{CR3}) & \mathit{neutral}(t) \land (\forall t'.t \mapsto t' \Rightarrow t' \in \mathit{red}_{\tau}) \Rightarrow t \in \mathit{red}_{\tau} \end{array}$
- **③** Prove $Γ ⊢ t : τ \Rightarrow t ∈ red_τ$ by induction on the typing derivation

First attempt at defining reducibility:

 $t \in red_b \equiv SN \ t$ $t \in red_{\sigma \to \tau} \equiv \forall u \in red_{\sigma}.t \ u \in red_{\tau}$ $t \in red_{\tau\sigma} \equiv \forall u \in X.t \ to \ x \ in \ u \in X$

Introduction A Case Study Isabelle Fundamental Theorem Closing Remarks 0000 The Girard-Tait approach

- **①** Define a type indexed family of relations red_{τ}
- Show by induction on the type structure
 - $\begin{array}{ll} (\mathsf{CR1}) & t \in \mathit{red}_{\tau} \Rightarrow \mathit{SN}(t) \\ (\mathsf{CR2}) & t \in \mathit{red}_{\tau} \land t \mapsto t' \Rightarrow t' \in \mathit{red}_{\tau} \\ (\mathsf{CR3}) & \mathit{neutral}(t) \land (\forall t'.t \mapsto t' \Rightarrow t' \in \mathit{red}_{\tau}) \Rightarrow t \in \mathit{red}_{\tau} \end{array}$
- **③** Prove $Γ ⊢ t : τ \Rightarrow t ∈ red_τ$ by induction on the typing derivation

First attempt at defining reducibility:

 $t \in red_b \equiv SN \ t$ $t \in red_{\sigma \to \tau} \equiv \forall u \in red_{\sigma}.t \ u \in red_{\tau}$ $t \in red_{\tau\sigma} \equiv \forall u \in X.t \ to \ x \ in \ u \in X$

Introduction A Case Study Usabelle Fundamental Theorem Closing Remarks 0000 The Girard-Tait approach

- **①** Define a type indexed family of relations red_{τ}
- Show by induction on the type structure

(CR1)
$$t \in red_{\tau} \Rightarrow SN(t)$$

(CR2) $t \in red_{\tau} \land t \mapsto t' \Rightarrow t' \in red_{\tau}$
(CP3) pointrol(t) $\land (\forall t' t \mapsto t' \Rightarrow t' \in red_{\tau}) \Rightarrow t \in red_{\tau}$
 $\Gamma \vdash s : T \sigma \qquad \Gamma, x : \sigma \vdash t : T \tau$

 $\Gamma \vdash s \text{ to } x \text{ in } t : T \tau$

 $t \in red_b \equiv SN \ t$ $t \in red_{\sigma \to \tau} \equiv \forall u \in red_{\sigma} . t \ u \in red_{\tau}$ $t \in red_{\tau\sigma} \equiv \forall u \in X. t \ to \ x \ in \ u \in X$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	
⊤⊤ -lifting				

Definition (stack)

$$\mathcal{K} ::= Id \mid [y]n \gg L \qquad \qquad \begin{array}{c} t \star Id = t \\ t \star ([y]n \gg L) = (t \text{ to } y \text{ in } n) \star L \end{array}$$

Definition (reducibility)

 $t \in red_b \equiv SN \ t$ $t \in red_{\sigma \to \tau} \equiv \forall u \in red_{\sigma}.t \ u \in red_{\tau}$ $t \in red_{T\sigma} \equiv \forall K \in red_{\sigma}^{\top}.SN(t \star K)$

 $K \in red_{\sigma}^{\top} \equiv \forall s \in red_{\sigma}.SN([s] \star K)$

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	
T⊤-lifting				

Definition (stack)

$$K ::= Id \mid [y]n \gg L \qquad \qquad \begin{array}{c} t \star Id = t \\ t \star ([y]n \gg L) = (t \text{ to } y \text{ in } n) \star L \end{array}$$

$$t \star ([y_1]n_1 \gg [y_2]n_2 \gg [y_3]n_3 \gg Id) =$$

((t to y₁ in n₁) to y₂ in n₂) to y₃ in n₃

$$t \in \operatorname{red}_{T\,\sigma} \equiv \forall K \in \operatorname{red}_{\sigma}^{\top}.SN(t \star K)$$

$$K \in red_{\sigma}^{\top} \equiv \forall s \in red_{\sigma}.SN([s] \star K)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	
⊤⊤ -lifting				

