WEAK CALL-BY-VALUE LAMBDA-CALCULUS AS A MODEL OF COMPUTATION INITIAL BACHELOR SEMINAR TALK

Yannick Forster Advisor: Prof. Dr. Gert Smolka

SAARLAND UNIVERSITY Programming Systems Lab

The Calculus λ_{vw}	DATATYPES	SELF INTERPRETATION	Decidability	Theorems
00000	00	00	00	00

IDEA

- A constructive development of basic Computability Theory.
- ► Self Interpreter using Scott-Encoding
- ► Proofs for the Theorems of Rice and Scott

The Calculus λ_{vw}	DATATYPES	Self Interpretation	Decidability	Theorems
00000	00	00	00	00

CONTENT

THE CALCULUS λ_{vvv} Definitions Reduction Uniform and Parametric Confluence DATATYPES Natural Numbers Terms SELF INTERPRETATION DECIDABILITY Definition Undecidable problems THEOREMS Rice's theorem Scott's Theorem

COMPUTER SCIENCE 3 / 16

The Calculus λ_{vw}	DATATYPES	SELF INTERPRETATION	Decidability	Theorems
00000	00	00	00	00

The Calculus λ_{vw}

The Calculus λ_{vw}	DATATYPES	SELF INTERPRETATION	Decidability	Theorems
0000	00	00	00	00

DEFINITIONS

De Brujn Terms:

$$s,t ::= n \mid s t \mid \lambda s \quad (n \in \mathbb{N})$$

Substitution:

$$n_{u}^{k} = \text{if } n = k \text{ then } u \text{ else } n$$
$$(st)_{u}^{k} = s_{u}^{k} t_{u}^{k}$$
$$(\lambda s)_{u}^{k} = s_{u}^{Sk}$$

The Calculus λ_{vw}	DATATYPES	SELF INTERPRETATION	Decidability	Theorems
0000	00	00	00	00

DEFINITIONS

Closedness:

$$s \text{ closed} := \forall k \ u.s_u^k = s$$

Some definitions:

- ► "Combinator" := closed term
- "Procedure" := closed abstraction

The Calculus λ_{vw}	DATATYPES	SELF INTERPRETATION	Decidability	Theorems
0000	00	00	00	00

REDUCTION

$$\frac{1}{(\lambda s)(\lambda t) \succ s_{\lambda t}^{0}} \qquad \frac{s \succ s'}{st \succ s't} \qquad \frac{t \succ t'}{st \succ st'}$$

Define \equiv as the reflexive, transitive, symmetric closure of \succ .

Important: $s \equiv s' \rightarrow t \equiv t' \rightarrow st \equiv s't'$

[Plotkin, 1975], [Niehren, 1996], [Dal Lago & Martini, 2008]

 $\begin{array}{c|c} THe \mbox{Calculus} \lambda_{vvo} & Datatypes & Self Interpretation & Decidability & Theorems \\ 000 \bullet 0 & 00 & 00 & 00 & 00 \end{array}$

What makes λ_{vw} great

UNIFORM CONFLUENCE:

$$s \succ t_1 \rightarrow s \succ t_2 \rightarrow t_1 = t_2 \lor \exists t, t_1 \succ t \land t_2 \succ t$$

PARAMETRIC CONFLUENCE (holds in general for uniform confluent \succ): If $s \succ^m t_1$ and $s \succ^n t_2$ then there are $k \le n, l \le m$ and u such that:

$$t_1 \succ^k u \land t_2 \succ^l u \land m+k = n+l$$

[Dal Lago & Martini, 2008]

The Calculus λ_{vw}	DATATYPES	SELF INTERPRETATION	Decidability	Theorems
00000	00	00	00	00

RECURSION COMBINATOR

There is *R* such that:

$$R s \equiv \lambda x. s^0_{R s} x$$

[Dal Lago & Martini, 2008]

The Calculus λ_{vw}	DATATYPES	Self Interpretation	Decidability	Theorems
00000	00	00	00	00

DATATYPES

The Calculus λ_{vw}	DATATYPES	SELF INTERPRETATION	Decidability	Theorems
00000	••	00	00	00

