
Saarland University
Faculty of Natural Sciences and Technology I

Bachelor’sThesis

A Formal and Constructive
Theory of Computation

Author:
Yannick Forster

Advisor:
Prof. Dr. Gert Smolka

Reviewers:
Prof. Dr. Gert Smolka
Prof. Dr. Markus Bläser

Submitted: 11th December 2014



ii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.

Statement in Lieu of an Oath:

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent:

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 11th December, 2014



Abstract

This thesis presents a formal development of basic computability theory in con-
structive type theory. The entire development is carried out in the proof assistant
Coq. No classical assumptions are needed for the development.

We base our theory on a minimal functional programming language obtained as
a variant of the weak call-by-value lambda calculus. The choice of the program-
ming language is crucial since in a formal development of computability theory
complex constructions must be programmed and verified that are merely sketched
in standard textbooks.

We showbasic undecidability results including the theorems of Scott andRice. This
is the easy part of the formal development. The construction and verification of a
step-indexed self-interpreter (universal program) and a dovetailing self-interpreter
is considerably more involved. We show that a logically decidable problem is com-
putationally decidable if it is acceptable and co-acceptable. We also show that a
problem is acceptable if and only if it is enumerable. Finally, we prove that termi-
nation for all arguments is neither acceptable nor co-acceptable.



Acknowledgements

I am very grateful to my advisor Prof. Smolka for offering me this thesis. His
support and guidance during the last year, not only in matters of this thesis, were
far above of what can be expected.

Then, I want to thank my family, friends and fellow students for their support.
Especially I want to thank Kathrin and Felix for proofreading the thesis.

I would also like to thank Chad for a fruitful discussion over the thesis and Prof.
Bläser for reviewing it.

The last and biggest thanks go to Saskia. Thank you for your support in all matters.
There would have been no way for me to complete this thesis without you.



Contents

Abstract iii

1 Introduction 1

2 The Programming Language 5
2.1 Syntax of L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Reduction and Equivalence . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Uniform Confluence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Programming and Verification 11
3.1 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Booleans and Natural Numbers . . . . . . . . . . . . . . . . . . 12
3.2.2 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Pairs of Natural Numbers . . . . . . . . . . . . . . . . . . . . . 15

3.3 Verification of Internalized Functions . . . . . . . . . . . . . . . . . . . 15

4 Decidability and Scott’s Theorem 17
4.1 Decidable Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 The Self-Halting Problem . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Fixed Point Theorems and Scott’s Theorem . . . . . . . . . . . . . . . 18

4.3.1 Fixed Point Theorems . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Scott’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Properties of L-Decidable Predicates . . . . . . . . . . . . . . . . . . . 21
4.5 Coq-Decidability does not imply L-Decidability . . . . . . . . . . . . . 22
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Acceptability and Rice’s Theorem 23
5.1 Acceptable Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 The Self-Halting Problem Reconsidered . . . . . . . . . . . . . . . . . 23



vi Contents

5.3 Properties of L-Acceptable Predicates . . . . . . . . . . . . . . . . . . . 24
5.4 Rice’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.4.1 Rice’s Theorem as a Corollary of Scott’s Theorem . . . . . . . 28

6 Step-Indexed Evaluation 29
6.1 The Step Evaluation Predicate . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 An Executable Semantics for L . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Internalized Maybe-Type . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4 Internalized Self Interpreter . . . . . . . . . . . . . . . . . . . . . . . . 32
6.5 L-Decidability Implies Coq-Decidability . . . . . . . . . . . . . . . . . 33

7 Self-Interpretation 35
7.1 On the Internalization of Partial Functions . . . . . . . . . . . . . . . . 35
7.2 Definition of the Self-Interpreter . . . . . . . . . . . . . . . . . . . . . 38

8 Parallel Or and AD Theorem 41
8.1 Specification of Parallel Or . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2 Correctness and Completeness of Parallel Or . . . . . . . . . . . . . . 42
8.3 The AD-Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9 Recursive Enumerability 46
9.1 Enumerable Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.2 Enumeration of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.3 A List Libray for L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.4 Internalized Enumeration of Terms . . . . . . . . . . . . . . . . . . . . 52
9.5 Equivalence of L-Enumerability and L-Acceptability . . . . . . . . . . 53

9.5.1 L-Enumerability implies L-Acceptability . . . . . . . . . . . . 53
9.5.2 L-Acceptability implies L-Enumerability . . . . . . . . . . . . . 55

9.6 The DA Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10 More on L-Acceptability 60
10.1 Semi-Decidability of the Self Halting Predicate . . . . . . . . . . . . . 60
10.2 L-Acceptable Predicates are closed under Disjunction . . . . . . . . . 60
10.3 Hard Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A Coq Formalization 63

Bibliography 70



Chapter 1

Introduction

Computability theory is one of the oldest fields of computer science. It usually is
taught and carried out using classical mathematical methods, see for instance [10]
or [11]. We feel that a constructive treatment of computability theory reflects its
character in a more genuine way since all basic constructions go through with only
small refinements. In this thesis we present a formal and constructive approach to
computability theory.

Essential for a compact formalization is the choice of the programming language.
We base our studies on aminimal functional programming language, called L. As a
compositional language it simplifies the reasoning about programs. L is a subset of
the full λ-calculus [2] which was the language the first undecidabilty results were
ever published in by Church [4]. It can be seen as a weak call-by-value λ-calculus,
similar to the systems considered by Niehren [13], Dal Lago and Martini [7] and
Plotkin [16].

The computational objects of L are procedures, which are closed abstractions. Pro-
cedures can be executed by applying them to other procedures, they can converge
with procedures as values or diverge.

One can represent the usual data types like natural numbers and booleans as pro-
cedures via Scott’s encoding [6]. Using the same approach it is also easy to imple-
ment a self-representation in L, which was done for full λ-calculus by Mogensen
[12]. The translation of first-order recursive specifications for total programs into L
is routine.

The basis for our formalization is constructive type theory, as implemented in the
proof assistant Coq [5]. In Coq every function is total. One can use a technique
called step-indexing to model potentially diverging functions in Coq with an addi-
tional parameter that bounds the recursion depth. An example for such a function
is a step-indexed interpreter for L.



2 Introduction

Translating potentially non-total programs into L is achieved by first totalizing the
program using a bound for the recursion depth, verifying it and then getting rid of
this bound in a general way again. The verification of all programs is based on the
equivalence closure of the reduction relation.

Using the mentioned techniques of internalizing functions into procedures and
self-representing terms as procedures via Scott’s encoding the verification of a self-
interpreter for L is straightforward. Starting with this self-interpreter one can im-
plement a parallel or construction, which evaluates two terms in parallel by inter-
leaving the evaluation up to fixed reduction lengths stepwise.

Using the self-interpreter and the parallel or we prove various constructions of
computability theory. We call the theory developed in this thesis Constructive Com-
putability Theory (CCT). Note that for a problem to be considered decidable in this
theory an explicit decider in L needs to be given and proven correct in constructive
type theory. Every statement made about decidability in CCT needs to be consid-
ered with respect to those two systems, namely L as a model of computation and
constructive type theory as a logical framework. By Church’s thesis we know that
replacing L by another Turing-complete language would not change the results.
Using a logical system that is stronger would also preserve the results, but might
provide for further results. By basing our studies on constructive type theory we
hope to get a more detailed insight into the notions of computation.

All undecidability proofs reduce to the undecidability of the self-halting problem,
which was discovered by Turing [18] and Church [4]. In order to show the un-
decidability of a problem one assumes a decider and constructs a decider for the
self-halting problem by explicitly giving and verifying such a program.

Scott’s theorem provides sufficient criteria for the undecidability of a problem. It
was first published by Barendregt [2] for full λ-calculus. We adapt the proofs to L
and additionally give proofs of the underlying fixed-point theorems.

We also show Rice’s theorem [17], where the textbook proof needs slight changes
to work constructively.

We show that for a propositionally decidable problem acceptability together with
co-acceptability implies decidability. We also define the notion of enumerability in
L and show that a problem is enumerable if and only if it is acceptable. To do so
we need an explicitly constructed surjection from natural numbers to the terms of
L, which is a good example for the computational power of L.



3

Related Work

Norrish [15] presents a development of computability theory covering Rice’s the-
orem in classical type theory carried out with the proof assistant HOL4. Norrish
employs full λ-calculus as model of computation and shows the equivalence with
Kleene’s system of recursive functions. Dal Lago and Martini [7] show on paper
that L and Turing machines can simulate each other with polynomial overhead.
They use Scott’s data encoding to represent Turing machines. Asperti and Ric-
ciotti [1] construct and verify a universal Turing machine with the Coq-like proof-
assistant Matita. They do not consider a step-indexed universal machine. Xu,
Zhang, and Urban [20] construct and verify a universal Turing machine using Is-
abelle/HOL. They follow the book of Boolos et al. [3] and verify a compiler translat-
ing descriptions of recursive functions to Turing machines. They obtain a universal
Turing machine from a universal recursive function. They do not consider a step-
indexed universal machine.

Contribution

We seem to be the first to give a (formal) development of computability theory in
constructive type theory covering acceptable problems and the theorems of Scott
and Rice. Obtaining a constructive development was not difficult, we just had to be
careful with the formulation of some undecidability results, most notably Rice’s
theorem. We are the first to base such a development on L rather than full λ-
calculus. As it turns out, L simplifies such a development. The weak reduction
equivalence of L (procedures are equivalent only if they are identical) suffices for
the proof of Scott’s theorem and the verification of the internalized functions.



4 Introduction

The Program-
ming Language

Programming
and Verification

Step-indexed
interpretation

L-Decidability, Scott Self Interpretation

L-Acceptability, Rice

AD Theorem

Recursive
Enumerability

Structure of the thesis



Chapter 2

The Programming Language

Essential for our goal of a compact formalization is the choice of the programming
language. We choose L as our programming lanugage, which can be seen as weak
call-by-value lambda calculus. It is a slight variation of the systemused byDal Lago
and Martini [7] who show that L and Turing machines can simulate each other. L
is related to Plotkin’s call-by-value calculus [16] and Church’s full λ-calculus [4]. It
is simpler than full λ-calculus since reductions can only happen on the top level,
which is computationally more realistic and leads to unique normal forms.

The reduction in L is uniformly confluent, which was observed by Niehren [13],
and has a parametric diamond property.

2.1 Syntax of L

We define L as it will be used throughout this thesis. We employ de Bruijn terms
[8] for the formal definition:

s, t, u ::= n | s t | λs (n ∈ N)

Terms of the form nwhere n is a natural number are called variables. Those of the
form s t applications and those of the form λs abstractions. The letters v and w
will range over abstractions only. We define a substitution for terms that replaces
any free occurrence of the variable k in the term swith u.

nku = if n = k then u else n

stku = (sku)(tku)

(λs)ku = λ(sSku )

We use the notation Sk for the successor of a natural number k. Note that the
definition of substitution is not capture-avoiding, but that s0u yields the same result



6 The Programming Language

as a beta reduction of (λs)u in full λ-calculus. Our reduction is only well-behaving
if u is a closed term and s has no free variables except k. We call a term s closed if
∀ku.sku = s, i.e. if there is no free variable that could be substituted. We call a term
k-closed if k is greater than all free variables of the term.

k > n

closedk n
closedk s closedk t

closedk (s t)

closedSk s
closedk (λs)

0-closedness and closedness of a term are equivalent:

Fact 2.1 m ≥ k→ closedk s→ closedm s

Fact 2.2 closedk s→ sku = s

Fact 2.3 (∀n ≥ k.snu = s)→ closedk s

Lemma 2.4 closed0 s ↔ closed s

Proof For the direction from left to right assume that s is 0-closed. We need to
prove that sku = s for any natural number k and any term u. Since k ≥ 0 we find
that s is closed because of Facts 2.1 and 2.2.

For the direction from right to left assume that s is closed. To show that it is also
0-closed by Fact 2.3 it is enough to show that for all n ≥ 0 we have snu = s, which is
exactly the assumption that s is closed. �

Fact 2.5 Closedness of a term is computationally decidable in Coq.

If a term is not closed, we call it open. A variable is always open. If a term is closed,
we call it combinator. For a closed abstraction we write procedure. We fix some
well-known combinators now, which will be used throughout the thesis:

I := λx.x ω := λx.x x

K := λxy.x Ω := ω ω

I is simply the identity, while Kv represents a constant function. Ω is a always
diverging combinator.

Note that we did not use de Bruijn indices to define this terms. When it comes to
reading, frequent usage of de Bruijn indices can be confusing and hard to under-
stand. Thus we will use usual binder notation with named bound variables in the
thesis and use the indices only at the bottom of the underlying formalization. The
letters x, y and z will range over variables only. The terms I ,K and Ω above would



2.2. Reduction and Equivalence 7

be λ0, λλ1 and λ00 written with indices. If we do not use a bound variable in the
following term we might omit it and simply write λs instead of λx.s.

We will omit parantheses following the rules s t u = (s t) u and λx.s t = λx.(s t).
Combinators will always be written with an uppercase letter.

2.2 Reduction and Equivalence

The dynamic semantics of our calculus is defined via a one-step reduction rela-
tion �. In contrast to Dal Lago and Martini [7] we do not treat variables as values
and thus allow β-reduction only if both sides are abstractions.

(λs) v � s0v

s � s′

s t � s′t
t � t′

st � st′

For s� twe say s reduces to t. In such a case we call t the successor of s and s the
predecessor of t. A term that has a successor is called reducible, and a term that
has no successor is said to be normal. We will use �∗ for the reflexive transitive
closure of � and �k for precisely k reduction steps. If s�∗ v where v is normal we
write s ⇓ v and call v the normal form of s. If v is a procedure, then we call v the
value of s.

Fact 2.6

1. A combinator is either a procedure or reducible.

2. A combinator is normal if and only if it is a procedure.

We say that a term s converges if it has a normal form. In mathematical notation
we simply write s ⇓. A term that has no normal form diverges.

Note that the reduction is weak in the sense that no reduction inside an abstrac-
tion is possible. It is call-by-value, because only applications where both sides are
abstractions (and thus values) can be reduced using the first rule. We call reduc-
tions using this rule β-reductions. In every reduction step there is exactly one β-
reduction. The other rules will be referred to as left reduction rule and right reduc-
tion rule respectively.

If a closed term t gets substituted into a term swhere only the variable with index
0 is free during β-reduction, the result is closed again. Thus during a β-reduction
concerning two closed terms the result will be closed again. This can be generalized
to the following lemma:

Lemma 2.7 closedSk s→ closedk t→ closedk skt



8 The Programming Language

Proof By induction over s and an examination of the first assumption. �

Corollary 2.8 If s is closed and s� t, then t is closed.

Proof By induction over s� t. �

To obtain an equational theory for Lwe need to define the reflexive, transitive, sym-
metric closure of �. Dal Lago and Martini [7] do not consider an equivalence clo-
sure for their relation. The system studied by Plotkin [16] bases on an equational
theory, but is not weak, since it allows reduction below binders. The equivalence
closure for �will be written as ≡.

s� t
s ≡ t s ≡ s

s ≡ t
t ≡ s

s ≡ t t ≡ u
s ≡ u

Fact 2.9 If s ≡ t then s ⇓ ↔ t ⇓.