Definition (stack)

$$\mathcal{K} ::= Id \mid [y]n \gg L \qquad \qquad \begin{array}{c} t \star Id = t \\ t \star ([y]n \gg L) = (t \text{ to } y \text{ in } n) \star L \end{array}$$

Definition (reducibility)

$$t \in red_b \equiv SN \ t$$
$$t \in red_{\sigma \to \tau} \equiv \forall u \in red_{\sigma}.t \ u \in red_{\tau}$$
$$t \in red_{T\sigma} \equiv \forall K \in red_{\sigma}^{\top}.SN(t \star K)$$

$$K \in red_{\sigma}^{\top} \equiv \forall s \in red_{\sigma}.SN([s] \star K)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

	A Case Study 000000	O	OOOO	Closing Remarks
Strong N	ormalization			

For my formalization I use an inductive characterization

Definition (strong normalization)

 $SN t \equiv \forall t'.t \mapsto t' \Rightarrow SN t'$

Definition (stack strong normalization)

$$SSN \ k \equiv \forall k'.k \mapsto_k k' \Rightarrow SSN \ k'$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $k \mapsto_k k' \equiv \forall t. \ t \star k \mapsto t \star k'$

Introduction	A Case Study	Isabelle	Fundamental Theorem	Closing Remarks
	00000			

Lemma (Properties of reducibility)

$$\begin{array}{ll} (CR1) & t \in \mathit{red}_\tau \Rightarrow \mathit{SN}(t) \\ (CR2) & t \in \mathit{red}_\tau \land t \mapsto t' \Rightarrow t' \in \mathit{red}_\tau \\ (CR3) & \mathit{neutral}(t) \land (\forall t'.t \mapsto t' \Rightarrow t' \in \mathit{red}_\tau) \Rightarrow t \in \mathit{red}_\tau \end{array}$$

- Proof by induction on the type structure
- Consider case CR3 for $T \sigma$ in detail
- First the informal proof

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	0●0000	O	0000	
CR3 for	Τσ			

• $t' \star k$, where $t \mapsto t'$, which is SN as $k \in \mathsf{RED}_\sigma^ op$ and

(CR3): $neutral(t) \land (\forall t'.t \mapsto t' \Rightarrow t' \in red_{\tau}) \Rightarrow t \in red_{\tau}$

this we have $k' \in RED_{\sigma}^{\perp}$ with $\max(k') < \max(k)$, so by induction hypothesis $t \star k'$ is SN.

There are no other possibilities as t is neutral. Hence $t \star k$ is strongly normalizing for every $k \in RED_{\sigma}^{\top}$, and so $t \in RED_{T\sigma}$ as required.

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	0●0000	O	0000	
CR3 for 7	Γσ			

Let t be neutral such that $t' \in RED_{T\sigma}$ whenever $t \mapsto t'$. We have to show that $(t \star k)$ is SN for each $k \in RED_{\sigma}^{\top}$. First, we have that $[x] \star k$ is SN, as $x \in RED_{\sigma}$ by the induction hypothesis. Hence k itself is SN, and we can work by induction on max(k). Application $t \star k$ may reduce as follows: • $t' \star k$, where $t \mapsto t'$, which is SN as $k \in RED_{\sigma}^{\top}$ and

(CR3): $neutral(t) \land (\forall t'.t \mapsto t' \Rightarrow t' \in red_{\tau}) \Rightarrow t \in red_{\tau}$

this we have $k' \in RED_{\sigma}^{\perp}$ with $\max(k') < \max(k)$, so by induction hypothesis $t \star k'$ is SN.

There are no other possibilities as t is neutral. Hence $t \star k$ is strongly normalizing for every $k \in RED_{\sigma}^{\top}$, and so $t \in RED_{T\sigma}$ as required.