NATURAL NUMBERS

SCOTT ENCODING:

$$\bar{0} = \lambda z \, s.z$$
$$\bar{Sn} = \lambda z \, s.s \, \bar{n}$$

ADDITION

Succ :=
$$\lambda n z s. s n$$

Add := $R(\lambda Anm.n m (\lambda n'.Succ (A n' m)))$

then

Succ
$$\bar{n} \equiv S\bar{n}$$

Add $\bar{0} \ \bar{m} \equiv \bar{m}$
Add $\overline{Sn} \ \bar{m} \equiv Succ \ \overline{n+m}$

[Curry, Hindley, Seldin, 1972]

The Calculus λ_{vw}	DATATYPES	SELF INTERPRETATION	Decidability	Theorems
00000	0.	00	00	00

SCOTT ENCODING FOR TERMS

$$\lceil n \rceil := \lambda v a l. v (\bar{n})$$
$$\lceil st \rceil := \lambda v a l. a \lceil s \rceil \lceil t \rceil$$
$$\lceil \lambda s \rceil := \lambda v a l. l \lceil s \rceil$$

10/16

[Mogensen, 1990], [Stump, 2009]

The Calculus λ_{vw}	DATATYPES	SELF INTERPRETATION	Decidability	Theorems
00000	00	00	00	00

SELF INTERPRETATION

The Calculus λ_{vw}	DATATYPES	SELF INTERPRETATION	Decidability	Theorems
00000	00	•0	00	00

WHAT IS NEEDED

- Internalized equality of natural numbers
- Internalized substitution
- Step-indexed evaluation
- Encoding for Some/None
- Internalized step-indexed evaluation

The Calculus λ_{vw}	DATATYPES	SELF INTERPRETATION	Decidability	Theorems
00000	00	0	00	00

EVALUATION COMBINATOR

eval' \bar{n} s of Some $s \Rightarrow s \mid \text{None} \Rightarrow \text{eval'} \bar{Sn}$

Lambda lifting needed Important: eval' \bar{n} 's' converges iff. *s* converges

COMPUTER SCIENCE 12 / 16

The Calculus λ_{vw}	DATATYPES	Self Interpretation	DECIDABILITY	Theorems
00000	00	00	00	00

DECIDABILITY

DECIDABILITY

A set *M* is *decidable* if there is a procedure *u* (the decider) s.t.:

$$\forall s, s \in M \land u \ `s" \equiv true \lor s \notin M \land u \ `s" \equiv false$$

A set *M* is *semi-decidable* if there is a procedure *u* (the acceptor) s.t:

$$\forall s, s \in M \iff u \lceil s \rceil$$
 converges

The acceptance set Au of a procedure u is defined as:

 $\{S$

 $| u \ s^{\gamma} \text{ converges} \}$ For $s \in Au$ one could also write πus .

COMPUTER SCIENCE 13 / 16 THE CALCULUS λ_{true} DatatypesSelf InterpretationDecidabilityTheorems000000000000000

UNDECIDABLE PROBLEMS

- $\{u \in \mathcal{P} \mid \neg \pi \ u \ u\}$
- $\blacktriangleright \ \{s \in \mathcal{P} \mid \forall t, \pi \ s \ t\}, \{s \in \mathcal{P} \mid \exists t, \pi \ s \ t\}, \{s \in \mathcal{P} \mid \forall t, \neg \pi \ s \ t\}$
- for $t \in C$, $\{s \mid s \equiv t\}$
- $\blacktriangleright \ \{ \ st^{\neg} \mid s \equiv t \}$
- $\{s \in \mathcal{C} \mid s \text{ converges}\}$

The Calculus λ_{vw}	DATATYPES	SELF INTERPRETATION	Decidability	THEOREMS
00000	00	00	00	00

THEOREMS

RICE'S THEOREM

If M is a set of procedures as follows:

- M is closed under A-equivalence: If $s \in M$ and t is a procedure such that At = As, then $t \in M$.
- ► M is nontrivial: There is a procedure in M and there is a procedure not in M.

Then M is not decidable.

Follows directly from:

If M is a set of procedures as above:

- If $\lambda \Omega \in M$, then *M* is not semi-decidable
- If $\lambda \Omega \notin M$, then \overline{M} is not semi-decidable

SCOTT'S THEOREM

SECOND FIXPOINT THEOREM:

For every combinator *s* there exists a combinator t such that $s r t^{\gamma} \equiv t$.