Some properties of≡ ease the formal proofs a lot. Since no reduction order is given,
one can rewrite anywhere on top-level in a term:

Fact 2.10 If s ≡ s′ and t ≡ t′, then s t ≡ s′ t′.

In order to prove the uniqueness of normal forms equivalent normals forms (which
are always abstractions) need to be equal. This is a direct consequence of the weak-
ness of the reduction relation.

Fact 2.11 If λs ≡ λt, then s = t.

2.3 Uniform Confluence

s

t1 t2

u

Figure 2.1: Uniform Confluence

L is a uniformly confluent system, which was identified by Niehren [13; 14]. There-
fore it is confluent and every reduction path to a normal form has the same length.
We essentially follow the proofs from [7].



2.3. Uniform Confluence 9

Theorem 2.12 (Uniform Confluence of L) If s � t1 and s � t2, then either t1 = t2 or
there is a term u such that t1 � u and t2 � u.

Proof By induction over s. Only for the case where s = s1 s2 there is something to
prove. We analyze the rule s� t1 used:

• If s� t1 via β-reduction, then β-reduction was the only possible rule for any
reduction s� t and s� t2 used this rule also. Thus t1 = t2.

• If s� t1 via the left reduction rule, then s� t2 could have used either the same
rule (then t1 = t2) or the right-reduction rule, in which case there is u such
that t1 � u via the right reduction rule and t2 � u via the left reduction rule.
Note that s� t2 could not have been a β-reduction then.

• If s � t1 via the right-reduction rule, then the case is symmetric to the one
above.

�

s

v

t1

t2

m

s

v

t1

t2

u

u′

by IH

m

k l

Figure 2.2: 2nd case of parametric semi-confluence

Theorem 2.13 (Parametric Diamond Property) If � is any uniformly confluent rela-
tion, then: if s �m t1 and s �n t2, then either t1 = t2 or there is a term u and natural
numbers k ≤ n, l ≤ m such that t1 �k u and t2 �l u andm+ k = n+ l.

Proof We begin with the following Lemma:

Lemma 2.14 (Parametric Semi Confluence) If s�m t1 and s� t2, then there is
a term u and natural numbers k ≤ 1, l ≤ m such that t1 �k u and t2 �l u and
m+ k = 1 + l.

Proof By an induction overm:



10 The Programming Language

• If m = 0, then s = t1 and one obviously can choose k = 1, l = 0 and
u = t2.

• Ifm = Sm, then the situation is as on the left in Figure 2.2. We use the
property that� is uniformly confluent. That is, either v = t2, where we
can choose k = 0, l = m and u = t1. Or we have u where v � u and
t2 � u. By using the inductive hypothesis we are now able to find a u′
to choose for u together with k and l and can choose k = k and l = Sl,
so that we are done. This case is shown on the right in Figure 2.2. �

Using this parametric semi-confluence property we are now able to prove the Para-
metric Diamond Property again by induction over m. In any case we need to give
suitable k, l and u.

• m = 0: Then s = t1 and we can choose k = n, l = 0 and u = t2.

• m = Sm: We have a situation similar to Figure 2.2. By using the parametric
semi-confluence we can find k, l and u. By using the inductive hypothesis
we get l′, k′ and u′, can fill the diagram as in Figure 2.2 and choose k = l′,
l = k + k′ and u = u′. �

Corollary 2.15 L has the parametric diamond property.

Corollary 2.16 L is confluent.

Corollary 2.17 (Church-Rosser property for L) If s ≡ t, then s �∗ u and t �∗ u for
some term u.

Corollary 2.18 If s ≡ v where v is an abstraction, then s�∗ v.

The weakness of the reduction combined with confluence ensures uniqueness of
normal forms.

Fact 2.19 If s ⇓ v1 and s ⇓ v2, then v1 = v2.



Chapter 3

Programming and Verification

Wenow turn towards programming in L. We need the ability to define combinators
via recursive specifications and away to represent the usual knowndata types, such
as booleans and natural numbers.

Another essential aspect of computability theory is self-representation. We need
an elegant way how terms of L can represent other terms. We will internalize the
type term as well as booleans and natural numbers using Scott’s encoding [6].

Jansen [9] gives an introduction to programming in full λ-calculus using Scott’s
encoding.

3.1 Recursion

To implement recursive specifications we need a fixed-point combinator R now,
that is a combinator such that for any procedure f the equation R f ≡ f(R f)

holds. In our call-by-value setting this is not possible.

Thus we define the call-by-value version of a fixed-point combinator found by Tur-
ing [19] following Dal Lago and Martini [7]:

A := λzf.f(λx.zzfx)

R := A A

Fact 3.1 If s is a procedure, then Rs �2 s(λx.Rsx).

Unlike in full λ-calculus a recursive combinator R s is normalizing. It is not pos-
sible to give a normalizing recursive combinator for full λ-calculus. Note that the
η-expansion of Rs to λx.Rsx is not problematic, since for a recursive call the argu-
ments are always abstractions (or at least reduce to one) and it holds that:

Fact 3.2 (η-Equivalence) If s is a combinator and v an abstraction, then (λx.s x) v ≡ s v.



12 Programming and Verification

3.2 Datatypes

Beside recursion the other key part of programming are data types. The most well-
known encoding of data types into terms of a λ-calculus are Church’s encoding
(mostly used for Church numerals, see [2] [4]) and the representation of a term as
the Church numeral of its Gödel-number [4]. In a call-by-value calculus, Church
encodings are no option. Thus we base all our programs on Scott’s encoding [6],
which was used for terms by Mogensen [12]. In combination with the combinator
R we obtain a powerful programming language which allows a direct translation
of almost all data types using match and fix constructs.

3.2.1 Booleans and Natural Numbers

As a first example we present how to encode booleans and natural numbers in L:

true := λxy.x

false := λxy.y

0 := λzs.z

Sn := λzs.s n

Succ := λxzs.s x

Succ n ≡ Sn

The last equation is the correctness statement for Succ and easily proven by induc-
tion over n.

Fact 3.3 true, false and n are procedures.

For the usage of booleans the following two combinators realizing boolean and and
boolean or are helpful. Note that both arguments need to be evaluated until the
result can be computed, which means that even if one argument is true, but the
other one diverges, the boolean or of them will diverge. An if-then-else construct
can be realized by a simple application of the if- and else-branch to the boolean
which should be checked.

andalso := λab.a b false
orelse := λab.a true b

We are now able to define a combinator which adds two encoded numbers:

Add := R (λamn.n 0 (λm′.Succ (a m′ n)))



3.2. Datatypes 13

One can see almost all phenonema concerning the definition of combinators in L at
this example. First if onewants do define a recursive combinatorF it will always be
F := R(λf. . . . ) where the variable f can be used to make a recursive call. Second,
thematch over a dataterm is implemented using simple applications. The fragment
match n with 0⇒ s | S n⇒ t in Coq is translated to L with n s (λn.t).

We are now able to verify the correctness of Add. To do this we will always first
verify that the recursive equations hold, in this case:

Add 0 n ≡ n
Add Sm n ≡ Succ ((λx.Add x) m n)

We then can prove the correctness statement for Add:

Lemma 3.4 (Correctness of Add) Addm n ≡ m+ n

Proof By an induction overm this boils down to the two Dedekind equations:

Add 0 n ≡ n
Add Sm n ≡ Succm+ n

The first equivalence directly follows from the recursive specification. The second
follows from the fact that m is a procedure, the recursive specification and the in-
ductive hypothesis:

Add Sm n ≡ Succ ((λx.Add x) m n) (rec. spec.)
≡ Succ (Addm n) (m is a value)
≡ Succm+ n (IH)

≡ S(m+ n) (Correctness of Succ)
�

An important property of the encoding for natural numbers is injectivity:

Lemma 3.5 n ≡ m→ n = m.

Proof Becausem and n are both procedures we know thatm = n. The claim then
follows by induction over n. �

3.2.2 Terms

To internalize a universal self-interpreter for L we need a way to represent terms.
As with booleans and natural numbers the standard strategy for the translation



14 Programming and Verification

of data types into Scott encodings applies. This strategy is described in detail in
Section 3.3.

pnq := λv a l.vn

ps tq := λv a l.a psq ptq

pλsq := λv a l.l psq

We read psq as quote s and refer to terms of the form psq as data terms.

Fact 3.6 Every data term is a procedure.

We know that the function p . q is injective:

Lemma 3.7 ptq ≡ psq→ s = t.

Proof Follows by psq = ptq and induction over s. �

We can internalize the three constructors directly

Var := λx.λv a l.v x

App := λxy.λv a l.a x y

Lam := λx.λv a l.l x

and obtain the following equivalences:

Var n ≡ pnq
App psq ptq ≡ ps tq

Lam psq ≡ pλsq

As an example of programming with terms we will define and internalize the size
of a term. The size of a term is precisely the number of constructors involved:

|n| = 1

|s t| = 1 + |s|+ |t|
|λs| = 1 + |s|

We then can define a recursive combinator Size fulfilling the following specification:

Size pnq ≡ n
Size ps tq ≡ Add 1 (Add ((λx.Size x) psq)((λx.Size x) ptq))

Size pλsq ≡ Add 1 ((λx.Size x) psq)



3.3. Verification of Internalized Functions 15

This is the last example where we give the exact definition of the term in L. From
now on we assume that every such trivial specification can be translated using the
usual methods to L. In Section 3.3 we give an overview how to generically transfer
every recursive specification into a combinator.

Size := R(λf t.t(λn. 1)(λt1t2.Add (f t1) (f t2))(λt.Add 1 (f t))

Again we prove that Size correctly internalizes the | . |-function:

Lemma 3.8 (Correctness of Size) Size psq ≡ |s|

Proof By induction over s. Every case follows directly from the inductive hypothe-
ses, the correctness of Add and η-equivalence. �

3.2.3 Pairs of Natural Numbers

The internalization of pairs of natural numbers is straightforward. We define:

(n,m) := λp.p n m

and
Pair := λn m p.p n m

such that we have
Pair n m ≡ (n,m)

3.3 Verification of Internalized Functions

Internalizing a Coq-function and verifying its correctness is routine. We first define
what internalization precisely means:

Definition 3.9 A combinator u internalizes a function f : term→ term if for every term
s:

u psq ≡ pf sq

We adapt this definition for functions of arbitrary type X → Y by specifying how
to encode any data type into term. We will always use Scott’s encoding for this
purpose

Assume that X has n constructors c1, . . . , cn. For any k-ary constructor ci an ele-
ment ci x1 . . . xk is represented as

λ c1 . . . cn. ci x1 . . . xk



16 Programming and Verification

We sketch this approach for the type of lists, which will be reused in Section 9.4.
Lists over a type Z have two constructors, namely nil and cons : Z→ listZ→ listZ.
nil has arity 0 and is represented by the term λnc.n. The constructor cons is 2-
ary. A term cons x l can thus be represented as λnc.c x′ l′ where x′ and l′ are the
representations for x and l respectively. The list [1, 2] = cons 1 (cons 2 nil) would be
represented as λnc.c 1 (λnc.c 2 (λnc.n))

Now every term λ c1 . . . cn. ci x1 . . . xk yields a match construct. The Coq-match
match t with

| c1x1 . . . xk1 ⇒ f1 x1 . . . xk1

| . . .
| cnx1 . . . xkn ⇒ fn x1 . . . xkn

end

is simply done with t f1 . . . fn. So if we want to program the isnil function with
isnil = fun a⇒match a with nil⇒ true | cons c l⇒ false end we write

isnil = λa.a true (λcl.false)

There is one case where this pattern needs to be extended. For a recursive call in a
case where the constructor is 0-ary, one needs to η-expand all terms. Consider for
instance the case where the program recurses only in the nil-case or in the 0-case.
Before the match, both alternatives need to be evaluated, so to make the recursion
only happen if the particular case is chosen, one needs to put an additional binder
over all cases and apply the result to an arbitrary procedure. This technique is
called lambda-lifting. The generic match is thus translated to t (λf1) . . . (λfn) I .
We could use this translation always, since it would never introduce errors, but if
possible we stick with the first version, which is easier to read.

The verification of the procedure is also almost mechanical. One first verifies that
the recursive equations hold up to η-equivalence. Then the correctness statement
(see Definition 3.9) is proven step for step.

The rule is: If the function matches over a term t without recursing over it, one
simply makes a case analysis over the structure of the term. If the function recurses
over a term t after matching over it, one simply proceeds with an induction over t.



Chapter 4

Decidability and Scott’s Theorem

4.1 Decidable Predicates

Classical computability theory talks about the decidability of problems. Because
we are working in a type theoretic setting choosing predicates to represent prob-
lems seems natural. A predicate will always be of type T → Prop, where T is
shorthand for term. The letters P and Q range over predicates only.

We define predicates P with the notation λt. Q t which means P t ↔ Q t. We
define P as λt. t is a procedure and C as λt. t is a combinator. We use the notation
P ⊆ Q to express that ∀t.P t→ Q t, so P ⊆ P means that every term satisfying P
is a procedure. We will write P for the complementary predicate λt. ¬P t.

There are several notions of decidability. First, there is Turing decidability, which
refers to the general term of decidability in any programming language. Second,
we define what it means to be decidable in Constructive Type Theory. For conve-
nience, we refer to this as Coq-decidable, but the restriction to Coq as the particular
implementation is not relevant.

Definition 4.1 A predicate P : T→ Prop is called Coq-decidable if there is a function
of type ∀t : T.{P t}+ {¬P t}.

We also define what it means for a predicate to be L-decidable.

Definition 4.2 A predicate P is L-decidable if there is a procedure u such that:

∀t : T.u ptq ≡ true ∧ P t ∨ u ptq ≡ false ∧ ¬P t

We then call say that u is a decider for P . Any predicate for which we can prove that it is
not L-decidable is called L-undecidable.

Note that every L-decidable predicate is also Turing decidable. An L-undecidable
predicate is Turing undecidable.



18 Decidability and Scott’s Theorem

4.2 The Self-Halting Problem

The self-halting problem is often attributed to Alan Turing who mentions it in [18],
but got independently discovered at least byAlonzoChurch in [4]. The general con-
cern of the problem is to determine if a given term of a formal systemwill converge
in its evaluation or diverge.

Lemma 4.3 (Undecidability of the Self-Halting Problem) The self-halting problem
λt. t ptq ⇓ is L-undecidable.

Proof Assume that there is a term u deciding the self-halting problem, that is
∀t.u ptq ≡ true ∧ t ⇓ ∨u ptq ≡ false ∧ ¬(t ⇓).

Now define t := λx.u x (λΩ)(λI)I .

• Assume u ptq ≡ true and t ptq ⇓. We have

t ptq ≡ u ptq (λΩ) (λI) I

≡ true (λΩ) (λI) I

≡ (λΩ) I

≡ Ω

But Ω diverges, while t ptq ⇓ by assumption. Since t ptq ≡ Ω, this is a con-
tradiction, because convergence is closed under≡. To make the contradiction
clear, note that then t ptq ⇓ ∧¬(t ptq ⇓) would hold.

• Assume u ptq ≡ false and t ptq ⇑. We have

t ptq ≡ u ptq (λΩ) (λI) I

≡ false (λΩ) (λI) I

≡ (λI) I

≡ I

But I converges, while t ptq ⇑ by assumption. Since t ptq ≡ I , this is again a
contradiction.

Thus, in any case we get a contradiction and there can not be a decider for the self-
halting problem. �

4.3 Fixed Point Theorems and Scott’s Theorem

We have already shown that there are undecidable problems. We are now inter-
ested in more general results and criteria for predicates that are sufficient for their
undecidability.



4.3. Fixed Point Theorems and Scott’s Theorem 19

We show Scott’s Theorem, proven in [2] as Theorem 6.6.2 for full λ-calculus. It
follows from a Fixed Point Theorem, which is interesting by its own means and
shown below.

4.3.1 Fixed Point Theorems

Both following proofs can be found in [2] for full λ-calculus (Theorems 2.1.5 and
6.5.9). We adapt Barendregt’s proofs to L, which essentially means that we use
Scott’s encoding instead of Gödel-Church encoding.

Theorem 4.4 (First Fixed Point) For every combinator s there exists a combinator t such
that s t ≡ t.

Proof Define ωs := λx.s (x x) and F := ωs ωs. Now F = (λx.s (x x))(λx.s (x x))�
s ((λx.s (x x))(λx.s (x x))) = s (ωs ωs) = s F . �

Theorem 4.5 (Second Fixed Point) For every combinator s there exists a combinator t
such that s ptq ≡ t.

Proof DefineA := λx.s(Appx (Qx)) and t := A pAq. Then t � s (App pAq (Q pAq))
≡ s (App pAq ppAqq) ≡ s pA pAqq ≡ s ptq. �

Corollary 4.6 There is a combinator t with t ≡ ptq.

4.3.2 Scott’s Theorem

We essentially follow [2] and adapt the proofs to Scott’s encoding.

Theorem 4.7 (Scott) ApredicateP is L-undecidable if it satisfies the following conditions:

1. P is only satisfied by combinators: P ⊆ C.

2. P is closed under reduction equivalence: For equivalent combinators s and t it holds
that Ps → P t.

3. P is nontrivial: There are combinators s1 and s2 with Ps1 and ¬(Ps2).

Proof Let P ⊆ C be as a nontrivial predicate closed under reduction equivalence
where Ps1 holds and Ps2 does not for combinators s1 and s2. Assume u were a
decider for P . Now define the combinator

s := λx.u x (λs2) (λs1) I

By Theorem 4.5 we know that we have a combinator twith

t ≡ s ptq ≡ u ptq (λs2) (λs1) I

Because u is a decider for P we have:



20 Decidability and Scott’s Theorem

• Either u ptq ≡ true, then Pt holds and t ≡ s2, but ¬Ps2. Contradiction.

• Or u ptq ≡ false, then ¬Pt holds and t ≡ s1, but Ps1. Contradiction. �

Note that the proof works exactly analogous to Lemma 4.3. It extracts the proper-
ties that make the self-halting problem L-undecidable, but needs one application
of the second fixed point theorem, where the original proof could just use self-
application.

Corollary 4.8 λt. Ct ∧ t ⇓ is L-undecidable.

Proof Convergence is nontrivial and closed under equivalence. �

Lemma 4.9 For every combinator t the predicate λs. Cs ∧ s ≡ t is L-undecidable.

Proof Assume we had a decider u for λs. Cs ∧ s ≡ t. We get a contradiction by
applying Scott’s Theorem, which shows that the predicate is undecidable.

First, the predicate is only satisfied by combinators and respects term equivalence.

The interesting part is to show nontriviality:

1. We need to find a combinator that is equivalent to t, where we can simply
pick t.

2. We then need to give a combinator not equivalent to t. Here we first use u to
decide if I ≡ t. If this is the case, we choose Ω, since I 6≡ Ω. If I 6≡ t, then we
can choose I . �

Corollary 4.10 For every procedure t the predicate λs. s ≡ t is L-undecidable.

Note that the proof of 4.9 heavily relies on the fact that we first assumed a decider
and then showed that the predicate is L-undecidable. Directly invoking Scott’s The-
orem would not work, since we had no possibility to find a term that is not equiv-
alent to t.

We show that the equivalence relation of L is L-undecidable. Because our predicates
are restricted toT, we can notwork on pairs of terms. Thuswe encode the pair (s, t)

as ps tq:

Theorem 4.11 λs. ∃s1s2.s = ps1 s2q ∧ s1 ≡ s2 is L-undecidable.

Proof Assume u were a decider. Then the equivalence to the combinator I is L-
decidable, which contradicts Lemma 4.9. The following is a decider for the predi-
cate P := λs. s ≡ I :

v := λx.u (Q (App x pIq))

Let s be a combinator. We use u to decide if Ps holds:



4.4. Properties of L-Decidable Predicates 21

1. In the first case we get terms s′ and t′ such that ps Iq = ps′ t′q, s′ ≡ t′ and
u pps Iqq ≡ true.

We want to show that Ps holds and v psq ≡ true:

For this we need to show that s ≡ I , which follows because ps Iq = ps′ t′q
implies s = s′ and I = t′ by Lemma 3.7 and thus s ≡ s′ ≡ t′ ≡ I .

Also, v psq ≡ u (Q (App psq pIq)) ≡ u pps Iqq ≡ true.

2. In the second case we know 6 ∃s′t′.psIq = ps′t′q∧ s′ ≡ t′ and u pps Iqq ≡ false.

We want to show that Ps does not hold and v psq ≡ false:

We assume s ≡ I for the purpose of a contradiction. Then there are s′ and t′
such that psIq = ps′t′q and s′ ≡ t′, because one can choose s and I . Contra-
diction.

Also: v psq ≡ u (Q (App psq pIq)) ≡ u pps Iqq ≡ false. �

4.4 Properties of L-Decidable Predicates

L-decidable predicates are closed under conjunction, disjunction and complement.

Lemma 4.12 If P and Q are L-decidable, then λs. Ps ∧Qs is also L-decidable

Proof Let u and v be deciders for P andQ respectively. Then λx.andalso (u x) (v x)

is a decider for λs. Ps ∧Qs, because if both P s and Q s hold for a term s, u psq ≡
true aswell as v psq ≡ true and thus (λx.andalso (ux) (v x)) psq ≡ andalso (u psq) (v psq) ≡
andalso true true ≡ true. In any other case andalso (u psq) (v psq) ≡ false and
¬(Ps ∧Qs). �

Lemma 4.13 If P and Q are L-decidable, then λs. Ps ∨Qs is also L-decidable.

Proof Let u and v be deciders for P and Q respectively. Then λx.orelse (u x) (v x)

is a decider for λs. Ps ∨Qs. �

Lemma 4.14 If P is L-decidable, then P is L-decidable.

Proof Let u be a decider for P . Then λx.(u x) false true is a decider for P : As-
sume for a term s that Ps holds and u psq ≡ true, thus Ps does not hold. Then
(λx.(u x) false true) u psq ≡ (u psq) false true ≡ true false true ≡ false. The other case
works parallel and for¬Ps (thusPs) andu psq ≡ false that (λx.(ux) false true)u psq ≡
true. �



22 Decidability and Scott’s Theorem

4.5 Coq-Decidability does not imply L-Decidability

It is common belief that the law of strong excluded middle is independent in con-
structive type theory. It states that every predicate is Coq-decidable. If Coq-Decidability
implied L-Decidability, the consistent assumption of the law of strong excluded
middle would yield that every predicate is L-decidable, which clearly is a contra-
diction to the fact that the self-halting problem is L-undecidable.

In Section 6.5 we will show that L-decidability implies Coq-decidability.

4.6 Discussion

The resulting theory of computation is based on L as programming language and
Coq with its constructive type theory as the logical system. We call this theory
Constructive Computability Theory (CCT). Note that when we are talking of a
predicate to be L-decidable this needs to be read as the existence of a decider in L is
provable in Coq. By using Coq with excluded middle, strong excluded middle or
another classical logic we would get a different theory where we could prove more
predicates to be decidable or undecidable.

By basing our studies on a constructive theory we hope to get a more detailed in-
sight on the different notions of computation, becausemissing assumptions always
need to be made explicit.



Chapter 5

Acceptability and Rice’s Theorem

5.1 Acceptable Predicates

Wehave defined the notion of L-decidability in Section 4.1. In this chapterwedefine
a weaker notion of decidability, namely L-acceptability, which is often referred to
as semi-decidability or recursive enumerability in the literature [11].

Definition 5.1 We say that a term u accepts a term s and write π u s if the application
u psq converges. We say that a term u accepts a predicate P if P s ↔ π u s. We call u
the acceptor of P . A precicate is L-acceptable if it has an acceptor.

If we want to say that P is L-acceptable, we may refer to P as L-coacceptable. If we can
prove that P has no acceptor, we say that P is L-unacceptable.

Fact 5.2 Let s1 ≡ s2. Then π s1 t ↔ π s2 t.

Note that if a predicate P is L-decidable, both P and P are L-acceptable. One can
turn the decision of the decider to a converging or diverging term.

Lemma 5.3 If P is L-decidable, then both P and P are L-acceptable.

Proof If u is a decider for P the procedure v := λx.u x I (λΩ) I is an acceptor for
P and v′ := λx.u x (λΩ) I I one for P . �

This means that if a predicate is not L-acceptable, neither the predicate nor its com-
plement can be L-decidable.

5.2 The Self-Halting Problem Reconsidered

We already know that the self-halting problem is L-undecidable (Theorem 4.3). We
now show that it is also L-unacceptable.



24 Acceptability and Rice’s Theorem

Lemma 5.4 λt. t ptq ⇑ is not L-acceptable.

Proof Assume an acceptor u, that is ∀t. π u t ↔ t ptq ⇑.

If u is applied to its own encoding we have:

π u u ↔ u puq ⇑ ↔ ¬π u u

A contradiction. Thus λt. t ptq ⇑ is not L-acceptable. �

The following lemma is shown analogous to Lemma 5.4.

Lemma 5.5 λt. Ct ∧ s psq ⇑ is not L-acceptable.

5.3 Properties of L-Acceptable Predicates

L-acceptable predicates are closed under conjunction and disjunction. Wewill now
only prove the former and postpone the latter to Section 10.2.

Lemma 5.6 If P and Q are L-acceptable predicates, then λt. P t ∧Qt is L-acceptable.

Proof Let u and v be acceptors forP andQ. Thenλx.(λy.u x) (v x) is an acceptor for
λt. P t ∧Q t, because P t ∧ Q t↔ π u t ∧ π v t. Then there are procedures v1 and v2
such that u ptq⇓v1 and v ptq⇓v2, thus (λx.(λy.u x) (v x)) ptq ≡ (λy.u ptq) (v ptq) ≡
(λy.v1)v2 ≡ v1yv2 which still is a procedure. �

We will see that L-acceptable predicates are not closed under complement, since
the self-halting predicate is L-acceptable, but not L-coacceptable.

5.4 Rice’s Theorem

Scott’s Theorem gives a criterion for the L-unacceptability of predicates satisfied
only by combinators based on reduction equivalence. It nevertheless makes no
strong statement over the behaviour of terms. We want to prove Rice’s Theorem,
that requires the predicate to be closed under acceptance instead of equivalence. It
is due to H.G. Rice who proved it in his dissertation 1951 [17].

This has consequences in many fields, for instance in program verification, where
its application yields the fact that there is no general method of proving a program
property. The key difference between Scott’s Theorem and Rice’s Theorem is that
Scott’s Theorem talks about intensional program properties, such as structure of
the program or convergence of the program itself, while Rice’s Theorem makes a
statement over extensional properties, such as the behaviour under an input.



5.4. Rice’s Theorem 25

To prove Rice’s Theorem we need some preparation.We first need to show that
closedness of a term is L-decidable. Then we need to internalize the encoding for
natural numbers and the term encoding defined in the sections 3.2.1 and 3.2.2.

Lemma 5.7 It is L-decidable if a term is k-closed.

Proof One can easily construct a procedure that analyses all free variables of a
term. �

Corollary 5.8 Closedness of a term is L-decidable.

Lemma 5.9 There are combinators P internalizing the function n 7→ n and Q internaliz-
ing the function s 7→ psq, that is:

1. P n ≡ pnq for all n.

2. Q psq ≡ ppsqq for all s.

Proof We define P and Q recursively such that the following equivalences hold:

P 0 ≡ p0q
P Sn ≡ Lam (Lam (App p0q (P n)))

Q pnq ≡ Lam (Lam (Lam (App p2q (P n))))

Q pstq ≡ Lam (Lam (Lam (App (App p1q (Qpsq)) (Qptq))))

Q pλsq ≡ Lam (Lam (Lam (App p0q (Qpsq)))) �

We formulate an intuitionistic version of Rice’s Theorem, which gives criteria for
the L-unacceptability. The classical version then follows as a corollary.

Theorem 5.10 (Rice) Let P be a predicate such that:

1. P is only satisfied by procedures: P ⊆ P.

2. P is extensional: If s1 and s2 are procedures such that ∀t.π s1 t↔π s2 t, thenP s1→P s2.

3. P is nontrivial: There are procedures s1 and s2 with P s1 and ¬(P s2).

Then we have the following:

1. If P (λΩ), then P is not L-acceptable

2. If ¬P (λΩ), then P is not L-acceptable

Proof Let t1 and t2 be procedures such that P t1 and ¬(P t2).



26 Acceptability and Rice’s Theorem

1. Assume a procedure u that accepts P , so π u t ↔ Pt. We already know that
we can have an acceptor c for the closedness-predicate by the lemmas 5.8 and
5.3, that means: π c t ↔ t closed.

Let s be a term.

Define
vs := λy.(λ t2 y) (s psq)

We show Pvs ↔ ¬πss as follows:

(a) Assume Pvs and πss. Then ∀t.π vs t ↔ π t2 t. Thus Pt2. Contradiction.

(b) Let ¬π s s. Then ∀t.π vs t ↔ ⊥ ↔ π (λΩ) t. Thus Pvs since P (λΩ).

Define

v := λx. u (Lam (App pλt21q (App x (Qx))))

v′ := λx.andalso (v x) (c x)

Assume πv′s, which is the case if and only if π v s ∧ Cs. By the correctness
of Lam and App this is equivalent to πuvs ∧Cs. But u accepts vs if and only if
Pvs and we have already shown that Pvs ↔ ¬πss. Thus πv′s ↔ ¬π s s∧Cs.

This contradicts that the self-halting problem for combinators is not L-acceptable
(Lemma 5.5).

2. Let ¬P (λΩ) Assume an acceptor u for P .

Let s be a term. Define

vs := λy.(λ t1 y) (s psq)

We show ¬Pvs ↔ ¬πss as follows:

(a) Assume ¬(Pvs) and π s s. Then ∀t.π vs t ↔ π t1 t. Thus Pvs. Contra-
diction.