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	0●0000	O	0000	0000
CR3 for 7	$\lceil \sigma \rceil$			

- $t' \star k$, where $t \mapsto t'$, which is SN as $k \in RED_{\sigma}^{\top}$ and $t' \in RED_{T\sigma}$.
- t * k', where k → k'. For any s ∈ RED_σ, [s] * k is SN as k ∈ RED_σ[⊤]; and [s] * k → [s] * k', so [s] * k' is also SN. From this we have k' ∈ RED_σ[⊤] with max(k') < max(k), so by induction hypothesis t * k' is SN.

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	0●0000	O	0000	
CR3 for T	σ			

• $t' \star k$, where $t \mapsto t'$, which is SN as $k \in RED_{\sigma}^{\top}$ and $t' \in RED_{T\sigma}$.

t ★ k', where k ↦ k'. For any s ∈ RED_σ, [s] ★ k is SN as k ∈ RED_σ^T; and [s] ★ k ↦ [s] ★ k', so [s] ★ k' is also SN. From this we have k' ∈ RED_σ^T with max(k') < max(k), so by induction hypothesis t ★ k' is SN.

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	0●0000	O	0000	
CR3 for T	σ			

- $t' \star k$, where $t \mapsto t'$, which is SN as $k \in RED_{\sigma}^{\top}$ and $t' \in RED_{T\sigma}$.
- t ★ k', where k → k'. For any s ∈ RED_σ, [s] ★ k is SN as k ∈ RED_σ^T; and [s] ★ k → [s] ★ k', so [s] ★ k' is also SN. From this we have k' ∈ RED_σ^T with max(k') < max(k), so by induction hypothesis t ★ k' is SN.

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	0●0000	O	0000	
CR3 for T	σ			

- $t' \star k$, where $t \mapsto t'$, which is SN as $k \in RED_{\sigma}^{\top}$ and $t' \in RED_{T\sigma}$.
- t ★ k', where k → k'. For any s ∈ RED_σ, [s] ★ k is SN as k ∈ RED_σ^T; and [s] ★ k → [s] ★ k', so [s] ★ k' is also SN. From this we have k' ∈ RED_σ^T with max(k') < max(k), so by induction hypothesis t ★ k' is SN.

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	0●0000	O	0000	
CR3 for T	σ			

- $t' \star k$, where $t \mapsto t'$, which is SN as $k \in RED_{\sigma}^{\top}$ and $t' \in RED_{T\sigma}$.
- t ★ k', where k → k'. For any s ∈ RED_σ, [s] ★ k is SN as k ∈ RED_σ^T; and [s] ★ k → [s] ★ k', so [s] ★ k' is also SN. From this we have k' ∈ RED_σ^T with max(k') < max(k), so by induction hypothesis t ★ k' is SN.

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	o●oooo	O	0000	
CR3 for T	σ			

 $T.\beta$ [s] to x in $t \mapsto t[x ::= s]$

T.assoc (s to x in t) to $y \text{ in } u \mapsto s \text{ to } x \text{ in } (t \text{ to } y \text{ in } u)$

induction hypothesis $t \star k'$ is SN.

There are no other possibilities as t is neutral. Hence $t \star k$ is strongly normalizing for every $k \in RED_{\sigma}^{\top}$, and so $t \in RED_{T\sigma}$ as required.

・ロト・日本・モート モー うへぐ

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	
Closing the	Gap			

$$\mathsf{NEUT} \ t \equiv (\exists x. \ t = \mathsf{Var} \ x) \lor (\exists u \ v. \ t = \mathsf{App} \ u \ v)$$

$$\frac{t \star k \mapsto r}{NEUT t} \quad \bigwedge t' \colon \llbracket t \mapsto t'; r = t' \star k \rrbracket \Longrightarrow P$$
$$\frac{NEUT t}{P}$$

- Want to prove this by induction on k
- Case k = Id is easy
- Case $k = [y]n \gg l$ Want to use induction hypothesis with $t^* = t$ to y in n and $k^* = l$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	
Closing the	Gap			

$$\mathsf{NEUT} \ t \equiv (\exists x. \ t = \mathsf{Var} \ x) \lor (\exists u \ v. \ t = \mathsf{App} \ u \ v)$$

$$\frac{t \star k \mapsto r}{NEUT t} \quad \bigwedge t' \colon \llbracket t \mapsto t'; r = t' \star k \rrbracket \Longrightarrow P$$
$$\frac{NEUT t}{P}$$

- Want to prove this by induction on k
- Case k = Id is easy
- Case $k = [y]n \gg l$ Want to use induction hypothesis with $t^* = t$ to y in n and $k^* = l$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	
Closing the	Gap			

$$\mathsf{NEUT} \ t \equiv (\exists x. \ t = \mathsf{Var} \ x) \lor (\exists u \ v. \ t = \mathsf{App} \ u \ v)$$

$$\frac{t \star k \mapsto r}{NEUT t} \quad \bigwedge t' \colon \llbracket t \mapsto t'; r = t' \star k \rrbracket \Longrightarrow P$$
$$\frac{NEUT t}{P}$$

- Want to prove this by induction on k
- Case k = Id is easy

• Case $k = [y]n \gg l$ Want to use induction hypothesis with $t^* = t$ to y in n and $k^* = l$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	
Closing the	Gap			

$$\mathsf{NEUT} \ t \equiv (\exists x. \ t = \mathsf{Var} \ x) \lor (\exists u \ v. \ t = \mathsf{App} \ u \ v)$$

$$\frac{t \star k \mapsto r}{NEUT t} \quad \bigwedge t'. \llbracket t \mapsto t'; r = t' \star k \rrbracket \Longrightarrow P$$

$$\frac{NEUT t}{P}$$

- Want to prove this by induction on k
- Case k = Id is easy
- Case $k = [y]n \gg l$ Want to use induction hypothesis with $t^* = t$ to y in n and $k^* = l$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	
Closing the	Gap			

$$\mathsf{NEUT} \ t \equiv (\exists x. \ t = \mathsf{Var} \ x) \lor (\exists u \ v. \ t = \mathsf{App} \ u \ v)$$

$$\frac{t \star k \mapsto r}{NEUT t} \quad \bigwedge t' \colon \llbracket t \mapsto t'; r = t' \star k \rrbracket \Longrightarrow P$$

$$\frac{NEUT t}{P}$$

- Want to prove this by induction on k
- Case k = Id is easy
- Case $k = [y]n \gg l$ Want to use induction hypothesis with $t^* = t$ to y in n and $k^* = l$ not neutral

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	00●000	O	0000	
Closing the	Gap			

NEUT
$$t \equiv (\exists x. t = Var x) \lor (\exists u v. t = App u v)$$

$$\frac{t \star k \mapsto r}{NEUT t} \quad \bigwedge t' \colon \llbracket t \mapsto t'; r = t' \star k \rrbracket \Longrightarrow P$$

$$\frac{NEUT t}{P}$$

- Want to prove this by induction on k
- Case k = Id is easy
- Case $k = [y]n \gg l$ Want to use induction hypothesis with $t^* = t$ to y in n and $k^* = l$ not neutral

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	0000
Closing the	Gap			

$$t \star k \mapsto r \qquad \bigwedge t'. \llbracket t \mapsto t'; r = t' \star k \rrbracket \Longrightarrow P$$
$$\bigwedge k'. \llbracket k \mapsto k'; r = t \star k' \rrbracket \Longrightarrow P$$
$$\bigwedge s \ y \ n \ l \ .\llbracket y \ \sharp \ l; y \ \sharp \ s; t = [s]; k = [y]n \gg l;$$
$$r = (n[y::=s]) \star l \ \rrbracket \Longrightarrow P$$
$$\bigwedge u \ x \ v \ y \ n \ l \ .\llbracket x \ \ddagger (y, u, n); y \ \ddagger (v, u); t = u \ to \ x \ in \ v;$$
$$k = [y]n \gg l; r = (u \ to \ x \ in \ (v \ to \ y \ in \ n)) \star l \ \rrbracket \Longrightarrow P$$

