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INGREDIENTS

I Take terms s, t,u, call closed normal forms procedures,

I take evaluation s B t (functional, t procedure),

I define Es := ∃t. s B t,

I take procedures T 6= F such that Tst B s and Fst B t,

I take retraction s into procedures to encode terms,

I do computability theory.
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DEFINITIONS

u decides p if

∀s. ps ∧ us B T ∨ ¬ps ∧ us B F

u recognises p if

∀s. ps↔ E(us)
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u decides p if

∀s. ps ∧ us B T ∨ ¬ps ∧ us B F

Fact
λs.¬(ss B T) is not decidable.

Proof.
u decides λs.¬(ss B T):

∀s. ¬(ss B T) ∧ us B T ∨ ¬¬(ss B T) ∧ us B F

¬(uu B T) ∧ uu B T ∨ ¬¬(uu B T) ∧ uu B F

Contradiction!
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SELECTED RESULTS

I Self-interpreter. There is a procedure U such that for all
terms s, t:

1. If s B t, then U s B t.
2. If U s evaluates, then s evaluates.

I Rice’s theorem. Every nontrivial extensional class of
procedures is undecidable.

I Modesty. L-decidable classes are functionally decidable.
I Post’s Theorem. A class is decidable if it is recognisable,

corecognisable, and logically decidable.
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SYNTAX OF L

De Bruijn Terms:

s, t ::= n | s t | λs (n ∈ N)

I = λx.x T = λxy.x F = λxy.y ω = λx.xx D = λx.ωω
:= λ0 := λ(λ1) := λ(λ0) := λ(00) := λ(ωω)

“Procedure” := closed abstraction
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SEMANTICS OF L

Reduction:

(λs)(λt) � s0
λt

s � s′

st � s′t
t � t′

st � st′

implemented using capturing single-point substitution

≡ equivalence closure of �
B big-step evaluation to abstraction

1. Equational reasoning: s ≡ s′ → t ≡ t′ → st ≡ s′t′

2. Church Rosser: If s ≡ t, then s �∗ u and t �∗ u for some u.
3. Unique nfs: If s Bm t, s Bn u, then t = u, m = n.

9
[Plotkin, 1975], [Niehren, 1996], [Dal Lago & Martini, 2008]
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SCOTT ENCODINGS AND RECURSION

ENCODINGS

T,F for booleans
n̂ for natural numbers
s for terms

SCOTT CONSTRUCTORS

I Succ n̂ ≡ Ŝn
I A s t ≡ st

RECURSION COMBINATOR

I (ρu)v ≡ u(ρu)v

10
[Mogensen, 1990], [Jansen, 2013]
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VERIFICATION

Functional specification:

∀mn. Add m̂ n̂ ≡ m̂ + n

By induction from:

Add 0̂ n̂ ≡ n̂ Add Ŝm n̂ ≡ Succ (Add m̂ n̂)

Add := ρ(λamn.mn(λm0.Succ(am0n)))

Add m̂ n̂ ≡ Add n̂ m̂
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If u decides p and v decides q
then λs.ps ∧ qs is decidable.

λx.ux(vx)F does the job
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(STEP-INDEXED) INTERPRETER

eval : N → T → T⊥

eval n k = ⊥
eval n (λs) = bλsc
eval 0 (st) = ⊥

eval (Sn) (st) = match eval n s, eval n t with

| bλsc, btc ⇒ eval n s0
t

| _ _ ⇒ ⊥

s B t↔ ∃n. eval n s = btc

E n̂ s ≡ eval n s

If s B t, then U s B t.
If U s evaluates, then s evaluates.
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MINIMISATION AND INTERPRETER

If s B t, then U s B t.
If U s evaluates, then s evaluates.

Theorem
There is a procedure C such that for every unary u:

1. If u is satisfiable, then Cu B n̂ for some n satisfying u.
2. If Cu evaluates, then u is satisfiable.

U := λx.E (C(λy.E y x (λz.T) F)) x
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RICE IN REALITY

Kozen:

Wikipedia:
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RICE & SCOTT

Scott: Every class p satisfying the following conditions is
undecidable.