(b) Let¬π s s. Then ∀t.π vs t↔ ⊥ ↔ π (λΩ) t. Thus ¬(Pvs) since¬(P (λΩ)).

Define

v := λx. u (Lam (App pλt11q (App x (Qx))))

v′ := λx.andalso (v x) (c x)



5.4. Rice’s Theorem 27

Similar to the first case we have

π v′ s ↔ π v s ∧C s

↔ π u vs ∧C s

↔ P vs ∧C s

↔ ¬π s s ∧C s

This contradicts Lemma 5.5. �

Corollary 5.11 (Rice, classical) Let P be as in Theorem 5.10. Then P is L-undecidable.

Proof Assume P ⊆ P is an extensional and nontrivial L-decidable predicate. Use
the decider u to decide if P is satisfied by λΩ.

If this is the case, then we know that P is not L-acceptable by Theorem 5.10 (first
case). Contradiction, because we assumed P were L-decidable.

If λΩ does not satisfy P , we know that the complement of P is not L-acceptable, by
Theorem 5.10 (second case). Contradiction.

Thus P is not L-decidable if it is a nontrivial extensional predicate. �

We show several corollaries of Rice’s Theorem:

Corollary 5.12 λs. Ps ∧ ∀t.π s t is not L-acceptable.

Proof λs. Ps ∧ ∀t.π s t is extensional and only satisfied by procedures. The term
λI satisfies P , because it converges on all inputs. The term λΩ does not satisfy P ,
because it diverges on every input. Thus λs. Ps ∧ ∀t.π s t is not L-acceptable by
Theorem 5.10. �

Corollary 5.13 λs. Ps ∧ ∃t. π s t is not L-acceptable.

Proof λs. Ps∧ ∃t. π s t is an extensional predicate only satisfied by procedures. It
is satisfied by λI and not satisfied by λΩ. Thus by the first part of Theorem 5.10 it
is not L-acceptable. �

The following corollaries do all follow fromRice’s Theoremwith parallel reasoning:

Corollary 5.14 λs. Ps ∧ ∃t. π s t is L-undecidable.

Corollary 5.15 λs. Ps ∧ ∀t. ¬π s t is not L-acceptable

Corollary 5.16 For every term t: λs. := Ps ∧ π s t is L-undecidable.

Corollary 5.17 For every term t: λs. := Ps ∧ ¬π s t is not L-acceptable.



28 Acceptability and Rice’s Theorem

5.4.1 Rice’s Theorem as a Corollary of Scott’s Theorem

We can formulate the classical version of Rice’s theorem in a slightly different way,
so that it follows from Scott’s theorem:

Corollary 5.18 P is L-undecidable if it satisfies the following conditions:

1. P is only satisfied by combinators: P ⊆ C.

2. P is extensional: If s1 and s2 are procedures such that ∀t.π s1 t ↔ π s2 t, then
P s1→ P s2.

3. P is nontrivial: There are procedures s1 and s2 with P s1 and ¬(P s2).

Proof We apply Scott’s Theorem and need to show:

1. P ⊆ C, which holds.

2. P is closed under reduction equivalence: P is even closed under acceptance,
and thus under reduction equivalence.

3. There is a combinator satisfying P , which holds by the assumptions.

4. There is a combinator not satisfyingP , which again holds by the assumptions.
�

It seems that our original version of Rice’s theorem is not obtainable by Scott’s the-
orem nor vice versa.



Chapter 6

Step-Indexed Evaluation

Wehave formally defined the semantics of L in Section 2.1 and proved several prop-
erties. Since the evaluation of programs in Lmay diverge it is not possible to write
a function in Coq that evaluates programs directly. We thus use a technique called
step indexing where a potentially non-total function gets equipped with an addi-
tional parameter that bounds the recursion depth.

We first give a definition for this step-indexed semantics as a predicate. Then we
implement a step-indexed evaluation function and show that evaluation in all three
semantics is equivalent.

6.1 The Step Evaluation Predicate

We already defined that s ⇓ t if s �∗ t and t is a procedure. We define s ⇓n t now,
which means that s ⇓ t, but with an evaluation path which is bounded in length
dependent on n.

λs ⇓n λs
s ⇓n λu t ⇓n v u0v ⇓n w

st ⇓Sn w

For s ⇓n t we say that s evaluates in n steps to t. Note that this is not the same as
s�n t. We want to show that s ⇓ t ↔ ∃n.s ⇓n t.

We show the direction from left to right first, which needs two intermediate results:

Fact 6.1 If s ⇓n t, then s ⇓Sn t.

Lemma 6.2 If s� t and t ⇓n v, then s ⇓Sn v.

Proof By an induction over the step-predicate. �

Lemma 6.3 If s ⇓ t, then there is n such that s ⇓n t.



30 Step-Indexed Evaluation

Proof We know that s�∗ t and t is an abstraction. By an induction over s�∗ t:

• If s = t, then s is obviously also an abstraction and thus for every n:
s ⇓n s ↔ s ⇓n t.

• Assume s � s′ �∗ t and there is n with s′ ⇓n t. Now by Lemma 6.2 we know
that s ⇓Sn t.

�

The converse is easier:

Lemma 6.4 If s ⇓n t then s ⇓ t.

Proof By induction over the step-evaluation predicate:

• If s = t, then obviously s is also a procedure and s ⇓ s holds.

• Assume s�∗ λu, t�∗ v and u0v �∗ w. We need to show that s t�∗ w, which is
the case since s t�∗ (λu)v �∗ u0v �∗ w. �

Corollary 6.5 s ⇓ t ↔ ∃n.s ⇓n t

6.2 An Executable Semantics for L

After we have defined the step evaluation predicate we define a function eva now
that is able to compute t given s and n such that s⇓n t. To simulate that eva is partial
we let it compute something of type T⊥, which means that it either returns btc for
some t : T or ⊥ (to represent undefinedness).

The definition of eva is straightforward:

eva : N→ T→ T⊥

eva n k = ⊥
eva n (λs) = bλsc
eva 0 (st) = ⊥

eva (Sn) (st) = match eva n s, eva n t with
| bλsc, btc ⇒ eva n s0t
| _ _ ⇒ ⊥

We show that eva really computes the ⇓n predicate. Then we know that we are
able to compute a normal form for a term, given it exists and we know how far to
compute.



6.3. Internalized Maybe-Type 31

The correctness proof factors into several steps. We first show that any time eva
evaluates to a term, this is really a procedure. Thenwe show that every value eva n s
finds is indeed a term t such that s⇓n t. The converse statement is that if s⇓n t also
eva n s = btc.

Lemma 6.6 If eva n s = btc then t is a procedure.

Proof By induction over n and case analysis over s and all recursive calls. �

Lemma 6.7 If eva n s = btc then s ⇓n t.

Proof Analogous to Lemma 6.6. �

Lemma 6.8 If s ⇓n t then eva n s = btc.

Proof By induction over s ⇓n t. �

Important is the following monotonicity property that shows that the value of eva
does not rely on the index n:

Lemma 6.9 eva n s = btc → eva (Sn) s = btc.

Proof eva n s = btc implies s ⇓n t, thus s ⇓Sn t holds and yields eva (Sn) s = btc. �

6.3 Internalized Maybe-Type

Our definition of eva returns a value of type T⊥. We thus need to internalize this
type before we can internalize the eva-function. We can even generalize this to
arbitrary types X⊥.

We simply represent⊥ as λsn.n and btc as λsn.s ptq, where we can use any encod-
ing instead of p.q.

We define the two constructors:

Some := λt s n.s t

None := λsn.n

The following two facts are important:

Fact 6.10 For all procedures v: Some v 6≡ None.

Fact 6.11 For all procedures v and w: Some v ≡ Some w→ v = w.



32 Step-Indexed Evaluation

6.4 Internalized Self Interpreter

Our goal is to internalize a self-interpreter for L. We first need to internalize the eva
function. This will take several steps. We need to internalize every function that
gets used in the eva function. This is the substitution function, that itself relies on a
equality check onnatural numbers. Thusweneed to give combinators internalizing
substitution and natural number equality.

Lemma 6.12 (Internalized Equality of Natural Numbers)
There is a combinator EqN such that for all natural numbers m and n one of the two fol-
lowing statements holds:

1. m = n and EqNm n ≡ true

2. m 6= n and EqNm n ≡ false

Proof Define EqN to satisfy the following equivalences:

EqN 0 0 ≡ true EqN Sm 0 ≡ false
EqN 0 Sn ≡ false EqN Sm Sn ≡ EqNm n

The proof is just induction overm. �

Lemma 6.13 (Internalized Substitution)
There is a combinator Subst such that Subst psq n puq ≡ psnuq.

Proof Define Subst recursively such that the following equivalences hold:

Subst pnq k puq ≡ EqN n k puq (Var n)

Subst pstq k puq ≡ App (Subst psq k puq) (Subst ptq k puq)
Subst pλsq k puq ≡ Lam (Subst psq (Succ k) puq) �

Theorem 6.14 (Internalized Step-Indexed Evaluation)
There is a combinator Eva such that Eva k psq ≡ peva k sq.



6.5. L-Decidability Implies Coq-Decidability 33

Proof Define Eva recursively such that the following equivalences hold:

Eva k pnq ≡ p⊥q
Eva k pλsq ≡ Some (Lam psq)
Eva 0 pstq ≡ p⊥q

Eva Sn pstq ≡ Eva n psq
(λx. Eva n ptq

(λy. x (λp⊥q)
(λλp⊥q)
(λz. Subst z 0 y)))

p⊥q
p⊥q �

6.5 L-Decidability Implies Coq-Decidability

We show that every L-decidable predicate is Coq-decidable. On the first view this is
a surprising result, since L is a Turing-complete language while Coq is restricted to
primitive recursive functions. L-decidability is that weak because it needs a decider
in L and a proof of the correctness of the decider in Coq, as was already pointed
out in chapter 4. One can now construct a deciding function in Coq based on this
proof.

For the result we will need Constructive Choice, which can be found in the Coq
standard library [5]. We will state it as a lemma but not prove it:

Lemma 6.15 (Constructive Choice) Let P : N→ Prop be a computationally decidable
predicate. Then we can build a function c of type (∃n.P n)→ T such that for every proof
H : ∃n.P n it holds that P (cH).

One can use this function c to get a witness for the satisfiability of a predicate by
just proving the existence of one. Note that this is not trivial in constructive math-
ematics, since the witness really needs to be computed.

Theorem 6.16 If P is an L-decidable predicate, it is Coq-decidable.

Proof Let P be an L-decidable predicate, that means there is u : Twith ∀s.u psq ≡
true ∧ P s ∨ u psq ≡ false ∧ ¬(P s). We want to prove that for an arbitrary s : T we
either can compute a proof for P s or for ¬(P s).

It is easy to see that the following holds

∃n.u psq ⇓n true ∨ u psq ⇓n false



34 Step-Indexed Evaluation

Then we can use the constructive choice function c to compute such an n.

We can simply consider the term t with u psq ⇓n t. If t = true, we can show that
Ps holds: We either have u psq ≡ true ∧ Ps, which proofs what we want. Or we
have u psq ≡ false, but then true ≡ false which would mean that true = false.
Contradiction.

If t 6= true, we have t = false and thus ¬(P s) holds by a similar reasoning. �



Chapter 7

Self-Interpretation

Our goal of an internalized self-interpreter for L is almost reached. We defined a
step-indexed evaluation predicate, which is implementable in Coq. The next natu-
ral step is to internalize this function.

Then the question rises how to turn step-indexed functions into combinators that
ignore the bound. In general this can be solved using a combinator that turns total
step-indexed combinators into partial ones.

7.1 On the Internalization of Partial Functions

We come back to the goal of internalizing a function. Remember that a combinator
u internalizes a function f : T→ T if for every term s: u psq ≡ pf sq.

We have already seen how to internalize total Coq-functions in Section 3.3. The
next question is how to generalize this to arbitrary functions.

There are two ways to solve the problem for partial functions. One way is to inter-
nalize the function directly by translating the recursive specification carefully into
L, in parallel to the internalization in Section 3.3. Wewill use thismethod in Section
8.1.

The alternative way involves more intermediate steps, but is easier to verify. One
first implements the function f in Coq using step-indexing. This results in a total
function f ′ : N→ T→ T⊥, that can be internalized to a procedure F using the
known methods. The term F then has the following properties:

1. F is total in the sense that ∀nt.F n ptq ≡ None∨ ∃v.Pv ∧F n ptq ≡ Some pvq.

2. F is monotone in the sense that ∀ntv.F n ptq ≡ Some v→ F Sn ptq ≡ Some v.

The first property is immediately clear, because F internalized the total function
f ′. The second property follows from the fact, that f ′ would behave like f if one



36 Self-Interpretation

would simply ignore the index. The result of F thus does not depend on the index
n.

The basic idea of this approach is a simple linear search over the index n of F .

The two internalization strategies are visualized in the following diagram. Note
that the diagram is commuting in a semantic sense, as that the resulting combi-
nators are semantically equivalent. They are, however, not in general equivalent
in terms of L. Both strategies have advantages and disadvantages. One especially
needs to consider if the fiddlier proofs in the direct version outweigh the work to
build a step-indexed version. The step-indexed version just works with functions
f of type T→ T and needs to be adapted for other types.

Recursive function

Step-indexed
Coq-function

L combinator

Step-indexed
L combinator

Internalization strategies

We define a combinator, that takes a monotone and total procedure F and an input
t and tries out indices n until it finds one such that F n ptq ≡ Some v. Then we have
found the value ft = v. This is done using a simple linear search:

We define S′ such that:

S′ n F ptq ≡ (F n ptq) K ((λx.(λx.S′ x) (Succ n) F ptq x))

We assume that F is total and monotone from now on:
Lemma 7.1

S′ n F ptq ≡ S′ Sn F ptq

Proof By a case analysis of F n ptq.

If it is Some v, we know because of the monotonicity that F Sn ptq ≡ Some v as well.
But then S′ n F ptq ≡ v ≡ S′ n F ptq.

If F n ptq ≡ Nonewe directly have S′ n F ptq ≡ S′ Sn F ptq. �

We define the real combinator S as

S := S′ 0



7.1. On the Internalization of Partial Functions 37

Lemma 7.2 S F ptq ≡ S′ n F ptq for any natural number n.

Proof By induction over n and Lemma 7.1 �

The correctness of S factors into two parts. First we show that any time S finds a
value v there really is an n such that F n ptq ≡ Some v and vice versa. Secondly any
time S s ptq converges, the resulting value is in fact closed. This yields a combinator
that lets a step-indexed combinator forget about its bound. We list all necessary
assumptions for the theorem:

Theorem 7.3 If F is a procedure such that

1. ∀n t.F n ptq ≡ None ∨ ∃v.Pv ∧ F n ptq ≡ Some pvq

2. ∀n t v.F n ptq ≡ Some v→ F Sn ptq ≡ Some v

we have for every procedure v and every term t:

S F ptq ≡ v ↔ ∃n.F n ptq ≡ Some v

Proof The direction from right to left is trivial using Lemma 7.2.

