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I A constructive development of basic Computability
Theory.

I Self Interpreter using Scott-Encoding
I Proofs for the Theorems of Rice and Scott
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De Brujn Terms:

s, t ::= n | s t | λs (n ∈ N)

Substitution:

nk
u = if n = k then u else n

(st)k
u = sk

utk
u

(λs)k
u = sSk

u
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Closedness:
s closed := ∀k u.sk

u = s

Some definitions:

I “Combinator” := closed term
I “Procedure” := closed abstraction
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(λs)(λt)� s0
λt

s� s′

st� s′t
t� t′

st� st′

Define ≡ as the reflexive, transitive, symmetric closure of �.

Important: s ≡ s′ → t ≡ t′ → st ≡ s′t′

6 / 16[Plotkin, 1975], [Niehren, 1996], [Dal Lago & Martini, 2008]
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UNIFORM CONFLUENCE:

s� t1 → s� t2 → t1 = t2 ∨ ∃t, t1 � t ∧ t2 � t

PARAMETRIC CONFLUENCE (holds in general for uniform
confluent �):
If s �m t1 and s �n t2 then there are k ≤ n, l ≤ m and u such that:

t1 �k u ∧ t2 �l u ∧ m + k = n + l

7 / 16[Dal Lago & Martini, 2008]
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There is R such that:

R s ≡ λx. s0
R s x

8 / 16[Dal Lago & Martini, 2008]
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SCOTT ENCODING:

0̄ = λ z s.z
S̄n = λ z s.s n̄

ADDITION

Succ := λ n z s. s n
Add := R(λAnm.n m (λn′.Succ (A n′ m)))

then

Succ n̄ ≡ S̄n
Add 0̄ m̄ ≡ m̄

Add Sn m̄ ≡ Succ n + m

9 / 16[Curry, Hindley, Seldin, 1972]
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_n^ := λ v a l. v (n̄)

_st^ := λ v a l. a _s^ _t^
_λs^ := λ v a l. l _s^

10 / 16[Mogensen, 1990], [Stump, 2009]
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I Internalized equality of natural numbers
I Internalized substitution
I Step-indexed evaluation
I Encoding for Some/None
I Internalized step-indexed evaluation
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eval’ n̄ _s^ = case eva n̄ s of Some s⇒ s | None⇒ eval’ S̄n _s^

Lambda lifting needed
Important: eval’ n̄ _s^ converges iff. s converges
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A set M is decidable if there is a procedure u (the decider) s.t.:

∀s, s ∈M ∧ u _s^ ≡ true ∨ s 6∈M ∧ u _s^ ≡ false

A set M is semi-decidable if there is a procedure u (the acceptor)
s.t:

∀s, s ∈M⇐⇒u _s^ converges

The acceptance set Au of a procedure u is defined as:

{s

| u _s^ converges}
For s ∈ Au one could also write πus.
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I {u ∈ P | ¬π u u}
I {s ∈ P | ∀t, π s t}, {s ∈ P | ∃t, π s t}, {s ∈ P | ∀t,¬π s t}
I for t ∈ C, {s | s ≡ t}
I {_st^ | s ≡ t}
I {s ∈ C | s converges}

14 / 16



THE CALCULUS λvw DATATYPES SELF INTERPRETATION DECIDABILITY THEOREMS

THEOREMS

14 / 16



THE CALCULUS λvw DATATYPES SELF INTERPRETATION DECIDABILITY THEOREMS

RICE’S THEOREM

computer science

saarland
university

If M is a set of procedures as follows:
I M is closed under A-equivalence: If s ∈M and t is a

procedure such that At = As, then t ∈M.
I M is nontrivial: There is a procedure in M and there is a

procedure not in M.
Then M is not decidable.

Follows directly from:
If M is a set of procedures as above:

I If λΩ ∈M, then M is not semi-decidable
I If λΩ 6∈M, then M̄ is not semi-decidable

15 / 16[Rice, 1953], [Barendregt, 1985]
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SECOND FIXPOINT THEOREM:
For every combinator s there exists a combinator t such that
s _t^ ≡ t.

SCOTT’S THEOREM:
A set M of combinators is undecidable if it satisfies the
following conditions:

I M is closed under reduction equivalence: If s ∈M and t is
a combinator such that t ≡ s, then t ∈M.

I M is nontrivial: There is a combinator in M and there is a
combinator not in M.

16 / 16[Barendregt, 1985]
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I Formalize abstract programming systems and show that
λvw yields a model

I Show the computational equivalence of λvw , call-by-value
combinatory logic and IMP

I Show that computability in λvw implies computability in
Coq. Is a constructive proof possible?

17 / 16



SCOTT ENCODING

computer science

saarland
university

In a dataype with constructors c1, . . . , cn and a k-ary
constructor ci an element cix1 . . . xk is represented as

λ c1 . . . cn. ci x1 . . . xk

Such a term yields a match construct:

match t with
| c1x1 . . . xk1 => f1 x1 . . . xk1

| . . .
| cnx1 . . . xkn => fn x1 . . . xkn

end

is simply done with t f1 . . . fn
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Equality for Natural Numbers:

Substitution:
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Evaluation:

16 / 16



COMBINATORS III

computer science

saarland
university

Encoding:
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