SCOTT'S THEOREM:

A set *M* of combinators is undecidable if it satisfies the following conditions:

- *M* is closed under reduction equivalence: If $s \in M$ and *t* is a combinator such that $t \equiv s$, then $t \in M$.
- ► *M* is nontrivial: There is a combinator in *M* and there is a combinator not in *M*.

16/16

[Barendregt, 1985]

FURTHER DIRECTIONS

- ► Formalize abstract programming systems and show that λ_{vw} yields a model
- ► Show the computational equivalence of λ_{vw} , call-by-value combinatory logic and IMP
- Show that computability in λ_{vw} implies computability in Coq. Is a constructive proof possible?

SCOTT ENCODING

In a dataype with constructors c_1, \ldots, c_n and a k-ary constructor c_i an element $c_i x_1 \ldots x_k$ is represented as

 $\lambda c_1 \ldots c_n \ldots c_i x_1 \ldots x_k$

Such a term yields a match construct:

match t with

$$| c_1 x_1 \dots x_{k_1} \rangle => f_1 x_1 \dots x_{k_1}$$

 $| \dots | c_n x_1 \dots x_{k_n} \rangle => f_n x_1 \dots x_{k_n}$
end

is simply done with $t f_1 \ldots f_n$

COMBINATORS I

Equality for Natural Numbers:

 $EqN \ \overline{0} \ \overline{0} \equiv true$ $EqN \ \overline{Sm} \ \overline{0} \equiv false$ $EqN \ \overline{0} \ \overline{Sn} \equiv false$ $EqN \ \overline{Sm} \ \overline{Sn} \equiv EqN \ \overline{m} \ \overline{n}$ Substitution: $EqN \ \overline{Sm} \ \overline{Sn} \equiv EqN \ \overline{m} \ \overline{n}$

Subst $[n] \overline{k} [u] \equiv EqN \overline{n} \overline{k} [u] (Var \overline{n})$ Subst $[st] \overline{k} [u] \equiv App (Subst [s] \overline{k} [u]) (Subst [t] \overline{k} [u])$ Subst $[\lambda s] \overline{k} [u] \equiv Lam (Subst [s] (Succ \overline{k}) [u])$

COMBINATORS II

Evaluation: $Eva \ \overline{k} \ \lceil n \rceil \equiv \lceil + \rceil$ Eva $\overline{k} \ \lceil \lambda s \rceil \equiv Some (Lam \ \lceil s \rceil)$ $Eva \ \overline{0} \ \ st^{1} \equiv \ \ \perp^{1}$ $Eva \ \overline{Sn} \ \ st^{\neg} \equiv Eva \ \overline{n} \ \ s^{\neg}$ $(\lambda x. Eva \overline{n} f^{\dagger})$ $(\lambda y. x (\lambda^r \perp^{\gamma}))$ $(\lambda \lambda^{r} \perp^{\gamma})$ $(\lambda z. Subst \ z \ \overline{0} \ \gamma)))$ ר ו י r _| י

COMPUTER SCIENCE 16 / 16

COMBINATORS III

Encoding:

 $P \overline{0} \equiv "0"$

$$P \overline{Sn} \equiv Lam(Lam(App^{r}0^{n}(P\overline{n})))$$

 $Q^{r}n^{1} \equiv Lam(Lam(Lam(App^{2}(P\overline{n}))))$

 $Q^{\mathsf{r}}st^{\mathsf{T}} \equiv Lam(Lam(App(App^{\mathsf{T}})(Q^{\mathsf{r}}s^{\mathsf{T}}))(Q^{\mathsf{r}}t^{\mathsf{T}}))))$

 $Q^{\mathsf{r}}\lambda s^{\mathsf{r}} \equiv Lam(Lam(Lam(App^{\mathsf{r}}0^{\mathsf{r}}(Q^{\mathsf{r}}s^{\mathsf{r}})))))$

SECOND FIXPOINT THEOREM

$$A := \lambda z. \ s(App z (Qz))$$
$$t := A^{\mathsf{r}} A^{\mathsf{r}}$$
$$t \succ s(App^{\mathsf{r}} A^{\mathsf{r}} (Q^{\mathsf{r}} A^{\mathsf{r}})) \equiv s(App^{\mathsf{r}} A^{\mathsf{r}} \mathbf{r}^{\mathsf{r}} A^{\mathsf{r}}) \equiv s^{\mathsf{r}} A^{\mathsf{r}} A^{\mathsf{r}} \equiv s^{\mathsf{r}} t$$