The direction from left to right takes considerable effort and a new proof technique.
Instead of the original statement we prove a generalized version:

∀n.S′ n F ptq �k v→ ∃n.F n ptq ≡ Some v

Because S F ptq ≡ v where v is a procedure we know that there is a k such that
S F ptq �k v.

We use strong induction over k, i.e. we assume that the following statement holds
for all k′ smaller than k:

∀n.S′ n F ptq �k′ v→ ∃n.F n ptq ≡ Some v

We then analyze if F n ptq is equivalent to Some v′ or to None. In both cases we
assume that S′ n s ptq �k v and show that there is a n such that F n ptq ≡ Some v.

Assume the first holds. Then we know that S′ n ptq ≡ v′, but we also know that
S′ n ptq ≡ v. Both v and v′ are abstractions and thus v = v′. Thuswe have F n ptq ≡
Some v.

In the other case we know that F n ptq ≡ None. We thus know that S′ n s ptq �m

S′ n s ptq for somem > 0.

From S′ n s ptq �k v and S′ n s ptq �m S′ Sn s ptq we can conclude that there
is m′ < k with S′ Sn s ptq �m′

v. This gives us the ability to apply the inductive
hypothesis and we are done. �



38 Self-Interpretation

Note that the last proof would be a lot harder, if not impossible, if we did not have
the parametric diamond property resulting from the uniform confluence of L.

The following lemma is needed and does not follow from Lemma 7.3. The theorem
assumes the term v to be a procedure and this assumption can not be weakened.
We are able to weaken it after we have shown the following independent result:

Lemma 7.4 Let F be a procedure as in the theorem above. Then for every abstraction v we
have that S F ptq ≡ v→ Cv.

Proof The proof is similar to the one above. We again generalize and assume
S′ n F ptq �k v.

Either we have F n ptq ≡ Some v′ where v′ is a procedure. Then we again conclude
v = v′ and by this v is closed for sure.

In the other case we have F n ptq ≡ None, thus S′ n s ptq �m S′ n s ptq for some
m > 0, which yields a m′ < k such that S′ Sn s ptq �m′

v. By the inductive
hypothesis we are done. �

This general technique of size induction over the length of the reduction path can
always be used to verify partial combinators. If the combinator is defined using S
there should be no need of such proofs, since everything one needs to do is create a
monotone and total step-indexed combinator F and use the correctness theorems
above.

Corollary 7.5 (Correctness of S) For a procedure F as above and an abstraction v it
holds that: S F ptq ⇓ v→ ∃n.F n ptq ≡ Some v

Proof We need the fact that v is closed in both directions to apply Theorem 7.5.
This follows from Lemma 7.4 for the direction from left to right and from Fact 6.11
in the other direction. �

Corollary 7.5 can be used to verify any combinator that has been defined via the
combinator S. We will do this for the self-interpreter combinator.

7.2 Definition of the Self-Interpreter

An interpreter for L would be a partial function I : T→ T such that s ⇓ Is if Is is
defined and s ⇑ otherwise. Clearly, such an interpreter is not definable in Coq. But
we can define a term Evalwith Eval psq ≡ ptq ↔ s ⇓ t.

This is routine using the combinator S. We have already done the work of writing
a step-indexed interpreter combinator in Section 6.4.

To use the theorems over S we need to verify that Eva is total and monotone:



7.2. Definition of the Self-Interpreter 39

Lemma 7.6 Either Eva n ptq ≡ None or there is a procedure v such that Eva n ptq ≡
Some v.

Proof This is trivial, since Eva internalizes eva. �

Lemma 7.7 For every procedure v: Eva n ptq ≡ Some v→ Eva Sn ptq ≡ Some v.

Proof Follows with Lemma 6.9 and the correctness of Eva. �

We can define:
Eval := S(λx.Eva x)

The η-expansion is not necessary, but convenient since it simplifies the formal proofs.
We are interested in the the following two statements:

1. Eval psq ≡ ptq ↔ s ⇓ t

2. Eval psq ⇓ ↔ s ⇓

Both statements are provable almost directly using the correctness of S. We first
show an intermediate lemma:

Lemma 7.8 For any procedure v: Eval psq ≡ v ↔ ∃n.Eva n psq ≡ Some v

Proof We use Corollary 7.5. We then have to show:

• ∃n.(λx.Eva x) n psq ≡ Some v ↔ ∃n.Eva n psq ≡ Some v: This is trivial.

• (λx.Eva x) is monotone and total. This follows directly from the totality and
monotonicity of Eva. �

We can show the two correctness statements of Eval:

Theorem 7.9 Eval psq ≡ ptq ↔ s ⇓ t

Proof For the direction from left to right assume that Eva psq ≡ ptq which is by
Lemma 7.8 equivalent to Eva n psq ≡ Some ptq for some n : N. Now analyze eva n s.
If it is bt′cwe can conclude that pbt′cq ≡ Some ptq and thus t′ = t and s ⇓ t′ = t.

For the direction from right to left assume that s ⇓ t, thus there is some n with
Eva n psq ≡ ptq by the correctness of Eva. This directly yields Eval psq ≡ ptq by
Lemma 7.8. �

Theorem 7.10 Eval psq ⇓ ↔ s ⇓



40 Self-Interpretation

Proof We first show the easy direction from right to left. Assume s converges.
Then there is n such that eva n s = btc. This yields the convergence of Eval psq since
Eval psq ≡ ptq then.

For the direction from left to right assume that Eval psq ⇓, that is there is an abstrac-
tion v such that Eval psq ≡ v. We can use Lemma 7.8, so that we need to conclude
s ⇓ from Eva n psq ≡ v.

We also need to show that v is closed, because this was necessary for the usage of
Lemma 7.8. We can use Lemma 7.4, which just requires the already proven mono-
tonicity and totality of Eva. �



Chapter 8

Parallel Or and AD Theorem

It is a well known result of computability theory that a problem is decidable if and
only if it is both acceptable and co-acceptable, see for instance [11]. Weneed to refor-
mulate this statement tomake it provable in our constructive setting. Thuswe show
that for a propositionally decidable predicate P we can conclude L-decidability
from L-acceptability and L-coacceptability.

We will refer to this theorem as AD Theorem. The proof assumes acceptors u and v
for P and P respectively, which are executed on a given input. The idea is a com-
binator Por that is able to simulate a parallel evaluation of two terms. Depending
on which of the two terms converged, the value of the program is true or false. Por
can be used to run u and v on an input and thus to construct a decider.

8.1 Specification of Parallel Or

We are interested in a combinator Por such that Por psq ptq converges if and only
if either s or t converges. Moreover, we want Por to signal which one of its inputs
converged. That means if Por psq ptq evaluates to true, then s converged, and if
Por psq ptq evaluates to false, t converged.

The informal idea of the algorithm is as follows: We evaluate s with an evalua-
tion bound of 1 using our internalized step-indexed interpreter. If s converged, we
are done. If not, we execute t with bound 1. If this again produced no result, we
increase the bound by 1 and proceed.

This is in fact a linear search over all natural numbers, that evaluates both s and t
for n steps one after another. This technique of interleaving the execution of two
algorithms is known as dovetailing.

We already have everything we need for the definition of Por at hand. We just need
to be careful on how to formulate the correctness criterion of Por.



42 Parallel Or and AD Theorem

We formulate it as:

For all terms s and t one of the following statements holds:

1. If s converges or t converges, then Por psq ptq converges.

2. If Por psq ptq converges, then either Por psq ptq ≡ true and s converges
or Por psq ptq ≡ false and t converges.

We prove that such a combinator Por exists in 8.2. Note that the first part can not
be strengthened in a way like If s converges, then Por psq ptq ≡ true, since this is not
necessarily the case. Consider for instance s := I I and t := I . Since t already is a
procedure, it converges faster than s and thus Por psq ptq ≡ false.

First we define Por. We have already described the informal idea. We implement
a combinator Por’ that takes an encoded natural number n and two terms as input
and executes the terms both to depth n. If none of them converges, it continues
its search with Sn as a new argument recursively. This idea is parallel to the one
in Section 7.1, but instead of executing one combinator via the step-indexed self-
interpreter and a linear search two combinators get executed.

We can then simply define Por to be Por’ 0. In fact, we could even choose any index
here.

Fact 8.1 There is a combinator Por’ such that:

Por’ n psq ptq ≡ Eva n psq(λλ true)
(Eva n ptq(λλ false)
(λ(λx.Por’ x) (Succ n) psq ptq) I

We show some essential properties of Por’ that lead to the correctness of Por.

8.2 Correctness and Completeness of Parallel Or

The index n for Por’ is not interesting regarding convergence. This is expressed in
the following lemma:

Lemma 8.2 Por’ n psq ptq converges if and only if Por’ Sn psq ptq does.

Proof If eva n s is bvc, then eva (Sn) s is also bvc and both Por’ n psq ptq and
Por’ Sn psq ptq evaluate to true.

Assume eva n s is⊥. If eva n t evaluates to a value, then eva (Sn) t and both instances
of Por’ evaluate to false. In the case where both eva n s and eva n t are ⊥, we even
have Por’ n psq ptq ≡ Por’ Sn psq ptq. �



8.2. Correctness and Completeness of Parallel Or 43

Using this we can conclude:

Corollary 8.3 Por’ 0 psq ptq converges if and only if Por’ n psq ptq converges.

It seems tempting to formulate Lemma8.2 strongerwith a statement likePor’n psq ptq ≡
Por’ Sn psq ptq. While this is unnecessary, it also does not hold. It may be the case,
that there is no v such that s ⇓n v, but there is one with s ⇓Sn v. Then the right
hand side of the proposed equivalence will evaluate to true in any case, while the
left hand side evaluates to false if t converges in n steps.

Having this it is clear that if one of the terms converges, the parallel or of them
converges. We show one version of this, while the second is exactly parallel:

Lemma 8.4 If s converges, then Por psq ptq converges.

Proof Assume that s converges, that is it evaluates in n steps to v. To show that
Por psq ptq converges it is enough to show that Por’ n psq ptq converges. This is the
case, because Eva n psq ≡ pvq and thus Por’ n psq ptq ≡ true. �

Lemma 8.5 If t converges, then Por psq ptq converges.

Corollary 8.6 If s or t converge, then Por psq ptq converges.

This is the first direction of the correctness. The second works by induction over
the reduction length. The proof is parallel to the correctness proof of the partial
evaluation combinator S in Section 7.1. Note that while a definition of Por via S is
possible, it is more complicated than our direct approach used here.

Lemma 8.7 If Por psq ptq converges, then either Por psq ptq ≡ true and s converges or
Por psq ptq ≡ false and t converges.

Proof We strengthen the claim to

∀n.Por’ n psq ptq �m v→ Por’ n psq ptq ≡ true ∧ s ⇓ ∨Por’ n psq ptq ≡ false ∧ t ⇓

for an arbitrary procedure v.

The proof then uses strong induction overm. We can distinct four cases:

1. s ⇓n v and t ⇓n v′. Then s converges and Por’ n psq ptq ≡ true, because
Eva n psq ≡ pvq.

2. s⇓nv and there is no v′with t⇓nv′. Then s converges and Por’ n psq ptq ≡ true,
because Eva n psq ≡ pvq.

3. There is no v with s ⇓n v and we have v′ with t ⇓n v′. Then t converges and
Por’ n psq ptq ≡ false, because Eva n ptq ≡ pv′q.



44 Parallel Or and AD Theorem

4. There are neither v nor v′ with s ⇓n v or t ⇓n v′. Then Por’ n psq ptq ≡
Por’ Sn psq ptq and there is l < m such that Por’ n psq ptq �l Por’ Sn psq ptq.

We have to show that (Por’ n psq ptq ≡ true∧s ⇓)∨(Por’ n psq ptq ≡ false∧t ⇓),
which is equivalent to (Por’ Sn psq ptq ≡ true ∧ s ⇓) ∨ (Por’ Sn psq ptq ≡
false ∧ t ⇓).

We can invoke the inductive hypothesis here and are done. �

Corollary 8.8 If Por psq ptq ≡ true then s converges.

Proof Obviously Por psq ptq converges, and thus we have that either Por psq ptq ≡
true and s converges or Por psq ptq ≡ false and t converges.

In the first case, we are done. In the second case we have a contradiction, since then
Por psq ptq is equivalent to true and false, but we know that true 6≡ false. �

Corollary 8.9 If Por psq ptq ≡ false then t converges.

Corollary 8.10 Por psq ptq converges if and only if either s or t converge.

Proof The direction from left to right follows from Lemma 8.7. The direction from
right to left is a direct consequence from the lemmas 8.4 and 8.5. �

Theorem 8.11 (Existence of Parallel Or) There is a combinator Por such that for all
terms s and t one of the following statements holds:

1. If s converges or t converges, then Por psq ptq converges.

2. If Por psq ptq converges, then either Por psq ptq ≡ true and s converges
or Por psq ptq ≡ false and t converges.

Proof Follows directly from the last lemmas. �

Remark

Classically, onewould formulate the existence of a combinator like Por in a stronger
way:

There is a combinator Por such that for all terms s and t one of the following statements
holds:

1. s converges and Por psq ptq ≡ true.

2. t converges and Por psq ptq ≡ false.

3. The terms s, t, and Por psq ptq all diverge.



8.3. The AD-Theorem 45

This is not possible in a constructive setting. It is obvious that the halting problem
is not propositionally decidable in Coq. The assumption of a combinator with the
properties stated abovewould nowyield exactly that the halting predicate is propo-
sitionally decidable. To see this, just set s and t to the same term. Then examine
which of the cases holds to find out if the term converged.

8.3 The AD-Theorem

Theorem 8.12 (AD) If a propositionally decidable predicate is both L-acceptable and L-
coacceptable, it is L-decidable.

Proof Let P be an arbitrary predicate that is propositionally decidable, that is
∀s : T.Ps ∨ ¬Ps. Assume acceptors u and v for P and P respectively:

(Ps ↔ π u s) ∧ (¬Ps ↔ π v s)

We define a decider for P as follows:

λs.Por (App puq (Q s)) (App pvq (Q s))

Note that (λs.Por (App puq (Q s)) (App pvq (Q s))) psq ≡ Por pu psqq pv psqq.

Since P is propositionally decidable, we either have u psq converges or v psq con-
verges and thus Por pu psqq pv psqq converges in both cases.

Thus by Lemma 8.7 either (λs.Por (App puq (Q s)) (App pvq (Q s))) psq ≡ true and
Ps or (λs.Por (App puq (Q s)) (App pvq (Q s))) psq ≡ false and ¬Ps, which shows
the proposition. �



Chapter 9

Recursive Enumerability

An L-acceptable predicate is often called a recursively enumerable (r.e.) predicate
in the literature. One usually shows that an acceptable problem can be seen as
the codomain of a partial function and vice versa. We will define the notion of
enumerability for L and show that it coincides with L-acceptability.

