
ON THE EXPRESSIVENESS OF EFFECT

HANDLERS AND MONADIC REFLECTION

Yannick Forster
supvervised by Ohad Kammar and Marcelo Fiore



Introduction Approach Expressiveness Conclusion

A LITTLE SURVEY

I Who has ever tried to prove a functional program correct?
I Who has ever tried for a program involving reference cells

or exceptions?
I Who has succeeded?
I Who thought it was fun?

2



Introduction Approach Expressiveness Conclusion

HOW TO INCORPORATE EFFECTS?

Effects are . . .
I global store (i.e. references),
I exceptions,
I I/O,
I random,
I nondeterminism,
I or concurrency

3



Introduction Approach Expressiveness Conclusion

AN EXAMPLE

exception Error
val r = ref 0
fun error () = raise Error

fun test () = (r := 5; error() handle Error => !r)

test() evaluates to?

Why not to 0?

4



Introduction Approach Expressiveness Conclusion

WOULD BE COOL:

User definable effects on top of a functional language

There is more than one solution available!

5



Introduction Approach Expressiveness Conclusion

GOAL

Compare two existing approaches in their expressiveness

A bit like “Compare expressiveness of recursion and for-loops”

6



Introduction Approach Expressiveness Conclusion

APPROACH

I take a base language (functional, typed, no recursion)
I add each concept to the language
I define denotational semantics to each resulting calculus
I prove denotational semantics to be adequate
I use this to compare expressiveness

7



Introduction Approach Expressiveness Conclusion

TAKE A BASE LANGUAGE

Call-by-push-value lambda-calculus from Levy

Distinguishes between values and computations

8
Levy (1999), Levy (2004)



Introduction Approach Expressiveness Conclusion

ADD EACH CONCEPT

I Effects and handler calculus λeff

I Monadic reflection calculus λmon

9
Kammar, Lindley, and Oury (2013), Filinski (2010)



Introduction Approach Expressiveness Conclusion

EFFECT HANDLERS

10



Introduction Approach Expressiveness Conclusion

MONADIC REFLECTION

11



Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

I Define what types “mean” in pure set theory
I Define what terms “mean” in pure set theory

12



Introduction Approach Expressiveness Conclusion

ADEQUACY AND SOUNDNESS

13



Introduction Approach Expressiveness Conclusion

TYPED MACRO EXPRESSABILITY

One concept can express another if there is a local translation
function that:

I is homomorphic on the base calculus
I replaces new syntactic constructs without rearranging the

whole program
I translates terms ∅ ` M : X to terms ∅ ` M : X

14
Felleisen (1990)



Introduction Approach Expressiveness Conclusion

FOCUS IN THIS THESIS

Produce negative results: Prove that no translation exists with
the help of denotational semantics

15



Introduction Approach Expressiveness Conclusion

λmon CAN NOT TYPED MACRO EXPRESS λeff

I There are only finitely many terms for every type in λmon

I Some types in λeff have countably many observationally
distinguishable terms

I Given a translation λeff → λmon, take the type F1
I F1 has k terms
I F1 has more than k observationally distinguishable terms
I Derive a contradiction

16



Introduction Approach Expressiveness Conclusion

THE BIG PICTURE

17



Introduction Approach Expressiveness Conclusion

CONTRIBUTION

I Adequacy proof for the set theoretic model for calculus of
effect handlers λeff

I Adequate denotational semantics for calculus of monadic
reflection λmon

I Definition of (typed) macro expressability
I Proof that λmon is macro expressible in λeff

I Proof that λeff is not macro typed expressible in λmon

18



Introduction Approach Expressiveness Conclusion

FUTURE WORK

I Show that λmon is not typed macro expressible in λeff;
I extend the type system of λeff to typed macro express λmon;
I do similar comparison for calculus of delimited control.

19



Introduction Approach Expressiveness Conclusion

RELATED WORK / BIBLIOGRAPHY

I Paul Blain Levy. Call-By-Push-Value: A
Functional/Imperative Synthesis, volume 2 of Semantics
Structures in Computation. Springer, 2004.

I Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers
in action. SIGPLAN Not. 48(9):145–158, September 2013.

I Andrzej Filinski. Monads in action. SIGPLAN Not.,
45(1):483–494, January 2010.

I Matthias Felleisen. On the expressive power of
programming languages. In Science of Computer
Programming, pages 134–151. Springer-Verlag, 1990.

20



21



22


	Introduction
	Approach
	Expressiveness
	Conclusion