• Case
$$k = Id$$
 is still easy

• Case $k = [y]n \gg l$ We use the induction hypothesis with with $t^* = t$ to y in n and $k^* = l$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000●00	O	0000	
Closing the	Gap			

 $\begin{array}{ll} T.\beta & [s] \text{ to } y \text{ in } n \mapsto n[y ::= s] \\ T.assoc & (u \text{ to } x \text{ in } v) \text{ to } y \text{ in } n \mapsto u \text{ to } x \text{ in } (v \text{ to } y \text{ in } n) \end{array}$

$$\bigwedge s \ y \ n \ l \ [[y \ \sharp \ l \ ; y \ \sharp \ s \ ; t = [s] \ ; k = [y]n \gg l \ ;$$

$$r = (n[y::=s]) \star l \]] \Longrightarrow P$$

$$\bigwedge u \ x \ v \ y \ n \ l \ [[x \ \sharp \ (y,u,n) \ ; y \ \sharp \ (v,u) \ ; t = u \ to \ x \ in \ v \ ;$$

$$k = [y]n \gg l \ ; r = (u \ to \ x \ in \ (v \ to \ y \ in \ n)) \star l \]] \Longrightarrow P$$

Ρ

• Case k = Id is still easy

• Case $k = [y]n \gg l$ We use the induction hypothesis with with $t^* = t$ to y in n and $k^* = l$

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	0000
Closing the	Gap			

$$t \star k \mapsto r \qquad \bigwedge t'. \llbracket t \mapsto t'; r = t' \star k \rrbracket \Longrightarrow P$$
$$\bigwedge k'. \llbracket k \mapsto k'; r = t \star k' \rrbracket \Longrightarrow P$$
$$\bigwedge s \text{ y } n \text{ I.} \llbracket y \# \text{ I } ; y \# s ; t = [s] ; k = [y]n \gg \text{ I } ;$$
$$r = (n[y::=s]) \star \text{ I } \rrbracket \Longrightarrow P$$
$$\bigwedge u \times v \text{ y } n \text{ I.} \llbracket x \# (y, u, n) ; y \# (v, u) ; t = u \text{ to } x \text{ in } v ;$$
$$k = [y]n \gg \text{ I } ; r = (u \text{ to } x \text{ in } (v \text{ to } y \text{ in } n)) \star \text{ I } \rrbracket \Longrightarrow P$$

• Case k = Id is still easy

• Case $k = [y]n \gg l$ We use the induction hypothesis with with $t^* = t$ to y in n and $k^* = l$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000●00	O	0000	0000
Closing the	Gap			

$$t \star k \mapsto r \qquad \bigwedge t'. \llbracket t \mapsto t'; r = t' \star k \rrbracket \Longrightarrow P$$
$$\bigwedge k'. \llbracket k \mapsto k'; r = t \star k' \rrbracket \Longrightarrow P$$
$$\bigwedge s \text{ y } n \text{ } l. \llbracket y \ \sharp \text{ } l; y \ \sharp \text{ } s; t = [s]; k = [y]n \gg l;$$
$$r = (n[y::=s]) \star l \rrbracket \Longrightarrow P$$
$$\bigwedge u \times v \text{ y } n \text{ } l. \llbracket x \ \ddagger (y, u, n); y \ \ddagger (v, u); t = u \text{ } to \times in v;$$
$$k = [y]n \gg l; r = (u \text{ } to \times in (v \text{ } to \text{ } y \text{ } n)) \star l \rrbracket \Longrightarrow P$$

Ρ

- Case k = Id is still easy
- Case $k = [y]n \gg l$ We use the induction hypothesis with with $t^* = t$ to y in n and $k^* = l$

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	0000
Closing the	Gap			

$$t \star k \mapsto r \qquad \bigwedge t'. \llbracket t \mapsto t'; r = t' \star k \rrbracket \Longrightarrow P$$
$$\bigwedge k'. \llbracket k \mapsto k'; r = t \star k' \rrbracket \Longrightarrow P$$
$$\bigwedge s \text{ y } n \text{ } l. \llbracket y \sharp \text{ } i; y \sharp s; t = [s]; k = [y]n \gg l;$$
$$r = (n[y::=s]) \star l \rrbracket \Longrightarrow P$$
$$\bigwedge u \times v \text{ y } n \text{ } l. \llbracket x \ddagger (y, u, n); y \ddagger (v, u); t = u \text{ to } x \text{ in } v;$$
$$k = [y]n \gg l; r = (u \text{ to } x \text{ in } (v \text{ to } y \text{ in } n)) \star l \rrbracket \Longrightarrow P$$