9.1 Enumerable Predicates

Definition 9.1 A predicate P : T→ Prop is called L-enumerable if there is a combinator
F with:

1. ∀n.F n ≡ None ∨ ∃s.F n ≡ Some psq ∧ Ps

2. ∀s.Ps→ ∃n.F n ≡ Some psq

We call F the enumerator of P .

We show that L-enumerable and L-acceptable predicates are indeed exactly the
same. The proof consists of two constructions.

We need away to construct an acceptor out of an enumerator. We can use amethod
here which we have already seen and do linear search over the codomain of the
enumerator.

The other way is harder and needs considerably more effort. We need to construct
an enumerator out of an acceptor. To do so we first enumerate all terms and use
an internalized bijection of type N→ T. We then show that there is a surjection
N→ N × N. Using this constructions the enumerator can work as follows: Under
input n, it deconstructs the input to a pair of natural numbers m1 and m2. m2 is
used to construct a term t and the enumerator returns the result of Evam1 puptqq.
Since the functions (N→ T and N→ N × N) are both bijective, every term gets
executed with every evaluation depth eventually.



9.2. Enumeration of terms 47

In the classical approach to computability theory it is essential that all terms can
be enumerated, which is considered to be something trivial in general but fiddly if
applied to special cases. In our constructive approach it is not enough to point to the
obvious countability of terms to get a numbering, we need to explicitly construct a
function g : T→ N and its inverse g−1 : N→ T.

We could have used the well known ideas exploiting the properties of prime fac-
torization used for gödelization, but this is also a good place to show the compu-
tational power of L by implementing lists and some well-known list functions. We
possibly spend a little more effort for this than the usual approach would take, but
additionally get an independent development of Scott-encoded lists in L.

This chapter thus splits into five sections. The first implements the functions g and
g−1 in Coq and proves their correctness. The second one implements a bunch of
list functions like append,map, filter, nth and pos in L before all this gets combined in
section 3 to internalized combinators. The fourth section shows the equivalence of
L-enumerability and L-Acceptability. We show that existential quantification over
an L-decidable predicate is L-acceptable in Section 5.

9.2 Enumeration of terms

We are interested in a bijective function g : T→ N and the inverse function g−1 :

N→ T. We call g t the index of t sometimes.

The idea here is simple to explain:

We construct a cumulative sequence Tn of duplicate free lists of terms such that
Tn+1 = Tn ++ B. We need to make sure that for every term s we can find an index
n such that Tn contains s. If so, we use the position of s in Tn as the index of s. If
we want to find the term belonging to a given index m (that is: g−1 m) we simply
build the lists until an n such that Tn is big enough and take the term at the m-th
position.

Since the lists are cumulative and duplicate free both operations are indeed func-
tions that invert each other.

It remains to find such a list sequence Tn. We use a simple approach that is gener-
alizable to arbitrary countable constructor types.

The idea gets described well by the following inference rules concerning member-
ship in the single lists:

n ∈ Tn
s ∈ Tn t ∈ Tn
s t ∈ Tn+1

s ∈ Tn
λs ∈ Tn+1



48 Recursive Enumerability

We will use the notation A[n] for the n-th element in the list A. The function
λA n. A[n] is of type T list→ N→ T⊥.

The definition of T is straightforward using the rules above. For n = 0 we can
simply set T0 := [0]. We need to make sure that Tn+1 contains the variable n + 1.
Then, for every swe take λs to Tn+1 if it was not contained in Tn. We do the same for
s twhere both s and twere in Tn, again only if s twas not contained in Tn already.

[]×app B = []

a :: A×app B = A×app B ++ map (λx. ax) B

T0 = [0]

Tn+1 = Tn ++ [n+ 1] ++ filter (λx.x 6∈ Tn) (Tn ×app Tn ++ map λ Tn)

We obviously have:

Fact 9.2 For a ∈ A and b ∈ B we have a b ∈ A×app B

Four useful facts about Tn are easy to prove and follow from each other:

Fact 9.3

1. ∃x,B.Tn+1 = Tn ++ x :: B

2. Tn[m] = s→ Tn+1[m] = s

3. n2 ≥ n1→ Tn2 [m] = s→ Tn1 [m] = s

4. n2 ≥ n1→ s ∈ Tn1 [m]→ s ∈ Tn2 [m]

We can prove that T fulfills the specification we gave above.

Lemma 9.4 n ∈ Tn

Proof By case analysis over n. �

Lemma 9.5 s ∈ Tn→ t ∈ Tn→ s t ∈ Tn+1

Proof We want to prove that s t ∈ Tn ++ [n] ++ filter (λx.x 6∈ Tn) (Tn ×app Tn +

+ map λ Tn). If s t ∈ Tn, then we are already done. If not, we already have shown
that s t ∈ Tn ×app Tn and because s t 6∈ Tn, we know that s t ∈ filter (λx.x 6∈
Tn) (Tn ×app Tn) and thus s t ∈ Tn+1. �

Lemma 9.6 s ∈ Tn→ λs ∈ Tn+1



9.2. Enumeration of terms 49

Proof Parallel to the one above. �

Wenowdefine an alternative size-function for our terms and show that Tn contains
all terms with size less or equal than n:

|n| = n

|s t| = 1 + |s|+ |t|
|λs| = 1 + |s|

Note that in difference to our previous size function the size of a variable is not 1,
but the de Bruijn index of the variable. We are able to show the following lemma.

Lemma 9.7 s ∈ T|s|

Proof By induction over s.

If s is a variable, we are done, because n ∈ Tn holds.

If s = s t, and s ∈ T|s|, t ∈ T|t|, then by the lemma above it is enough to show that
s, t ∈ T1+|s|+|t|, which follows point (4) of Fact 9.3.

If s = λs and s ∈ T|s|, then by the correctness of map it is enough to show that
λs ∈ T1+|s|, which holds by Lemma 9.6. �

For the surjectivity of g we also need the result:

Lemma 9.8 |Tn| > n

Proof By induction over n. �

This gives us the ability to define

g := λs. pos s T|s|
g−1 := λs. Tn[n]

We can show that g−1(g s) = s which gives us injectivity of g and surjectivity of
g−1.

Theorem 9.9 (Injectivity of the Enumeration) g−1(g s) = s

Proof We start with a case analysis over g s, that is over the position of s in T|s|.
We know that this is defined by Lemma 9.7, thus we can assume that T|s|[n] = s.
We then analyze g−1 n, which is Tn[n]. By Lemma 9.8 we know, that this is also
defined, so we assume that Tn[n] = t. It remains to show that s = t.



50 Recursive Enumerability

|s| = n: Then we have nothing to prove, because there is just one element at
position n.

|s| > n: Then we know by point 3 in Fact 9.3 that T|s|[n] = t and we are done.

|s| < n: Again, by point 3 in Fact 9.3 it follows that Tn[n] = s. �

The proof that g is also surjective using g(g−1 n) = n takes a bit more effort. For
this we need the result that Tn is a duplicate-free list. We first prove two auxiliary
lemmas:

Lemma 9.10 m > n→ m 6∈ Tn

Proof By induction over n, case analysis over m and the fact that all elements of
A×app B are applications. �

Lemma 9.11 Tn is duplicate free.

Proof We use induction over n. The base case is trivial. For the inductive step,
assume that Tn is duplicate free.

We then show that Tn+1 also contains no duplicates. Because Tn+1 = Tn ++ [n] +

+ filter (λx. x 6∈ Tn) (Tn ×app Tn ++ map λ Tn), it is enough to show that Tn and
filter (λx.x 6∈ Tn) (Tn ×app Tn ++ map λ Tn) have no common elements and that
both are duplicate free. The second part (duplicate-freeness of Tn) follows from
the inductive hypothesis.

The first part uses the previous lemma and the correctness of filter and is straight-
forward. The last part is the interesting one.

Wewant to show that filter (λx. x 6∈ Tn) (Tn×appTn++ mapλTn)does not contain any
duplicates if Tn does not. We first need to show that the variable n + 1 is neither
in Tn ×app Tn nor in map λ Tn. Both facts hold, because A ×app B contains only
applications and the mapped part only λ-terms. Thus the duplicate freeness of
filter (λx.x 6∈ Tn) (Tn ×app Tn ++ map λ Tn) remains.

For this it is enough to show that both Tn ×app Tn and map λ Tn are dupfree. The
first one is provable by a general lemma about×app, the second one is a property of
map, because Tn is dupfree by assumption and the function which puts a λ above
its argument is clearly injective. �

It follows that

Theorem 9.12 (Surjectivity of the Enumeration) g (g−1 n) = n

Proof The proof is analogous to Theorem 9.9. �



9.3. A List Libray for L 51

We have an explicit, computable bijection g between T and N. Our next step is to
internalize its inverse g−1 into a combinator U . To do so we need to internalize the
functions on lists we used.

9.3 A List Libray for L

In the proof of a bijection between T and N we heavily used List functions in Coq.
When translating the functions g and g−1 in the usual way to procedures in L, we
also need this list functions. We internalize lists over an arbitrary Scott-encodable
data typeX using Scott-encoding again. Thus we only need to verify that there are
procedures internalizing cons, append, map, membership, filter, nth and pos.

Some of them, like cons, append and nil are trivial to internalize to combinators Nil,
Append and Cons.

Some others likeMap, El and Filter need more thought.

Fact 9.13 There is a combinator Map such that for every procedure u:

1. Map u Nil ≡ Nil

2. Map u pa :: Aq ≡ Cons (upaq)((λx.Map x)upAq)

Lemma 9.14 If u internalizes f , then Map u pAq ≡ pmap f Aq

Proof By induction over A using the two properties above. �

To show that there is a combinator El internalizing membership we assume that
there is a combinator Eqwhich decides equality on the assumed type X .

First we show the two recursive equations:

Fact 9.15 If ∀xy : X.x = y∧Eq pxq pyq ≡ true∨x 6= y∧Eq pxq pyq ≡ false then there
is a combinator El such that:

1. El psq Nil ≡ false

2. El psq pa :: Aq ≡ orelse (Eq paq psq) ((λx.El x) psq pAq)

Then the correctness of El follows:

Lemma 9.16 For Eq as above we have: El psq pAq ≡ true ∧ s ∈ A ∨ El psq pAq ≡
false ∧ s 6∈ A

Proof By induction over A, the two properties above and the correctness of Eq. �

The correctness lemma for Filter is stated as follows:



52 Recursive Enumerability

Lemma 9.17 Let u be a decider for P : X → Prop. Then Filter u pAq ≡ pfilter P Aq.

Proof By induction over A. The base case is trivial. In the inductive step one first
needs to use the fact that u is a decider, then decide if p holds on the first element
of the list afterwards. Two cases generate a direct contradiction, the two others are
straightforward. �

The last interesting procedure we internalize is pos. There is no function in the Coq
library which gives the index of the first occurrence of an element in a list. Thus we
first define:

Fixpoint pos (X : Type) {e : eq_dec X} (s : X) (A : list X) :=
match A with
| nil⇒None
| a :: A⇒ if decision (s = a) then Some 0 else match pos s A with None⇒None

| Some n⇒ Some (S n) end
end.

Fact 9.18 There is a combinator Pos for which the following two equivalences hold:

Pos psq Nil ≡ None
Pos psq pa :: Aq ≡ Eq psq paq (λ(Some Zero))

(λ((λx.Pos x) psq pAq)(λn.Some (Succ n)) None))I

We can prove that:

Lemma 9.19 Pos psq pAq ≡ None∧pos s A = ⊥∨Pos psq pAq ≡ Some n∧pos s A =

bnc

Proof By induction over A. �

9.4 Internalized Enumeration of Terms

The last thin we need to do to build an enumerator is to internalize the functions
used in Section 9.2. We use the well-known technique to internalize the ×app, | . |
and Tn procedures. Thus we define combinators AppCross, ESize and TT such that:

1. AppCross Nil pBq ≡ Nil

2. AppCross pa :: Aq pBq ≡ Append (AppCrossAB) (Map (λx.(App paq) x) pBq)

3. ESize pnq ≡ n

4. ESize pstq ≡ Add (Add 1 ((λx.ESize x) psq))((λx.ESize x) ptq)

5. ESize pλsq ≡ Succ ((λx.ESize x) psq)



9.5. Equivalence of L-Enumerability and L-Acceptability 53

The equations which need to hold for the combinator TT are the obvious ones.

Lemma 9.20 AppCross pAq pBq ≡ pA×app Bq

Proof By induction over A, the two equations above and the correctness of Map
and Append. �

Lemma 9.21 ESize psq ≡ |s|

Proof By induction over s, the three equations above and the correctness of Add
and Succ. �

Lemma 9.22 TT n ≡ pTnq

Proof By induction over n and all the correctness results above. �

The last step is a combinator U internalizing the function g−1 we were searching
for:

U := λn.Nth (TT n) n) I p0q

Lemma 9.23 U n ≡ pg−1nq

Proof By the correctness of TT and Nth it is enough to prove that:

1. Tn[n] = btc, then (λsn.s ptq) I p0q ≡ ptq, which holds

2. Tn[n] = None, then (λsn.n) I p0q ≡ p0q, which also holds. �

9.5 Equivalence of L-Enumerability and L-Acceptability

9.5.1 L-Enumerability implies L-Acceptability

The intuitive idea behind this proof is as follows: We know that the predicate P :

T→ Prop is L-enumerable, that is we have an enumerator F . We need to build an
acceptor u, that halts on psq if and only if Ps holds. u simply enumerates the terms
satisfying P using F and does a linear search for s as a result. If F returns s, it can
converge and indeed Ps holds. If F never converges to Some s, uwill diverge.

We build a combinatorRe that takes n and psq. It checks if F n ≡ Some s, converges
if so and proceeds with Re Sn psq if not. Then Re 0 psq converges if and only if
there is nwith F n ≡ Some psq.

To build and verify Rewe first fix a combinator F with ∀n.F n ≡ None ∨ ∃s.F n ≡
Some psq. Note that a combinator F with weaker properties than enumerators have
already suffices.



54 Recursive Enumerability

Fact 9.24 There is a combinator Re such that

Ren ptq ≡ F n (λs.Eq s ptq I (λλ(λx.Re x) (Succ n) ptq) I)(λ(λx.Re x) (Succ n) ptq) I

Re is antimonotonic in the sense that if Re n psq converges it also does so for every
indexm ≤ n.

Lemma 9.25 Re Sn psq ⇓ → Re n psq ⇓

Proof Assume Re Sn psq converges with some value v. Analyse what F n evalu-
ates to. This is either None or Some t. In any case we need to show that Re n psq
converges.

We have Re n psq ≡ Re Sn psq ≡ v in the first case. For the second case we
either have s = t and Re n psq converges directly. Or, s 6= t and again Re n psq ≡
Re Sn psq ≡ v. �

Lemma 9.26 n ≥ m→ Re n psq ⇓ → Re m psq ⇓

Proof Follows directly from 9.25. �

Lemma 9.27 Re n psq ⇓ → ∃n.F n ≡ Some psq

Proof SinceRe is not definable in Coq directly, we again use the technique of doing
induction over the length of the reduction path.

