WEAK CALL-BY-VALUE LAMBDA CALCULUS AS A MODEL OF COMPUTATION IN COQ

ITP 2017

Yannick Forster Gert Smolka

SAARLAND UNIVERSITY,
PROGRAMMING SYSTEMS LAB

RELATED WORK

Introduction

•00000

- Michael Norrish

 Mechanised computability theory

 ITP 2011
- J. Xu, X. Zhang and C. Urban

 Mechanising Turing Machines and computability theory in

 Isabelle/HOL

 ITP 2013
- Andrea Asperti and Wilmer Ricciotti

 A formalization of multi-tape Turing machines

 TCS 2015
- Andrej Bauer

 First steps in synthetic computability theory

 ENTCS 2006

Cutland: Computability, an introduction to recursive function theory

1.7. Theorem (Rice's theorem)

Suppose that $\mathfrak{B} \subseteq \mathscr{C}_1$, and $\mathfrak{B} \neq \emptyset$, \mathscr{C}_1 . Then the problem ' $\phi_x \in \mathfrak{B}$ ' is undecidable.

Proof. From the algebra of decidability (theorem 2-4.7) we know that ' $\phi_x \in \mathcal{B}$ ' is decidable iff ' $\phi_x \in \mathcal{C}_1 \setminus \mathcal{B}$ ' is decidable; so we may assume without any loss of generality that the function f_{\emptyset} that is nowhere defined does not belong to \mathcal{B} (if not, prove the result for $\mathcal{C}_1 \setminus \mathcal{B}$).

Kozen: Automata and Computability:

Proof of Rice's theorem. Let P be a nontrivial property of the r.e. sets. Assume without loss of generality that $P(\emptyset) = \bot$ (the argument is symmetric if $P(\emptyset) = \top$). Since P is nontrivial, there must exist an r.e. set A such that $P(A) = \top$. Let K be a TM accepting A.

Wikipedia:

Introduction

000000

Let us now assume that P(a) is an algorithm that decides some non-trivial property of \mathbf{F}_a . Without loss of generality we may assume that P(no-halt) = "no", with no-halt being the representation of an algorithm that never halts. If this is not true, then this holds for the negation of the property. Since P decides a non-trivial

INGREDIENTS

Introduction

000000

- ightharpoonup Take terms s, t, u, call closed normal forms *procedures*,
- ▶ take evaluation $s \triangleright t$ (functional, t procedure),
- ▶ define $\mathcal{E}s := \exists t. s \triangleright t$,
- ▶ take procedures $T \neq F$ such that $Tst \triangleright s$ and $Fst \triangleright t$,
- take retraction \bar{s} into procedures to encode terms,
- ► do computability theory.

DEFINITIONS

Introduction

000000

u decides p if

$$\forall s. \ ps \wedge u\bar{s} \rhd T \lor \neg ps \wedge u\bar{s} \rhd F$$

u recognises p if

$$\forall s. \ ps \leftrightarrow \mathcal{E}(u\bar{s})$$

u decides p if

$$\forall s. \ ps \wedge u\bar{s} \rhd T \lor \neg ps \wedge u\bar{s} \rhd F$$

Fact

Introduction

000000

 $\lambda s. \neg (\bar{ss} \rhd T)$ is not decidable.

Proof.

u decides $\lambda s. \neg (s\bar{s} \rhd T)$:

$$\forall s. \ \neg (s\bar{s} \rhd T) \land u\bar{s} \rhd T \lor \neg \neg (s\bar{s} \rhd T) \land u\bar{s} \rhd F$$

$$\neg (u\overline{u} \rhd T) \land u\overline{u} \rhd T \lor \neg \neg (u\overline{u} \rhd T) \land u\overline{u} \rhd F$$

Contradiction!

SELECTED RESULTS

Introduction

00000

- ► *Self-interpreter.* There is a procedure U such that for all terms *s*, *t*:
 - 1. If $s \triangleright t$, then $U\bar{s} \triangleright \bar{t}$.
 - 2. If $U\bar{s}$ evaluates, then s evaluates.
- ► *Rice's theorem*. Every nontrivial extensional class of procedures is undecidable.
- ► *Modesty. L*-decidable classes are functionally decidable.
- ▶ *Post's Theorem.* A class is decidable if it is recognisable, corecognisable, and logically decidable.

SYNTAX OF L

De Bruijn Terms:

$$s,t ::= n \mid s t \mid \lambda s \quad (n \in \mathbb{N})$$

$$I = \lambda x.x \quad T = \lambda xy.x \quad F = \lambda xy.y \quad \omega = \lambda x.xx \quad D = \lambda x.\omega\omega$$
$$:= \lambda 0 \quad := \lambda(\lambda 1) \quad := \lambda(\lambda 0) \quad := \lambda(00) \quad := \lambda(\omega\omega)$$

"Procedure" := closed abstraction

SEMANTICS OF L

Reduction:

Introduction

$$\frac{s \succ s'}{(\lambda s)(\lambda t) \succ s_{\lambda t}^{0}} \qquad \frac{s \succ s'}{st \succ s't} \qquad \frac{t \succ t'}{st \succ st'}$$

implemented using capturing single-point substitution

Definitions

- \equiv equivalence closure of \succ
- 1. Equational reasoning: $s \equiv s' \rightarrow t \equiv t' \rightarrow st \equiv s't'$
- 2. Church Rosser: If $s \equiv t$, then $s \succ^* u$ and $t \succ^* u$ for some u.
- 3. Unique nfs: If $s >^m t$, $s >^n u$, then t = u, m = n.

