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Moggi’s computational metalanguage

terms and types:

τ ::= b | τ → τ | T τ

t ::= x | λx .t | t t | [t] | t to x in t

typing rules:

Γ ` t : τ

Γ ` [t] : T τ

Γ ` s : T σ Γ, x : σ ` t : T τ

Γ ` s to x in t : T τ

reductions:

T .β [s] to x in t 7→ t[x ::= s]
T .η s to x in [x ] 7→ s
T .assoc (s to x in t) to y in u 7→ s to x in (t to y in u)
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Main Goal

Strong Normalization Theorem (Isar Version)

theorem typing-implies-SN:
assumes a: Γ ` t : τ
shows SN(t)

Originally shown by Benton et al. [1998]

I formalized the proof of Lindley and Stark [2005]
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The Girard-Tait approach

1 Define a type indexed family of relations redτ

2 Show by induction on the type structure

(CR1) t ∈ redτ ⇒ SN(t)

(CR2) t ∈ redτ ∧ t 7→ t ′ ⇒ t ′ ∈ redτ

(CR3) neutral(t) ∧ (∀t ′.t 7→ t ′ ⇒ t ′ ∈ redτ )⇒ t ∈ redτ

3 Prove Γ ` t : τ ⇒ t ∈ redτ by induction on the typing
derivation

First attempt at defining reducibility:

t ∈ redb ≡ SN t

t ∈ redσ→τ ≡ ∀u ∈ redσ.t u ∈ redτ

t ∈ redT σ ≡ ∀u ∈ X .t to x in u ∈ X
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derivation
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t ∈ redb ≡ SN t

t ∈ redσ→τ ≡ ∀u ∈ redσ.t u ∈ redτ

t ∈ redT σ ≡ ∀u ∈ X .t to x in u ∈ X

Γ ` s : T σ Γ, x : σ ` t : T τ

Γ ` s to x in t : T τ
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>>-lifting

Definition (stack)

K ::= Id | [y ]n� L
t ? Id = t

t ? ([y ]n� L)= (t to y in n) ? L

Definition (reducibility)

t ∈ redb ≡ SN t

t ∈ redσ→τ ≡ ∀u ∈ redσ.t u ∈ redτ

t ∈ redT σ ≡ ∀K ∈ red>σ .SN(t ? K )

K ∈ red>σ ≡ ∀s ∈ redσ.SN([s] ? K )
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>>-lifting

Definition (stack)

K ::= Id | [y ]n� L
t ? Id = t

t ? ([y ]n� L)= (t to y in n) ? L
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t ∈ redb ≡ SN t

t ∈ redσ→τ ≡ ∀u ∈ redσ.t u ∈ redτ

t ∈ redT σ ≡ ∀K ∈ red>σ .SN(t ? K )

K ∈ red>σ ≡ ∀s ∈ redσ.SN([s] ? K )

t ? ([y1]n1 � [y2]n2 � [y3]n3 � Id) =
((t to y1 in n1) to y2 in n2) to y3 in n3
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Strong Normalization

For my formalization I use an inductive characterization

Definition (strong normalization)

SN t ≡ ∀t ′.t 7→ t ′ ⇒ SN t ′

Definition (stack strong normalization)

SSN k ≡ ∀k ′.k 7→k k ′ ⇒ SSN k ′

where k 7→k k ′ ≡ ∀t. t ? k 7→ t ? k ′
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Lemma (Properties of reducibility)

(CR1) t ∈ redτ ⇒ SN(t)

(CR2) t ∈ redτ ∧ t 7→ t ′ ⇒ t ′ ∈ redτ

(CR3) neutral(t) ∧ (∀t ′.t 7→ t ′ ⇒ t ′ ∈ redτ )⇒ t ∈ redτ

Proof by induction on the type structure

Consider case CR3 for T σ in detail

First the informal proof
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CR3 for T σ

Let t be neutral such that t ′ ∈ REDT σ whenever t 7→ t ′. We have
to show that (t ? k) is SN for each k ∈ RED>σ . First, we have
that [x ] ? k is SN, as x ∈ REDσ by the induction hypothesis.
Hence k itself is SN , and we can work by induction on max(k).
Application t ? k may reduce as follows:

t ′ ? k, where t 7→ t ′, which is SN as k ∈RED>σ and
t ′ ∈REDT σ.
t ? k ′, where k 7→ k ′. For any s ∈REDσ, [s] ? k is SN as
k ∈RED>σ ; and [s] ? k 7→ [s] ? k ′, so [s] ? k ′ is also SN. From
this we have k ′ ∈RED>σ with max(k ′) < max(k), so by
induction hypothesis t ? k ′ is SN.

There are no other possibilities as t is neutral. Hence t ? k is
strongly normalizing for every k ∈RED>σ , and so t ∈REDT σ as
required.

(CR3): neutral(t) ∧ (∀t ′.t 7→ t ′ ⇒ t ′ ∈ redτ )⇒ t ∈ redτ
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CR3 for T σ

Let t be neutral such that t ′ ∈ REDT σ whenever t 7→ t ′. We have
to show that (t ? k) is SN for each k ∈ RED>σ . First, we have
that [x ] ? k is SN, as x ∈ REDσ by the induction hypothesis.
Hence k itself is SN , and we can work by induction on max(k).
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There are no other possibilities as t is neutral. Hence t ? k is
strongly normalizing for every k ∈RED>σ , and so t ∈REDT σ as
required.

T .β [s] to x in t 7→ t[x ::= s]
T .assoc (s to x in t) to y in u 7→ s to x in (t to y in u)



Introduction A Case Study Isabelle Fundamental Theorem Closing Remarks

Closing the Gap

NEUT t ≡ (∃ x . t = Var x) ∨ (∃ u v . t = App u v)

t ? k 7→ r
∧

t ′. [[ t 7→ t ′; r = t ′ ? k]] =⇒ P

NEUT t
∧

k ′. [[ k 7→ k ′ ; r = t ? k ′]] =⇒ P

P

Want to prove this by induction on k

Case k = Id is easy

Case k = [y ]n� l Want to use induction hypothesis with
t∗ = t to y in n and k∗ = l
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Closing the Gap

t ? k 7→ r
∧

t ′. [[ t 7→ t ′; r = t ′ ? k]] =⇒ P∧
k ′. [[ k 7→ k ′ ; r = t ? k ′]] =⇒ P∧

s y n l .[[ y ] l ; y ] s ; t = [s] ; k = [y ]n�l ;

r = (n[y ::=s]) ? l ]] =⇒ P∧
u x v y n l .[[ x ] (y ,u,n) ; y ] (v ,u) ; t = u to x in v ;

k = [y ]n�l ; r = (u to x in (v to y in n)) ? l ]] =⇒ P

P

Case k = Id is still easy

Case k = [y ]n� l We use the induction hypothesis with with
t∗ = t to y in n and k∗ = l

Most cases are easy but tedious
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Closing the Gap

One illustrative case:
In the case t to y in n 7→ r ′ consider the case n 7→ n′

For any u, u to y in n 7→ u to y in n′

Hence, (u to y in n) ? l 7→ (u to y in n′) ? l

This is u ? ([y ]n� l) 7→ u ? ([y ]n′ � l)

([y ]n� l) 7→k ([y ]n′ � l)

Since k = ([y ]n� l) we have P.
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Closing the Gap

One illustrative case:
In the case t to y in n 7→ r ′ consider the case n 7→ n′

For any u, u to y in n 7→ u to y in n′

Hence, (u to y in n) ? l 7→ (u to y in n′) ? l

This is u ? ([y ]n� l) 7→ u ? ([y ]n′ � l)

([y ]n� l) 7→k ([y ]n′ � l)

Since k = ([y ]n� l) we have P.

∧
k ′. [[ k 7→ k ′ ; r = t ? k ′]] =⇒ P
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CR3 for T σ

We have everything in place to show:

(CR3): neutral(t) ∧ (∀t ′.t 7→ t ′ ⇒ t ′ ∈ redT τ )⇒ t ∈ redT τ

Using only (CR1-3) for τ .

(CR1) and (CR2) are much easier.

Cases for b and σ → τ could be “imported” from
simply-typed λ-calculus.
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Looking at it through Isabelle

Isabelle Demo...
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Fundamental Theorem

The genaralized case rule can also be applied in the FTLR

lemma to-RED:
assumes m: m ∈ RED (T σ)
and n : ∀ p ∈ RED σ . n[x::=p] ∈ RED (T τ)
shows m to x in n ∈ RED (T τ)

Which boils down to the following lemma to-RED-aux:

assumes SN p and SN (n[x::=p] ? k) and x ] p x ] k
shows SN (([p] to x in n) ? k)
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Fundamental Theorem

The genaralized case rule can also be applied in the FTLR

lemma to-RED:
assumes m: m ∈ RED (T σ)
and n : ∀ p ∈ RED σ . n[x::=p] ∈ RED (T τ)
shows m to x in n ∈ RED (T τ)

Which boils down to the following lemma to-RED-aux:

assumes SN p and SN (n[x::=p] ? k) and x ] p x ] k
shows SN (([p] to x in n) ? k)

t ∈ redT σ ≡ ∀K ∈ red>σ .SN(t ? K )

K ∈ red>σ ≡ ∀s ∈ redσ.SN([s] ? K )
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Fundamental Theorem

lemma to-RED-aux:
assumes SN p and SN (n[x::=p] ? k) and x ] p x ] k
shows SN (([p] to x in n) ? k)

Lindley and Stark[2005] show this by (natural) induction on
max(p) + max(n ? k) + |k|.
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Fundamental Theorem

lemma to-RED-aux:
assumes SN p and SN (n[x::=p] ? k) and x ] p x ] k
shows SN (([p] to x in n) ? k)

Lindley and Stark[2005] show this by (natural) induction on
max(p) + max(n ? k) + |k|.
The SN(p) predicate does not provide a bound max(p)
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Fundamental Theorem

lemma to-RED-aux:
assumes SN p and SN (n[x::=p] ? k) and x ] p x ] k
shows SN (([p] to x in n) ? k)

Lindley and Stark[2005] show this by (natural) induction on
max(p) + max(n ? k) + |k|. I use:

lemma triple-induct:
assumes a: SN (p) and b: SN (q)
and hyp:

∧
(p::trm) (q::trm) (k::stack) .

[[
∧

p ′ . p 7→ p ′ =⇒ P p ′ q k ;∧
q ′ k . q 7→ q ′ =⇒ P p q ′ k;∧
k ′ . |k ′| < |k| =⇒ P p q k ′ ]] =⇒ P p q k

shows P p q k
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Fundamental Theorem

lemma to-RED-aux:
assumes SN p and SN (n[x::=p] ? k) and x ] p x ] k
shows SN (([p] to x in n) ? k)

Lindley and Stark[2005] show this by (natural) induction on
max(p) + max(n ? k) + |k|. I use:

lemma triple-induct:
assumes a: SN (p) and b: SN (q)
and hyp:

∧
(p::trm) (q::trm) (k::stack) .

[[
∧

p ′ q k . [[ p 7→ p ′ ; SN (q) ]]=⇒ P p ′ q k ;∧
q ′ k . q 7→ q ′ =⇒ P p q ′ k;∧
k ′ . |k ′| < |k| =⇒ P p q k ′ ]] =⇒ P p q k

shows P p q k
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Fundamental Theorem

lemma to-RED-aux:
assumes SN p and SN (n[x::=p] ? k) and x ] p x ] k
shows SN (([p] to x in n) ? k)

Lindley and Stark[2005] show this by (natural) induction on
max(p) + max(n ? k) + |k|. I use:

lemma triple-induct:
assumes a: SN (p) and b: SN (q)
and hyp:

∧
(p::trm) (q::trm) (k::stack) .

[[
∧

p ′ . p 7→ p ′ =⇒ P p ′ q k ;∧
q ′ k . q 7→ q ′ =⇒ P p q ′ k;∧
k ′ . |k ′| < |k| =⇒ P p q k ′ ]] =⇒ P p q k

shows P p q k
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Digression – Reverse Stack Induction Rule

The standard rule: ∧
z. P z Id∧

y n L z. [[y ] z; y ] L;
∧

z. P z L]] =⇒ P z (St y n L)

P z K

The reverse rule: ∧
z. P z Id∧

y n L z. [[y ] z; y ] L;
∧

z. P z L]] =⇒ P z (L ++ St y n Id)

P z K
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Application

Lemma

K 7→k K ′ ⇒ length K ≥ length K ′

where K 7→k K ′ ≡ ∀t. t ? K 7→ t ? K ′

Proof on Paper: “Suppose x ? K 7→ x ? K ′

and K = (y1)n1 :: (y2)n2 :: . . . :: Id”
“There are only two reductions that might change the length of K”

Isabelle/HOL-Nominal: Roughly 90 lines inductive proof
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Application

Lemma

K 7→k K ′ ⇒ length K ≥ length K ′

where K 7→k K ′ ≡ ∀t. t ? K 7→ t ? K ′

Proof on Paper: “Suppose x ? K 7→ x ? K ′

and K = (y1)n1 :: (y2)n2 :: . . . :: Id”
“There are only two reductions that might change the length of K”

Isabelle/HOL-Nominal: Roughly 90 lines inductive proof

We don’t need this!
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Reverse Stack Induction Rule

The standard rule: ∧
z. P z Id∧

y n L z. [[y ] z; y ] L;
∧

z. P z L]] =⇒ P z (St y n L)

P z K

The reverse rule: ∧
z. P z Id∧

y n L z. [[y ] z; y ] L;
∧

z. P z L]] =⇒ P z (L ++ St y n Id)

P z K

We don’t need this either!
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Nominal?

How much did I profit from the nominal package?

Basic definitions straightforward:

Terms, Types, Substitution, Reductions, Typing,
Require more freshness conditions than one uses on paper
Variable convention also in rule inductions and strong inversion

Very low coding gap

Lemmas can be stated exactly as on paper

Additional Freshness conditions sometimes cumbersome and
require alpha renaming.
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Faithful?

How faithful is the formalization?

Reduction stated with additional freshness conditions

I have shown adequacy

Different characterization of strong normalization

I have also shown adequacy

The lemmas/cases spelled out in Lindley Stark[2005]:

rather close / one has to deal with freshness conditions

Need many additional lemmas

Most have two line proofs using nominal induct and auto
Notable Exception: case rule on t ? k 7→ r
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Thank You!
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