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A LITTLE SURVEY

I Who has ever tried to prove a functional program correct?
I Who has ever tried for a program involving reference cells

or exceptions?
I Who has succeeded?
I Who thought it was fun?
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HOW TO INCORPORATE EFFECTS?

Effects are . . .
I global store (i.e. references),
I exceptions,
I I/O,
I random,
I nondeterminism,
I or concurrency
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AN EXAMPLE

exception Error
val r = ref 0
fun error () = raise Error

fun test () = (r := 5; error() handle Error => !r)

test() evaluates to?

Why not to 0?
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WOULD BE COOL:

User definable effects on top of a functional language

There is more than one solution available!
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GOAL

Compare two existing approaches in their expressiveness

A bit like “Compare expressiveness of recursion and for-loops”
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APPROACH

I take a base language (functional, typed, no recursion)
I add each concept to the language
I define denotational semantics to each resulting calculus
I prove denotational semantics to be adequate
I use this to compare expressiveness
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TAKE A BASE LANGUAGE

Call-by-push-value lambda-calculus from Levy

Distinguishes between values and computations
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Levy (1999), Levy (2004)
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ADD EACH CONCEPT

I Effects and handler calculus λeff

I Monadic reflection calculus λmon
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Kammar, Lindley, and Oury (2013), Filinski (2010)
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EFFECT HANDLERS
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MONADIC REFLECTION
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DENOTATIONAL SEMANTICS

I Define what types “mean” in pure set theory
I Define what terms “mean” in pure set theory
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ADEQUACY AND SOUNDNESS
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TYPED MACRO EXPRESSABILITY

One concept can express another if there is a local translation
function that:

I is homomorphic on the base calculus
I replaces new syntactic constructs without rearranging the

whole program
I translates terms ∅ ` M : X to terms ∅ ` M : X
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Felleisen (1990)
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FOCUS IN THIS THESIS

Produce negative results: Prove that no translation exists with
the help of denotational semantics
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λmon CAN NOT TYPED MACRO EXPRESS λeff

I There are only finitely many terms for every type in λmon

I Some types in λeff have countably many observationally
distinguishable terms

I Given a translation λeff → λmon, take the type F1
I F1 has k terms
I F1 has more than k observationally distinguishable terms
I Derive a contradiction
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THE BIG PICTURE
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CONTRIBUTION

I Adequacy proof for the set theoretic model for calculus of
effect handlers λeff

I Adequate denotational semantics for calculus of monadic
reflection λmon

I Definition of (typed) macro expressability
I Proof that λmon is macro expressible in λeff

I Proof that λeff is not macro typed expressible in λmon
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FUTURE WORK

I Show that λmon is not typed macro expressible in λeff;
I extend the type system of λeff to typed macro express λmon;
I do similar comparison for calculus of delimited control.
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