• Case
$$k = Id$$
 is still easy

• Case $k = [y]n \gg l$ We use the induction hypothesis with with $t^* = t$ to y in n and $k^* = l$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	0000●0	O	0000	0000
Closing the	Gap			

One illustrative case:

In the case t to y in $n \mapsto r'$ consider the case $n \mapsto n'$

- For any u, u to y in $n \mapsto u$ to y in n'
- Hence, $(u \text{ to } y \text{ in } n) \star l \mapsto (u \text{ to } y \text{ in } n') \star l$
- This is $u \star ([y]n \gg l) \mapsto u \star ([y]n' \gg l)$
- $([y]n \gg l) \mapsto_k ([y]n' \gg l)$
- Since $k = ([y]n \gg l)$ we have P.

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	0000
Closing the	Gap			

One illustrative case:

In the case t to y in $n \mapsto r'$ consider the case $n \mapsto n'$

- For any u, u to y in $n \mapsto u$ to y in n'
- Hence, $(u \text{ to } y \text{ in } n) \star l \mapsto (u \text{ to } y \text{ in } n') \star l$
- This is $u \star ([y]n \gg l) \mapsto u \star ([y]n' \gg l)$
- $([y]n \gg l) \mapsto_k ([y]n' \gg l)$
- Since $k = ([y]n \gg I)$ we have P.

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	0000●0	O	0000	0000
Closing the	Gap			

In the case t to y in $n \mapsto r'$ consider the case $n \mapsto n'$

- For any u, u to y in $n \mapsto u$ to y in n'
- Hence, $(u \text{ to } y \text{ in } n) \star l \mapsto (u \text{ to } y \text{ in } n') \star l$
- This is $u \star ([y]n \gg l) \mapsto u \star ([y]n' \gg l)$
- $([y]n \gg l) \mapsto_k ([y]n' \gg l)$

$$t\mapsto t'\Longrightarrow t\star k\mapsto t'\star k$$

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	0000●0	O	0000	
Closing the	Gap			

In the case t to y in $n \mapsto r'$ consider the case $n \mapsto n'$

- For any u, u to y in $n \mapsto u$ to y in n'
- Hence, $(u \text{ to } y \text{ in } n) \star l \mapsto (u \text{ to } y \text{ in } n') \star l$
- This is $u \star ([y]n \gg l) \mapsto u \star ([y]n' \gg l)$
- $([y]n \gg l) \mapsto_k ([y]n' \gg l)$
- Since $k = (\lceil v \rceil n \gg I)$ we have P

$$t \star ([y]n \gg L) = (t \text{ to } y \text{ in } n) \star L$$

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	0000●0	O	0000	0000
Closing the	Gap			

In the case t to y in $n \mapsto r'$ consider the case $n \mapsto n'$

- For any u, u to y in $n \mapsto u$ to y in n'
- Hence, $(u \text{ to } y \text{ in } n) \star l \mapsto (u \text{ to } y \text{ in } n') \star l$
- This is $u \star ([y]n \gg l) \mapsto u \star ([y]n' \gg l)$
- $([y]n \gg l) \mapsto_k ([y]n' \gg l)$

• Since $k = ([y]n \gg I)$ we have P.

$$K \mapsto_k K' \equiv \forall t. \ t \star K \mapsto t \star K'$$

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	0000
Closing the	Gap			

In the case t to y in $n \mapsto r'$ consider the case $n \mapsto n'$

- For any u, u to y in $n \mapsto u$ to y in n'
- Hence, $(u \text{ to } y \text{ in } n) \star l \mapsto (u \text{ to } y \text{ in } n') \star l$
- This is $u \star ([y]n \gg l) \mapsto u \star ([y]n' \gg l)$
- $([y]n \gg l) \mapsto_k ([y]n' \gg l)$
- Since $k = ([y]n \gg l)$ we have P.

$$\bigwedge k'$$
. [[$k \mapsto k'$; $r = t \star k'$]] $\Longrightarrow P$

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	00000●	O	0000	
CR3 for	Τσ			

• We have everything in place to show:

(CR3): $neutral(t) \land (\forall t'.t \mapsto t' \Rightarrow t' \in red_{T\tau}) \Rightarrow t \in red_{T\tau}$

Using only (CR1-3) for τ .

- (CR1) and (CR2) are much easier.
- Cases for b and $\sigma \rightarrow \tau$ could be "imported" from simply-typed λ -calculus.

Looking at	it through Is	abelle		
Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	●	0000	0000

Isabelle Demo...

◆□ → < @ → < E → < E → ○ < ○ < ○ </p>

Introduction A Case Study Usabelle o Fundamental Theorem Closing Remarks 0000

The genaralized case rule can also be applied in the FTLR

```
lemma to-RED:
```

```
assumes m: m \in \text{RED} (T \sigma)
and n: \forall p \in \text{RED} \sigma . n[x::=p] \in \text{RED} (T \tau)
shows m to x in n \in \text{RED} (T \tau)
```

Which boils down to the following lemma to-RED-aux:

assumes SN p and SN (n[x::=p] \star k) and x \sharp p x \sharp k shows SN (([p] to x in n) \star k)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction A Case Study Isabelle Fundamental Theorem Closing Remarks Fundamental Theorem O O O O

The genaralized case rule can also be applied in the FTLR

lemma to-RED:

assumes m: $m \in \text{RED} (T \sigma)$ and n: $\forall p \in \text{RED} \sigma . n[x::=p] \in \text{RED} (T \tau)$ shows m to x in $n \in \text{RED} (T \tau)$

Which boils down to the following lemma to-RED-aux:

assumes SN p and SN $(n[x:=p] \star k)$ and $x \ddagger p \ x \ddagger k$ shows SN $(([p] \text{ to } x \text{ in } n) \star k)$

$$t \in \operatorname{red}_{\mathcal{T}\sigma} \equiv \forall K \in \operatorname{red}_{\sigma}^{\top}.SN(t \star K)$$
$$K \in \operatorname{red}_{\sigma}^{\top} \equiv \forall s \in \operatorname{red}_{\sigma}.SN([s] \star K)$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	●०००	
Fundamenta	al Theorem			

Lindley and Stark[2005] show this by (natural) induction on $\max(p) + \max(n \star k) + |k|$.

Introduction A Case Study Isabelle Fundamental Theorem Closing Remarks Fundamental Theorem 0 0 0 0

Lindley and Stark[2005] show this by (natural) induction on $\max(p) + \max(n \star k) + |k|$.

The SN(p) predicate does not provide a bound max(p)

Introduction A Case Study Isabelle Fundamental Theorem Closing Remarks ooooo o o oooo oooo

Lindley and Stark[2005] show this by (natural) induction on $\max(p) + \max(n \star k) + |k|$. I use:

lemma triple-induct:

assumes a: SN (p) and b: SN (q) and hyp: \bigwedge (p::trm) (q::trm) (k::stack) . [[\bigwedge p' . p \mapsto p' \Longrightarrow P p' q k ; \bigwedge q' k . q \mapsto q' \Longrightarrow P p q' k; \bigwedge k' . $|k'| < |k| \Longrightarrow$ P p q k']] \Longrightarrow P p q k shows P p q k

Introduction A Case Study Isabelle Fundamental Theorem Closing Remarks ooooo o o oooo oooo

Lindley and Stark[2005] show this by (natural) induction on $\max(p) + \max(n \star k) + |k|$. I use:

lemma triple-induct:

assumes a: SN (p) and b: SN (q) and hyp: \bigwedge (p::trm) (q::trm) (k::stack) . [[\bigwedge p' q k . [[p \mapsto p'; SN (q)]] \Longrightarrow P p' q k; \bigwedge q' k . q \mapsto q' \Longrightarrow P p q' k; \bigwedge k' . $|k'| < |k| \Longrightarrow$ P p q k']] \Longrightarrow P p q k shows P p q k

Introduction A Case Study Isabelle Fundamental Theorem Closing Remarks ooooo o o oooo oooo

Lindley and Stark[2005] show this by (natural) induction on $\max(p) + \max(n \star k) + |k|$. I use:

lemma triple-induct:

assumes a: SN (p) and b: SN (q) and hyp: \bigwedge (p::trm) (q::trm) (k::stack) . [[\bigwedge p' . p \mapsto p' \Longrightarrow P p' q k ; \bigwedge q' k . q \mapsto q' \Longrightarrow P p q' k; \bigwedge k' . $|k'| < |k| \Longrightarrow$ P p q k']] \Longrightarrow P p q k shows P p q k

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	○●○○	
Digression -	- Reverse Sta	ck Inducti	ion Rule	

The standard rule:

$$\frac{\bigwedge z. P z Id}{\bigwedge y n L z. \llbracket y \ \sharp z; \ y \ \sharp L; \ \bigwedge z. P z L \rrbracket \Longrightarrow P z (St y n L)}_{P z K}$$

The reverse rule:

$$\frac{\bigwedge z. P z Id}{\bigwedge y n L z. \llbracket y \sharp z; y \sharp L; \bigwedge z. P z L \rrbracket \Longrightarrow P z (L ++ St y n Id)}_{P z K}$$

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	○0●0	
Application				

Lemma

$$K \mapsto_k K' \Rightarrow$$
 length $K \ge$ length K'

where $K \mapsto_k K' \equiv \forall t. \ t \star K \mapsto t \star K'$

Proof on Paper: "Suppose
$$x \star K \mapsto x \star K'$$

and $K = (y_1)n_1 :: (y_2)n_2 :: \ldots :: Id$ "

"There are only two reductions that might change the length of K"

Isabelle/HOL-Nominal: Roughly 90 lines inductive proof

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	○0●0	0000
Application	1			

Lemma

$$K \mapsto_{L} K' \Rightarrow length K > length K'$$

We don't need this!

and $K = (y_1)n_1 :: (y_2)n_2 :: \ldots :: Id''$ "There are only two reductions that might change the length of K"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Isabelle/HOL-Nominal: Roughly 90 lines inductive proof

Reverse Stack Induction Rule

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	●000
Nominal?				

How much did I profit from the nominal package?

- Basic definitions straightforward:
 - Terms, Types, Substitution, Reductions, Typing,
 - Require more freshness conditions than one uses on paper
 - Variable convention also in rule inductions and strong inversion

- Very low coding gap
 - Lemmas can be stated exactly as on paper
- Additional Freshness conditions sometimes cumbersome and require alpha renaming.

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	
Faithful?				

How faithful is the formalization?

- Reduction stated with additional freshness conditions
 - I have shown adequacy
- Different characterization of strong normalization
 - I have also shown adequacy
- The lemmas/cases spelled out in Lindley Stark[2005]:
 - rather close / one has to deal with freshness conditions
- Need many additional lemmas
 - Most have two line proofs using nominal_induct and auto

• Notable Exception: case rule on $t \star k \mapsto r$

Introduction	A Case Study	lsabelle	Fundamental Theorem	Closing Remarks
00000	000000	O	0000	○○●○
References				

- T.Nipkow, L.C. Paulson, M. Wenzel A Proof Assistant for Higher-Order Logic, http://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf
- T.Nipkow, A Tutorial Introduction to Structured Isar Proofs http://isabelle.in.tum.de/dist/Isabelle/doc/isar-overview.pdf
- C. Urban, Nominal Techniques in Isabelle/HOL, Journal of Automatic Reasoning, Vol. 40(4), pp: 327-356, 2008
- S. Lindley and I. Stark, Reducibility and TT-lifting for Computation Types, Typed Lambda Calculi and Applications, LNCS Vol. 3461, pp: 262-277, Springer-Verlag, 2005.

Introduction	A Case Study	Isabelle	Fundamental Theorem	Closing Remarks
				0000

Thank You!