SCOTT ENCODINGS AND RECURSION

ENCODINGS

Introduction

T, F for booleans

 \hat{n} for natural numbers

000

 \bar{s} for terms

SCOTT CONSTRUCTORS

- ightharpoonup Succ $\widehat{n} = \widehat{Sn}$
- ightharpoonup A $\overline{s} \, \overline{t} \equiv \overline{st}$

RECURSION COMBINATOR

 $\blacktriangleright (\rho u)v \equiv u(\rho u)v$

•000

Post

VERIFICATION

Functional specification:

$$\forall mn. \text{ Add } \widehat{m} \widehat{n} \equiv \widehat{m+n}$$

By induction from:

Add
$$\widehat{0} \ \widehat{n} \equiv \widehat{n}$$
 Add $\widehat{Sm} \ \widehat{n} \equiv \operatorname{Succ} (\operatorname{Add} \ \widehat{m} \ \widehat{n})$

Add :=
$$\rho(\lambda amn.mn(\lambda m_0.Succ(am_0n)))$$

Add
$$\widehat{m}$$
 $\widehat{n} \equiv \text{Add } \widehat{n}$ \widehat{m}

If *u* decides *p* and *v* decides *q* then $\lambda s.ps \wedge qs$ is decidable.

 $\lambda x.ux(vx)$ F does the job

(STEP-INDEXED) INTERPRETER

$$\begin{array}{c} \mathit{eval} : \mathbf{N} \to \mathbf{T} \to \mathbf{T}_{\perp} \\ \mathit{eval} \ \mathit{n} \ \mathit{k} \ = \ \bot \\ \mathit{eval} \ \mathit{n} \ (\lambda \mathit{s}) \ = \ \lfloor \lambda \mathit{s} \rfloor \\ \mathit{eval} \ \mathit{0} \ (\mathit{st}) \ = \ \bot \\ \mathit{eval} \ (\mathit{Sn}) \ (\mathit{st}) \ = \ \mathsf{match} \ \mathit{eval} \ \mathit{n} \ \mathit{s}, \ \mathit{eval} \ \mathit{n} \ \mathit{t} \ \mathsf{with} \\ \ \mid \ \lfloor \lambda \mathit{s} \rfloor, \ \lfloor \mathit{t} \rfloor \ \Rightarrow \ \mathit{eval} \ \mathit{n} \ \mathit{s}_{t}^{0} \\ \ \mid \ _ \ \Rightarrow \ \bot \end{array}$$

$$s \triangleright t \leftrightarrow \exists n. \ eval \ n \ s = |t|$$

$$\widehat{n}\,\overline{s} \equiv \overline{eval}\,\overline{n}\,\overline{s}$$

If $s \triangleright t$, then $U\bar{s} \triangleright \bar{t}$.

If $U\bar{s}$ evaluates, then s evaluates.

MINIMISATION AND INTERPRETER

If $s \triangleright t$, then $U\bar{s} \triangleright \bar{t}$. If $U\bar{s}$ evaluates, then s evaluates.

Theorem

Introduction

There is a procedure C *such that for every unary u:*

- 1. If u is satisfiable, then $Cu \triangleright \hat{n}$ for some n satisfying u.
- 2. *If* Cu evaluates, then u is satisfiable.

$$U := \lambda x. E (C(\lambda y. E y \ x \ (\lambda z. T) \ F)) x$$

RICE IN REALITY

Kozen:

Introduction

Proof of Rice's theorem. Let P be a nontrivial property of the r.e. sets. Assume without loss of generality that $P(\emptyset) = \bot$ (the argument is symmetric if $P(\emptyset) = \top$). Since P is nontrivial, there must exist an r.e. set A such that $P(A) = \top$. Let K be a TM accepting A.

Wikipedia:

Let us now assume that P(a) is an algorithm that decides some non-trivial property of \mathbf{F}_a . Without loss of generality we may assume that P(no-halt) = "no", with no-halt being the representation of an algorithm that never halts. If this is not true, then this holds for the negation of the property. Since P decides a non-trivial

RICE & SCOTT

Introduction

Scott: Every class *p* satisfying the following conditions is undecidable.

- 1. There are closed terms s_1 and s_2 such that ps_1 and $\neg ps_2$.
- 2. If *s* and *t* are closed terms such that $s \equiv t$ and *ps*, then *pt*.

Rice: Every class *p* satisfying the following conditions is undecidable.