1. There are closed terms s1 and s2 such that ps1 and ¬ps2.
2. If s and t are closed terms such that s ≡ t and ps, then pt.

Rice: Every class p satisfying the following conditions is
undecidable.

1. There are procedures s1 and s2 such that ps1 and ¬ps2.
2. If s and t are procedures such that ∀uv. su B v↔ tu B v and

ps, then pt. (“p is extensional”)

16
[Barendregt, 1984]
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RICE’S THEOREM

Fact
The class of closed terms s such that ¬E(ss) is not recognisable.

Lemma (Reduction)
A class p is unrecognisable if there exists a function f such that:

1. p(fs)↔ ¬E(ss) for every closed terms s.
2. There is a procedure v such that vs ≡ fs for all s.
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RICE’S THEOREM

Lemma
Let p be an extensional class such that D is in p and some procedure
N is not in p. Then p is unrecognisable.

Proof.
I Define function fs such that

I fs ≈ D if ¬E(ss)
I fs ≈ N if E(ss)

I f := s 7→ λy.F(ss)Ny
v := λx.L(A(A(A F(Ax(Qx)))N)0)

I vs ≡ fs and p(fs)↔ ¬E(ss)
I Reduction lemma
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RICE’S THEOREM

Lemma
Let p be an extensional class such that D is in p and some procedure
N is not in p. Then p is unrecognisable.

Theorem
Every nontrivial extensional class of procedures is undecidable.

Proof.
If u decides p then pD or ¬pD and . . .

19



Introduction Definitions Verification Rice Modesty Post

COMPUTABLE NORMAL FORMS

Lemma
There is a function of type ∀s. (∃t. s B t)→ Σt. s B t.

Proof.
I (∃t.s B t)↔ ∃n. eval n s 6= ⊥
I λn.eval n s 6= ⊥ is Coq-decidable
I Use constructive choice (constructive indefinite ground

description) to obtain n with eval n s = btc
I s B t
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TYPING TOTAL λ-DEFINABLE FUNCTIONS IN COQ

If u decides p then there is f with fs = true↔ ps
⇒ L-decidability implies Coq-decidability

∀u.(∀n∃m. u n̂ B m̂)→ {f : N→ N | ∀s. u ŝ B f̂s}

21
[Larchey-Wendling (2017)]
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POST’S THEOREM

Theorem
If u recognises p and v recognises λs.¬ps, then p is decidable if
∀s. ps ∨ ¬ps.

Without restriction: equivalent to ¬¬Es→ Es

22
[Bauer (2006)]
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FURTHER RESULTS

I Totality. The class of total procedures is unrecognisable.
I Parallel or. There is procedure O such that:

1. If s or t evaluates, then O s t evaluates.
2. If O s t evaluates, then either O s t B T and E s, or O s t B F

and E t.
I Closure under union. The union of recognisable languages is

recognisable.
I Scott’s theorem. Every nontrivial class of closed terms

closed under ≡ is undecidable.
I Enumerability. A class is recognisable if and only if it is

enumerable.
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CONTRIBUTION

I Elegant model of computation, easy to reason about
I Constructive formalisation of basic computability theory,

less than 2000 loc
I Self-Interpreter, Rice, Scott, Post, Totality
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FUTURE WORK

I “L and Turing Machines can simulate each other with a
polynomially bounded overhead in time and a
constant-factor overhead in space.”
[Dal Lago, Martini (2008)], [Forster, Kunze, Roth (LOLA 2017)]

I Connect L to other models such as recursive functions.
I Use L to show “real-word” problems undecidable (e.g.

from logic)
I Do further computability theory in L (Turing degrees,

Myhill isomorphism theorem)
I Automate correctness proofs including time complexity

[Forster, Kunze (CoqWS 2016)]

https://www.ps.uni-saarland.de/
extras/L-computability/
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LINES OF CODE UP TO . . .

What? Lines cumulated
Definition of L 400 400 loc
Rice’s theorem 500 900 loc
Step-indexed interpreter 500 900 loc
Full parallel interpreter 300 1200 loc
Enumerable↔ recognisable 600 1500 loc
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