Assume that Re n psq �k v. By complete induction over k and the statement
∀n.Re n psq �k v→ ∃n.F n ≡ Some psq we are allowed to assume the statement
for k′ < k.

The proof uses a case analysis over the value of F n.

1. If F n ≡ Nonewe know that there ism > 0 such that Re n psq �m Re Sn psq.
Thus there is k′ withRe Sn psq �k′ v and we apply the inductive hypothesis.

2. If F n ≡ Some psqwe are done.

3. If F n ≡ Some ptq we have in parallel to the first case m > 0 such that
Re n psq �m Re Sn psq and thus k′ with Re Sn psq �k′ v. Using the in-
ductive hypothesis we are done. �

Lemma 9.28 If P is L-enumerable it is L-acceptable.

Proof Assume there is an enumerator F . Then u := (λx.Re 0 x) where using F
in the implementation of Re as shown above is an acceptor for P . We show two
directions, namely that u ptq converges if P t holds and the converse.



9.5. Equivalence of L-Enumerability and L-Acceptability 55

For the first direction assume that P t holds. Then there is n with F n ≡ Some ptq.
Using this we know that Re n ptq converges. We have to show that Re 0 ptq con-
verges, which follows with Lemma 9.25.

For the second direction assume that u converges on ptq, that means Re 0 ptq con-
verges. Since F fulfills the properties outlined in Section 9.5.1 we know that there
is n with F n ≡ Some ptq by Lemma 9.27. Everything we need to prove here is
that Ps holds. We exploit the totality of F . Either we have F n ≡ None, which is a
contradiction. From F n ≡ Some pt′q∧Pt′ we know that t = t′ and thus Pt holds.�

9.5.2 L-Acceptability implies L-Enumerability

To construct an enumerator from an acceptor we again employ a well-known idea
of classical computability theory. An intuituive description of the idea is as follows:
We enumerate all terms in a row using the ideas from Section 9.2. The enumerator
at index 1 simply returns the value of the first term evaluated one step using the
internalized step-indexed self-interpreter from Chapter 6. At index 2, it evaluates
the first term two steps. At index 3, it evaluates the second term one step. Then it
proceeds like this: Evaluate the first term three steps, the second term two steps,
the third term one step and so on.

In fact, we can even go one step further: We do not need to do this in a diagonal
order, the order does not even matter at all, as long as we reach every term with
every index eventually. Thus, we use an internalized surjectionN→ N×N. We use
the first component as the index of the term and the second one as the evaluation
bound. We assume that there is a surjective function c : N→ N × N and a combi-
nator C that internalizes it. This is enough to prove that semi-decidability implies
recursive enumerability. We explicitly construct and verify such a surjection c in
Section 9.5.2.

Theorem 9.29 Every L-acceptable predicate is L-enumerable.

Proof Let P be a predicate and u an acceptor for P . We define F as

λn.C n (λn1n2.Eva n1 (App puq (Q (U n2)))(λ Some (U n2)) None)

. F is an enumerator for P .

We need to show two parts:

• ∀n.F n ≡ none ∨ ∃s.F n ≡ Some psq ∧ Ps
Let n be a natural number and assume c n = (n1, n2). Examine the evaluation
of u pg−1 n2q evaluates in n1 steps.



56 Recursive Enumerability

If u pg−1 n2q ⇓n1 v the right part of the disjunction holds. We have:

F n ≡ Eva n1 (App puq (Q (U n2)))(λ Some (U n2)) None
≡ Eva n1 pu pg−1 n2qq(λ Some (U n2)) None
≡ Some (U n2)

≡ Some (pg−1 n2q)

It remains to show thatP (g−1 n2) also holds. But this is the case, sinceu pg−1 n2q⇓n1

v and thus the acceptor u does obviously converge on pg−1 n2q.

If we do not have a value v with u pg−1 n2q ⇓n1 v it follows that:

F n ≡ Eva n1 (App puq (Q (U n2)))(λ Some (U n2)) None
≡ Eva n1 pu pg−1 n2qq(λ Some (U n2)) None
≡ None

This shows the left side of the disjunction.

• ∀s.Ps→ ∃n.F n ≡ Some psq
The idea here is easy. Since s satisfies P , u converges on s in n steps. We
simply need the indexm of the pair (n, g s), this directly yields:

F m ≡ Eva n (App puq (Q (U g s)))(λ Some (U g s)) none

≡ peva n (u psq)q(λ Some (U g s)) none
≡ Some (U g s)

≡ Some psq �

A Pairing Function

We reuse the idea from Section 9.2 to get a surjection from N to N× N. Everything
we need to do is to define cumulative lists Cn such that pair of natural numbers
occurs eventually in Cn for some n. The function then just maps a natural number
m to the pair at positionm in this cumulative lists. They key idea is:

(n, 0) ∈ Tn
(n,m) ∈ Tn

(n,m+ 1) ∈ Tn+1

In parallel to the function T from Section 9.2 we define:

C0 = [(0, 0)]

Cn+1 = Cn ++ [(n+ 1, 0)] ++ filter (λx.x 6∈ Cn) (map (λ(n,m).(n,m+ 1)) Cn)

We then have:



9.6. The DA Theorem 57

Fact 9.30

• ∃x,B.Cn+1 = Cn :: x :: B

• Cn[m] = s→ Cn+1[m] = s

• n2 ≥ n1→ Cn2 [m] = s→ Cn1 [m] = s

We define the size of a pair (n,m) as |(n,m)| = 1 + n + m. Then we have two
important lemmas:

Lemma 9.31 (n,m) ∈ C|(n,m)|:

Proof By induction over n. Every case is easy. �

Lemma 9.32 |Cn| > n

Proof By induction over n. Every case is trivial again. �

We define the pairing function c and its inverse c−1:

c n := Tn[n]

c−1 (n,m) := pos (n,m) C|(n,m)|

We prove that c is surjective, which follows since c−1 is a right inverse to c. In fact,
it is even bijective (because c−1 is a left inverse), but we leave this fact open here,
since it is not needed.

Theorem 9.33 (Surjectivity of the pairing function) c (c−1 (n,m)) = (n,m)

Proof The proof is analogous to Lemma 9.9. �

Corollary 9.34 c : N→ N× N is surjective.

The internalization of c to a combinatorC is trivial. Weuse exactly the samemethod
as in Section 9.2.

9.6 The DA Theorem

Using the possibility to enumerate terms we are now able to prove that existential
quantification over a L-decidable predicate is L-acceptable.

We define a term Ex that performs unbounded search on all natural numbers. We
then internalize our enumeration of terms to prove the wanted result. For Ex it
should hold that:



58 Recursive Enumerability

Ex n v ≡ v n (λI) (λ Ex (Succ n) v) I

We first prove the following results:

Fact 9.35

• ∀v.Pv→ v n ≡ true→ Ex n v ⇓

• If v is a procedure, such that v n always evaluates to true or false, then

– Ex Sn v ⇓ → Ex n v ⇓

– If n ≥ m then Ex n v ⇓ → Exm v ⇓

The first statement is trivial to prove. The second one uses a case distinction over
the value of v n and is straight forward. The third follows directly from the second.

It remains that:

Lemma 9.36 If v is a procedure, such that v n always evaluates to true or false and Exn v ⇓
then there is k : N such that v k ≡ true

Proof Assume Ex n v converges. Let l be the length of the reduction path. By size
induction we are able to assume that if Ex m v converges in less than l steps, then
there is k′ : N such that v k′ ≡ true.

Consider the evaluation of v n. If it evaluates to true, then choose k to be n. If not,
then we know that Ex n v �l Ex Sn v where l > 0. Then Ex n v also converges, but
in less than l steps and the result follows by the inductive hypothesis. �

Lemma 9.37 If P is an L-decidable predicate on natural numbers, then the predicate
λt. ∃n.Pn is semi-decidable.

Proof Let v be a decider for P . Then λx.Ex 0 v is the wanted acceptor.

We actually need to prove:
(∃n.Pn) ↔ Ex v ⇓

The direction from left to right follows from the first statement in Fact 9.35 above.
The direction from right to left is the last lemma. �

Recall the enumeration for terms consisting of the two functions g : T→ N and
g−1 : N→ Twith the equations g−1(g s) = s.

Fact 9.38 There is a combinator U fulfilling U n ≡ pg−1 nq.



9.6. The DA Theorem 59

Now we can prove:

Theorem 9.39 (DA) If a predicate P is L-decidable, the predicate λ. ∃s.Ps is acceptable.

Proof Let v be a decider for P . We first show that λn : N. P (g−1 n) is a decidable
predicate on natural numbers.

Consider the procedure v := λx.v (U x). v n ≡ v (U n) ≡ v pg−1 nq holds. v pg−1 nq
is either equivalent to true or false, which proves what we wanted.

Thus by the lemma above we know that the predicate λ. ∃n : N.P (g−1n) is accept-
able and

π v t↔ ∃n : N.P (g−1 n)

But if ∃n : N.P (g−1 n), thenwe already have a term satisfyingP . On the other hand,
if we have a term s satisfying P , then g−1 (g s) satisfiesM , because g−1 (g s) = s.
Thus (∃n : N.P (g−1 n))↔ ∃s : T.P s.

We then conclude that
π v t↔ ∃s : T.P s

and by this the predicate λ. ∃s : T.P s is semi-decidable with acceptor v. �



Chapter 10

More on L-Acceptability

In Section 5.3 we showed that L-acceptable predicates are closed under conjunc-
tion. Several questions came up during the development of CCT that could only be
answered with a certain machinery, for instance if L-acceptable predicates are also
closed under disjunction. We have built a considerable framework, namely a lot of
theorems on criteria for the L-undecidability or L-unacceptablity of predicates and,
maybe most important, a self-interpreter. We are now able to answer the last open
questions.

In particular, we will show that L-acceptable predicates are not closed under com-
plement. Then, we can show that L-acceptable predicates are closed under disjunc-
tion. Finally we show that there are predicates that are neither L-acceptable nor
L-coacceptable.

10.1 Semi-Decidability of the Self Halting Predicate

In Lemma 4.3 we already saw that the complement of the self-halting predicate
λt. t ptq ⇓ is L-undecidable.

Lemma 10.1 The self-halting predicate is L-acceptable.

Proof The term u := λt.Eval(App t (Q t) is an acceptor, since:

u ptq ≡ Eval(App ptq (Q ptq) ≡ Eval pt ptqq.

Since Eval pt ptqq ⇓ ↔ t ptq ⇓we are done.

10.2 L-Acceptable Predicates are closed under Disjunction

If we want to show that L-acceptable predicates are closed under disjunction we
use an already well-known idea again: We take two acceptors u and v of two L-



10.3. Hard Predicates 61

acceptable predicatesP andQ and under input psq interleave the execution of u psq
and v psq via parallel-or.

Lemma 10.2 L-acceptable predicates are closed under disjunction.

Proof Let P and Q be L-acceptable predicates with acceptors u and v respectively.
We claim thatw := λt.Por(App puq (Qt))(App pvq (Qt)) is an acceptor forλt. P t ∨Qt.

Notice that w ptq ≡ Por pu ptqq pv ptqq.

Assume P t ∨ Q t. Then we either have u ptq ⇓, which directly yields the conver-
gence ofw ptq by the above equivalence and the correctness of Por (Lemma 8.4). Or
we have v ptq ⇓, so that we get the same result on the same way, just with Lemma
8.5.

For the other direction assume that w ptq converges. This directly yields that either
u or v converges on ptq by Lemma 8.7. �

10.3 Hard Predicates

Until nowwe have shown several predicates to be L-unacceptable. We did not show
the interesting result that there are predicates which are neither L-acceptable nor
L-coacceptable. We call such predicates hard predicates.

An example for a hard predicate is totality of a term, that means convergence on all
possible inputs. It is neither L-acceptable nor L-coacceptable. Since L-acceptability
can be seen as the weakest notion of computability, the property of the convergence
of a program under all inputs is not determinable in a general way, which has a lot
of implications in the verification of real-world programs.

We split the proof in two parts:

Lemma 10.3 The predicate λt. ∀s.π t s is not L-acceptable.

Proof Assume an acceptor u. Then we can give an acceptor for the complement of
the self-halting problem. For this we define a term vs, which is total if and only if
s psq converges:

vs := λy. Eva (Size y) ps psqq (λΩ) I

We show this as follows:

Assume s psq does not converge. Then we know that there is no v with s psq ⇓|t| v
and we find vs ptq ≡ I . For the other direction assume that vs ptq converges for all
t and also that s psq converges in n steps to v. We know that n > 1 and that there
is a term t with |t| = n (because the size function is obviously surjective). Thus



62 More on L-Acceptability

vs ptq ≡ Eva n ps psqq (λΩ) I ≡ Ω. But since vs is total we find a procedure v′ with
vs ptq ≡ v′. We can show now that Ω ≡ v′, which is for sure a contradiction:

v′ ≡ vs ptq ≡ Ω

We show that w is an acceptor for the self-halting problem. Note that w does noth-
ing more than applying u to the encoded version of vs.

w := λx.u (Lam (App (App (App (App
pEvaq
(App pSizeq p0q))
(App x (Qx)))

pλΩq)

pIq))

Since for any term s we have wpsq ≡ u pvqs and π s s ↔ vs is total ↔ π u vs we
know that w is an acceptor for the complement of the self-halting problem. Con-
tradiction. �

Lemma 10.4 The complement of the predicate λt. ∀s.π t s, that is T := λs. ¬∀t.π s t is
not L-acceptable.

Proof We already know that the predicate P := λs.Ps∧∀t.πst is not L-acceptable
by Corollary 5.15. With an acceptor u for T , we could build an acceptor for P , since
λs. Ps is for sure L-acceptable. Contradiction. �

Theorem 10.5 Totality of a term is neither L-acceptable nor L-coacceptable.

Proof Follows from the last two lemmas. �



Appendix A

Coq Formalization

This thesis is accompanied by a Coq-Formalization.1 In this chapter we will briefly
discuss technical aspects of the formalization as well as the organization of the dif-
ferent files. Overall, the relevant part of the formalization has less than 1500 lines
of proofs.

Relevant Coq-Techniques

There are several techniques that facilitated the definition of the semantics of L in
Coq and the proofs.

First, it is possible to implicitly convert term expressions using named binders
to the usual de Bruijn style terms. Another important helper is setoid rewriting,
which can be used to shorten equivalence proofs andmake themmore natural. The
tactic crushwas implemented and used to prove trivial equivalences that follow by
reduction. This tactic sometimes takes a lot of computation time, but shortens the
proofs of trivial statements considerably. The last technique is a tactic that solves
easy goals like closedness of a term or that a term is an abstraction.

We give an overview over those techniques in the following subsections.

Named Binders

The definition of terms in Coq is straightforward:
Inductive term : Type :=
| var (n : N) : term
| app (s : term) (t : term) : term
| lam (s : term).

Some notations can be used to make terms more readable:
1Available at https://www.ps.uni-saarland.de/~forster/bachelor.php

https://www.ps.uni-saarland.de/~forster/bachelor.php


64 Coq Formalization

Coercion app : term� Funclass.
Coercion var : N� term.
Notation "(λ s )" := (lam s) (right associativity, at level 0).

The terms I and Ω then read λ 0 and (λ 0 0) (λ 0 0) respectively. This is good to
read and not too hard to write for small terms, but it gets almost impossible for
large terms.

To ease especially the definition of terms we defined term expressions, that use
named binders and can be translated to terms easily.

Term expressions can be variables (represented by strings), applications and named
binders. They embed ordinary terms via the notation ! t.

Inductive bterm : Type :=
| bvar (x : string) : bterm
| bapp (s t : bterm) : bterm
| blam (x : string) (s : bterm) : bterm
| bter (s : term) : bterm.

Coercion bvar : string� bterm.
Coercion bapp : bterm� Funclass.

Notation ".\ x , .. , y ; t" := ((blam x .. (blam y t) .. )) (at level 100, right associativity).
Notation "’λ’ x , .. , y ; t" := ((blam x .. (blam y t) .. )) (at level 100, right associativity).

Notation "’!’ s" := (bter s) (at level 0).

The conversion of term expressions to de Bruijn style terms is easy:

Fixpoint convert’ (F : list string) (s : bterm) : term :=match s with
| bvar x⇒match pos x F with None⇒ #100 | Some t⇒ # t end
| bapp s t⇒ app (convert’ F s) (convert’ F t)
| blam x s⇒ lam (convert’ (x:: F) s)
| bter t⇒ t
end.

Definition convert := convert’ [].

To write term expressions wherever a term is expected we use a coercion again:
Coercion convert : bterm� term.

Using this, one can define I ,K and Ω like this:
Definition I : term := .\"x"; "x".

Definition K : term := .\"x","y"; "x".



65

Definition omega : term := .\"x"; "x" "x".
Definition Omega : term := omega omega.

Setoid-Rewriting

When doing equational proofs one simply rewrites expressions with equivalent
ones. In Coq, this mechanism must first be enabled. We need to show that ≡ is an
equivalence relation and that s ≡ s′→ t ≡ t′→ s t ≡ s′ t′ holds.

Instance equiv_Equivalence : Equivalence equiv.
Instance equiv_app_proper : Proper (equiv =⇒ equiv =⇒ equiv) app.

Rewriting with equations of the form s�∗ t should also be possible:
Instance star_PreOrder : PreOrder (star step).

Using this equivalences one can write a tactic that automatically rewrites the goal
with every equivalence in the context:

Ltac rewrite_equiv :=

match goal with
| H : equiv ?s ?t `_⇒ let H’ := stepsimpl_in H in rewrite H
| H : star step ?s ?t `_⇒ let H’ := stepsimpl_in H in rewrite H

end.

The tactic stempsimpl_in is used to simplify goals and is described in the next sec-
tion.

Useful tactics

stepsimpl

In Coq one can use the simpl tactic to simplify goals. We have written a tactic
stepsimpl that simplifies goals concerning terms of L. It unfolds all definitions and
rewrites with registered equalities like those of the form sku = s for s closed.

Lemma proc_closed p : proc p→ closed p.

Ltac rewrite_closed :=

match goal with
| H : proc _ `_⇒ rewrite (proc_closed H)
| H : closed _ `_⇒ rewrite H
end.

Ltac stepsimpl := cbv; autounfold with cbv; simpl;
autorewrite with cbv; repeat rewrite_closed.



66 Coq Formalization

The stepsimpl_in tactic works similarly, but allows the specification of an assump-
tion where the simplification should be done.

crush

The tactic crush is able to deal with equivalences that follow by reduction only.

(∗ solving one−step reductions ∗)

Ltac tstep := stepsimpl;
match goal with
| [ `step (app (lam _) (lam _) ) _ ]⇒ eapply stepApp
| [ `step (app (lam _) _ ) _ ]⇒ (eapply step_value; try eassumption;

now eauto with cbv)
|| eapply stepAppR

| [ `step _ _ ]⇒ eapply stepAppL
end.

Ltac reduce := repeat tstep; stepsimpl.

The tstep tactic simply decideswhich constructor to use to prove the reduction step.
If the left hand side of the reduction is an application of the form (λs) t, then it first
tries to use β-reduction by proving that t is a procedure.

The reduce tactic repeats this until a reduction is proven completely.
(∗ rewriting with equivalences in the context ∗)

Ltac rewrite_equiv :=

match goal with
| H : equiv ?s ?t `_⇒ let H’ := stepsimpl_in H in rewrite H
| H : star step ?s ?t `_⇒ let H’ := stepsimpl_in H in rewrite H

end.

The rewrite_equiv tactic is able to rewrite with equivalences occuring in the as-
sumptions.

(∗ solving equivalences by reduction ∗)

Ltac reduction’ :=
match goal with
| [ `equiv (app ?s _) (app ?s _) ]⇒ eapply eqRef || eapply equiv_trans_r
| [ `equiv _ _ ]⇒ eapply eqRef || (eapply eqTrans; [eapply eqStep; reduce|])
| [ `star step (app ?s _) (app ?s _) ]⇒ eapply starR || eapply star_trans_r
| [ `star step _ _ ]⇒ eapply starR || (eapply starC; reduce) end; stepsimpl.

Ltac reduction := rewrite_equiv || reduction’.



67

Ltac crush := stepsimpl; repeat reduction.

The crush tactic uses the reduction tactic repeatedly to solve equivalences. reduction
rewrites with known equivalences. It then tries to solve the goal by the reflexivity
of ≡. If the goal is of the form s t ≡ s t′ it reduces this to t ≡ t′. In any other case, it
uses the transitivity of ≡ and tries to find the intermediate term via reduce.

Using crush takes a considerable amount of time and makes the compilation of the
files quite slow, but shortens the proofs a lot.

value

The last tactic deals with goals like the closedness of a term or that a term is a
procedure. One can register closedness-facts via Coq’s Hint-mechanism.

Ltac value := try match goal with
| [ `proc _ ]⇒ try eassumption; eauto with cbv; split; value
| [ `lambda _ ]⇒ try eassumption; eauto with cbv; e∃ ; reflexivity
| [ `closed _ ]⇒ try eassumption; eauto with cbv; intros k’ r’; simpl;

repeat rewrite_closed; autorewrite with cbv; reflexivity
end.

Organization of the Files

The Coq-Files of the accompanying formalization were compiled with Coq 8.4pl5.
The easiest way to compile thewhole formalization is by simply using theMakefile.
The make-target htmlwill check all proofs and produce a documentation contain-
ing all proofs in html-files.

The Programming Language

The definition of the terms of L is done in the file Lvw.v. The relations � and ≡ get
defined there and all lemmas from chapter 2 can be found there.

Verification

Thefiles Nat.v and Bool.v contain the definition of the natural numbers andbooleans
as well as the definition of the basic procedures. The encoding for terms can be
found in Encoding.v and the definition and verification of the internalized size
function in Size.v.

https://www.ps.uni-saarland.de/~forster/bachelor/coq/Lvw.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Nat.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Bool.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Encoding.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Size.html


68 Coq Formalization

Decidability and Scott’s Theorem

The definition of L-decidability can be found in Decidability.v. The two Fixed-
Points theorems are in Fixpoint.v while Scott’s Theorem is in Scott.v.

Acceptability and Rice’s Theorem

The definition of semi-decidability is on Acceptability.v.

The internalized encoding combinatorsP andQ can be found in Encoding.v. Rice’s
Theorem can be found in Rice.v.

Step-Indexed Interpretation

The definition of the step-evaluation predicate as well as the eva function are in
Seval.v.

Self-Interpretation

The self-interpreter is defined in Eval.v. The combinator for the definition of in-
ternalized partial functions is in Partial.v.

AD Theorem and Parallel Or

Parallel-or is defined and verified in Por.v. The AD-Theorem is shown in AD.v.

Recursive Enumerability

An enumeration for terms is defined in Enum.v and internalized in EnumInt.v. A
list-library for L is given in Lists.v. The equivalence of L-acceptability and L-
enumerability is shown in RE.v, the enumerator for pairs is given in Pairs.v. The
DA Theorem is shown in DA.v.

More on L-Acceptability

Most results of this chapter are in Acceptability.v. The existence of hard predi-
cates is shown in MoreAcc.v.

https://www.ps.uni-saarland.de/~forster/bachelor/coq/Decidability.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Fixpoint.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Scott.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Acceptability.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Encoding.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Rice.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Seval.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Eval.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Partial.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Por.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/AD.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Enum.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/EnumInt.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Lists.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/RE.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Pairs.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/DA.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Acceptability.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/MoreAcc.html


69

Lvw.v

Tactics.v

Encoding.v

Options.v

Bool.v

Nat.v

Decidability.v

Comb.v

Fixpoints.v

Scott.v

Seval.v

Equality.v

Subst.v

Partial.v

Eval.v

Por.v

Acceptability.v

Rice.v

AD.v

RE.v

Lists.v

EnumInt.v

DA.v

Structure of the Coq development

File Spec. Proofs
Acceptability.v 12 50
AD.v 2 16
Bool.v 20 12
Lvw.v 186 119
Computability.v 30 16
DA.v 16 71
Decidability.v 14 18
Encoding.v 48 72
Equality.v 49 17
Eval.v 73 73
Fixpoints.v 4 20
EnumInt.v 64 51
Enum.v 51 113
Lists.v 84 97
MoreAcc.v 4 62
Nat.v 39 36
Options.v 15 29
Partial.v 84 11
Por.v 55 48
Proc.v 43 100
RE.v 21 114
Rice.v 65 92
Scott.v 10 54
Seval.v 43 79
Size.v 6 13
Subst.v 6 13
Tactics.v 46 12
MoreAcc.v 4 62
In Total 1094 1470

Overview over Files

https://www.ps.uni-saarland.de/~forster/bachelor/coq/Lvw.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Tactics.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Encoding.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Options.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Bool.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Nat.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Decidability.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Comb.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Fixpoints.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Scott.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Seval.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Equality.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Subst.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Partial.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Eval.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Por.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Acceptability.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Rice.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/AD.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/RE.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/Lists.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/EnumInt.html
https://www.ps.uni-saarland.de/~forster/bachelor/coq/DA.html


Bibliography

[1] Andrea Asperti andWilmer Ricciotti. Formalizing Turing machines. In Logic,
Language, Information and Computation, pages 1–25. Springer, 2012.

[2] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, 2nd revised edition, 1984.

[3] George Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and Logic.
Cambridge University Press, 5th edition, 2007.

[4] Alonzo Church. An unsolvable problem of elementary number theory. Amer-
ican journal of mathematics, pages 345–363, 1936.

[5] The Coq Development Team. The Coq Reference Manual, version 8.4, August
2012. Available electronically at http://coq.inria.fr/doc.

[6] Haskell B. Curry, J. Roger Hindley, and Jonathan P. Seldin. Combinatory Logic:
Volume II. North-Holland Publishing Company, 1972.

[7] Ugo Dal Lago and SimoneMartini. The weak lambda calculus as a reasonable
machine. Theor. Comput. Sci., 398(1-3):32–50, 2008.

[8] Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dum-
mies, a tool for automatic formula manipulation, with application to the
church-rosser theorem. In Indagationes Mathematicae (Proceedings), volume 75,
pages 381–392. Elsevier, 1972.

[9] Jan Martin Jansen. Programming in the λ-calculus: From Church to Scott and
back. In Peter Achten and Pieter Koopman, editors, The Beauty of Functional
Code, volume 8106 of LNCS, pages 168–180. Springer Berlin Heidelberg, 2013.

[10] Neil D. Jones. Computability and complexity from a programming perspective. MIT
Press, 1997.

[11] Dexter Kozen. Automata and computability. Undergraduate texts in computer
science. Springer, 1997. ISBN 978-0-387-94907-9.

http://coq.inria.fr/doc


Bibliography 71

[12] Torben Æ. Mogensen. Efficient self-interpretations in lambda calculus. J.
Funct. Program., 2(3):345–363, 1992.

[13] Joachim Niehren. Functional computation as concurrent computation. In
Hans-Juergen Boehm and Guy L. Steele Jr., editors, POPL, pages 333–343.
ACM Press, 1996. ISBN 0-89791-769-3.

[14] Joachim Niehren. Uniform confluence in concurrent computation. J. Funct.
Program., 10(5):453–499, 2000.

[15] Michael Norrish. Mechanised computability theory. In Marko C. J. D. van
Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, ITP,
volume 6898 of LNCS, pages 297–311. Springer, 2011. ISBN 978-3-642-22862-9.

[16] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus.
Theor. Comput. Sci., 1(2):125–159, 1975.

[17] Henry Gordon Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of theAmericanMathematical Society, 74(2):358–366, 1953.

[18] AlanM. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the LondonMathematical Society, s2-42(1):230–265,
1937. doi: 10.1112/plms/s2-42.1.230.

[19] AlanM. Turing. The þ-function in λ-k-conversion. J. Symb. Log., 2(4):164, 1937.
doi: 10.2307/2268281.

[20] Jian Xu, Xingyuan Zhang, and Christian Urban. Mechanising Turing ma-
chines and computability theory in Isabelle/HOL. In Sandrine Blazy, Chris-
tine Paulin-Mohring, andDavid Pichardie, editors, ITP, volume 7998 of LNCS,
pages 147–162. Springer, 2013.


	Abstract
	Introduction
	The Programming Language
	Syntax of L
	Reduction and Equivalence
	Uniform Confluence

	Programming and Verification
	Recursion
	Datatypes
	Booleans and Natural Numbers
	Terms
	Pairs of Natural Numbers

	Verification of Internalized Functions

	Decidability and Scott's Theorem
	Decidable Predicates
	The Self-Halting Problem
	Fixed Point Theorems and Scott's Theorem
	 Fixed Point Theorems
	Scott's Theorem

	Properties of L-Decidable Predicates
	Coq-Decidability does not imply L-Decidability
	Discussion

	Acceptability and Rice's Theorem
	Acceptable Predicates
	The Self-Halting Problem Reconsidered
	Properties of L-Acceptable Predicates
	Rice's Theorem
	Rice's Theorem as a Corollary of Scott's Theorem


	Step-Indexed Evaluation
	The Step Evaluation Predicate
	An Executable Semantics for L
	Internalized Maybe-Type
	Internalized Self Interpreter
	L-Decidability Implies Coq-Decidability

	Self-Interpretation
	On the Internalization of Partial Functions
	Definition of the Self-Interpreter

	Parallel Or and AD Theorem
	Specification of Parallel Or
	Correctness and Completeness of Parallel Or
	The AD-Theorem

	Recursive Enumerability
	Enumerable Predicates
	Enumeration of terms
	A List Libray for L
	Internalized Enumeration of Terms
	Equivalence of L-Enumerability and L-Acceptability
	L-Enumerability implies L-Acceptability
	L-Acceptability implies L-Enumerability

	The DA Theorem

	More on L-Acceptability
	Semi-Decidability of the Self Halting Predicate
	L-Acceptable Predicates are closed under Disjunction
	Hard Predicates

	Coq Formalization
	Bibliography