- 1. There are procedures s_1 and s_2 such that ps_1 and $\neg ps_2$.
- 2. If *s* and *t* are procedures such that $\forall uv. \ s\overline{u} \rhd v \leftrightarrow t\overline{u} \rhd v$ and *ps*, then *pt*. ("*p* is extensional")

RICE'S THEOREM

Fact

Introduction

The class of closed terms s such that $\neg \mathcal{E}(s\bar{s})$ is not recognisable.

Lemma (Reduction)

A class p is unrecognisable if there exists a function f such that:

- 1. $p(fs) \leftrightarrow \neg \mathcal{E}(\bar{ss})$ for every closed terms s.
- 2. There is a procedure v such that $v\bar{s} \equiv \bar{f}s$ for all s.

RICE'S THEOREM

Lemma

Introduction

Let p be an extensional class such that D is in p and some procedure N is not in p. Then p is unrecognisable.

Proof.

- ▶ Define function *fs* such that
 - $fs \approx D \text{ if } \neg \mathcal{E}(\bar{ss})$
 - $fs \approx N \text{ if } \mathcal{E}(s\bar{s})$
- $f := s \mapsto \lambda y. F(s\overline{s}) Ny$ $v := \lambda x. L(A(A(A\overline{F}(Ax(Qx)))\overline{N})\overline{0})$
- $v\bar{s} \equiv \overline{fs}$ and $p(fs) \leftrightarrow \neg \mathcal{E}(s\bar{s})$
- ► Reduction lemma

RICE'S THEOREM

Lemma

Introduction

Let p be an extensional class such that D is in p and some procedure N is not in p. Then p is unrecognisable.

Theorem

Every nontrivial extensional class of procedures is undecidable.

Proof.

If u decides p then pD or $\neg pD$ and ...

COMPUTABLE NORMAL FORMS

Lemma

Introduction

There is a function of type $\forall s. (\exists t. s \triangleright t) \rightarrow \Sigma t. s \triangleright t.$

Proof.

- \blacktriangleright $(\exists t.s \rhd t) \leftrightarrow \exists n. \ eval \ n \ s \neq \bot$
- ► $\lambda n.eval\ n\ s \neq \bot$ is Coq-decidable
- ▶ Use constructive choice (constructive indefinite ground description) to obtain n with $eval\ n\ s = |t|$
- \triangleright $s \triangleright t$

Introduction

Post

Typing total λ -definable functions in Coq

If *u* decides *p* then there is *f* with $fs = \text{true} \leftrightarrow ps$ $\Rightarrow L$ -decidability implies Coq-decidability

$$\forall u.(\forall n \exists m. \ u \ \widehat{n} \rhd \widehat{m}) \rightarrow \{f : \mathbf{N} \rightarrow \mathbf{N} \mid \forall s. \ u \ \widehat{s} \rhd \widehat{fs}\}$$

POST'S THEOREM

Theorem

If u recognises p and v recognises λs . $\neg ps$, then p is decidable if $\forall s. ps \lor \neg ps$.

Without restriction: equivalent to $\neg\neg \mathcal{E}s \to \mathcal{E}s$

FURTHER RESULTS

Introduction

- ► *Totality.* The class of total procedures is unrecognisable.
- ▶ *Parallel or.* There is procedure O such that:
 - 1. If *s* or *t* evaluates, then $O\bar{s}\bar{t}$ evaluates.
 - 2. If $O\bar{s}\bar{t}$ evaluates, then either $O\bar{s}\bar{t} \triangleright T$ and $\mathcal{E}s$, or $O\bar{s}\bar{t} \triangleright F$ and $\mathcal{E}t$.
- Closure under union. The union of recognisable languages is recognisable.
- ► *Scott's theorem.* Every nontrivial class of closed terms closed under ≡ is undecidable.
- ► *Enumerability*. A class is recognisable if and only if it is enumerable.

- ► Elegant model of computation, easy to reason about
- ► Constructive formalisation of basic computability theory, less than 2000 loc
- ► Self-Interpreter, Rice, Scott, Post, Totality

FUTURE WORK

Introduction

- ► "L and Turing Machines can simulate each other with a polynomially bounded overhead in time and a constant-factor overhead in space."

 [Dal Lago, Martini (2008)], [Forster, Kunze, Roth (LOLA 2017)]
- ▶ Connect *L* to other models such as recursive functions.
- ► Use *L* to show "real-word" problems undecidable (e.g. from logic)
- ▶ Do further computability theory in *L* (Turing degrees, Myhill isomorphism theorem)
- ► Automate correctness proofs including time complexity [Forster, Kunze (CoqWS 2016)]

```
https://www.ps.uni-saarland.de/
    extras/L-computability/
```

LINES OF CODE UP TO ...

What? Lines cumulate	ed
Definition of L 400 400 loc	
Rice's theorem 500 900 loc	
Step-indexed interpreter 500 900 loc	
Full parallel interpreter 300 1200 loc	:
Enumerable \leftrightarrow recognisable 600 1500 loc	: