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Abstract

Effect handlers and monadic reflection are both programming paradigms for im-
plementing computational effects such as exceptions or I/O. In this thesis we com-
pare the expressive power of effect handlers andmonadic reflection. This compari-
son is based on two core calculi λeff, introduced by Kammar, Lindley and Oury and
λmon, introduced by Filinski, both being extensions of Levy’s call-by-push-value
calculus.

We prove adequacy of the set-theoretic dentotational semantics of λeff. We give
a finite, adequate set-theoretic semantics for λmon, define the notion of typed and
untyped macro expressability following Felleisen and show that there is a macrox
translation from λmon to untyped λeff, but no translation from λeff to typed λmon.
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Chapter 1

Introduction

Computational effects such as exceptions, global state, or I/O are used in many
functional programming languages to implement backtracking, multithreading, or
nondeterminism. They are built in as features in general purpose languages like
OCaml or Standard ML and can be used as monads for instance in Haskell. How-
ever, depending on the language used, it may be hard or impossible to declare new
or change the implementation of old effects for the programmer. For instance, the
change of a global memory cell usually persists the raising of an exception. To
implement new concepts like software transactional memory, one would want to
change this behaviour, such that the initial value of a memory cell is restored if an
exception is raised.

This thesis compares the expressiveness of two calculi that model different ap-
proaches to user-defined computational effects.

The first one is the λeff-calculus by Kammar, Lindley, and Oury [9], a higher-order
calculus of effect handlers [20, 1] based on Levy’s cbpv [11]. Computational effects
in λeff arise from the use of effect operations, like raise for exceptions, set and get
for state, or read and write for I/O. Programmers can then define effect handlers
to define the implementation of this effects. The clear separation between the ef-
fect and its handling allows for both abstraction andmodularity. Pretnar and Bauer
implement a programming language called eff whose treatment of effects uses han-
dlers.

Monads are a widespread concept of abstraction in functional programming. Gen-
eral purpose languages like Haskell or OCaml allow user-defined effects using
monads. In Haskell, every effect has to be encapsulated by a monad whereas in
OCaml there are somebuilt-in effects, like exceptions and reference-cells. Wewould
like to study monads as a programming abstraction, without introducing auxiliary
notions like type classes or modules, but as independent abstractions.

Thus, the second calculus we consider is the λmon-calculus, a variation of the cal-
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culus with monadic reflections introduced by Filinski [7]. In λmon, monadic effects
can be defined by the programmer. For example, a computation of typeA that may
raise an error can be described by thewell-known exceptionmonadA+1 (α option
in OCaml/Maybe a in Haskell). Monadic reflection comes with two syntactic con-
structs

M : 1
err−→ A

reifyerr(M) : A+ 1

N : A+ 1

reflecterr(N) : 1
err−→ A

witnessing the bijection between a pure implementation based on the A+ 1monad
and an effectful computation, here written as 1 err−→ A.

The main contribution of the thesis is to compare the expressability of effect han-
dlers and monadic reflection with each other. We adapt Felleisen’s [4] notion and
define the concept of typed and untyped macro expressability of λmon in λeff and
vice versa.

One can compare two programming features by defining them on top of the same
base calculus, which is what we do for λeff and λmon, both being based on cbpv. One
extension can then macro express another if there is a structurally recursive trans-
lation function that is homomorphic on the common base fragment and preserves
normal forms in the sense that if a term evaluates to a cbpv-value, then the trans-
lated termhas to evaluate to the same value. Crucially, the translation has to replace
the syntactical constructs which are not part of the base calculus by constructs from
the target calculus — i.e. has to behave the same every time the construct is en-
countered. Typed macro expressability additionally adds the requirement that the
translated term can be typed in the target calculus.

CBPV

λeff λmon

typed typed

untyped

typed

X −→Y: There is a translation from X to Y
X 99K Y: There is no translation
X � Y: We conjecture that there is no translation

The diagram gives an overview of our results with respect to the existence of trans-
lations. There is an untyped translation from λmon to λeff. This is based on the idea
that reify behaves like an effect handler for the effect operation reflect.

We show that there is no typed translation from λeff to λmon. The proof is based
on the observation that the set-theoretic model for λmon is finite, whereas λeff has
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infinitely many oberservationally different terms of the same type.

Thus, we first recall a set-theoretic denotational semantics for λeff and prove its ad-
equacy using Hermida’s lifting [8]. We then introduce a finite set-theoretic deno-
tational semantics for λmon and give an adequacy proof using >>-lifting [16, 15, 13,
10, 3]

Contribution

This thesis makes the following contributions:

• Adequacy proof for the set theoretic model of λeff

• Adequate denotational semantics for λmon

• Definition of macro (typed) expressability

• Proof that λmon is macro expressible in λeff

• Proof that λeff is not macro typed expressible in λmon

Structure

Chapter 2 introduces some preliminary concepts: monads, algebras for a monad,
monad morphisms and Levy’s cbpv Chapter 3 presents the syntax and operational
semantics of λeff and an adequate denotational semantics. Chapter 4 presents syn-
tax, operational and denotational semantics of λmon Chapter 5 introduces typed and
untyped macro expressability and shows that λeff can untyped macro express λmon
but λmon cannot typed macro express λeff. Chapter 6 concludes the thesis.



Chapter 2

Preliminaries

We begin by reviewing some basic category theoretic concepts specified to the cat-
egory of sets and functions. We use the to give an adequate semantics to cbpv and
use the definitions and proofs throughout the thesis.

2.1 Monads and algebras

Monads and algebras can be defined in a very general sense for arbitrary categories.
However, for the sake of simplicity, it will suffice to introduce them for the category
Set.

2.1.1 Monads

Monads are ubiquitous in functional programming languages. They are wired into
the operational semantics of some programming languages (as the I/O monad in
Haskell) or are at least definable as a structure (as in OCaml). We define what it
means to be a monad in a more abstract sense:

Definition 2.1. Amonad is a triple 〈T, return,�=〉where T is a class function Set→ Set
and returnX : X → TX and�=X,Y : TX × (X → TY) → TY are families of functions such
that for every f : X→ TY, g : Y → TZ the following diagrams commute:

X TX

TY

return

f
�=f TX TX

id

�=return

TX TY

TZ

�=f

�=(λx.fx�=g)
�=g

We say that T satisfies the mono requirement [14] if return : X→ TX is an injection for
all X.

Sometimes, monads are defined as triples 〈T, return, µ〉, where µ : T(TX) → TX

is called the “multiplication” for the monad. The definitions are equivalent, be-
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cause we can set µx B x�=id and, vice versa, x�=f B µ(Tf x). In a programming
language that has monad support built-in one defines for f : X → Y the func-
tion fmap f : TX → TY as fmap f xs B xs�=(return ◦ f). This definition yields
fmap f = T f in the abstract setting if T is a functor.

We will use the following equation for fmap and µ:

µ(fmap f xs) = fmap f xs�=id = xs�=f

One can define the category of monads for a given category C by defining monad
morphisms between monads:

Definition 2.2. Let (T1, return1,�=1) and (T2, return2,�=2) be twomonads over Set. A
monadmorphism T1 → T2 is a natural transformationmX : T1X→ T2XwithmX(return1 x) =
return2 x andmX(t�=1f) = mXt�=2(mY ◦ f).

In order form to be a natural transformation we needmY ◦fmap1 f = fmap2 f◦mX.

Example 1. There is always a unique monad morphism from the identity monad,
i.e. the identity monad is initial in this category

IB 〈IX = X, returnI x = x,m�=If = fm〉

to anymonad T given bymX(x) = returnT x. We then havemX(returnI x) = FX(x) =
returnT x andmX(t�=If) = mX(f t) = returnT (f t) = returnT t�=Tλx.returnT (f x).

�

2.1.2 Algebras

Universal algebra can be used as a tool to describe effectful programs [18]. An alge-
bra in the universal algebraic sense is a generalisation of an algebraic structure. It
consists of a carrier set and a set of n-ary operations. The set of possible operations
is described by a parameterised signature:

Definition 2.3. A parameterised signature is a pair O = 〈|O|, arityO〉 where |O| is a set
and arityO assigns to each f in |O| two sets arityO(f) = 〈Pf, Af〉.

We call the elements f of |O| operation symbols, the set Pf the parameter type of f,
and the set Af the arity of f. When arityO(f) = 〈Pf, Af〉, we write f : Pf → Af. The
notation already gives an idea on how we intend to use those operation symbols.

An O-algebra now interprets these symbols:

Definition 2.4 (O-algebra). Given a (parameterised) signature O an O-algebra is a pair
〈|C|, ⟦−⟧〉 where |C| is a set and ⟦−⟧ assigns, for each f : P → A in Σ, a function ⟦−⟧ :

|C|
A → |C|

P.
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The idea is that given aparameterp ∈ P and a (possibly infinite) sequence 〈ca ∈ |C|〉a∈A
the interpretation of f produces something in |C|. Thus, for a finite set Awith n el-
ements ⟦f : P → A⟧ is simply an n-ary operation on |C| parameterised by P.

In addition to defining an interpretation for those symbols, we can also build terms
over those symbols:

Definition 2.5 (The TO monad). Given a (parameterised) signature O, and a set X, we
can inductively define the set TOX of O-terms with variables in X:

t ::= x | fp(λa : A.ta)

for all x ∈ X, (f : P → A) ∈ O, p ∈ P, and A-indexed sequence of O-terms 〈ta〉a∈A in TOX.

TO has a monad structure given by:

return xB x x�=fB fx

fp(λa.ta)�=fB fp(λa.�=taf)

Note that the TO monad fulfils the mono-requirement (as return is the identity).

Monads also have a notion of an algebra. This notion generalises our initial defini-
tion in the sense that O-algebras and algebras for the monad TO are in bijection.

We first define the concept:

Definition 2.6 (Algebra over amonad). A T-algebra for a monad T is a pairC = 〈|C|, c〉
where |C| is a set and c : T |C|→ |C| is a function satisfying:

c(return x) = x c(fmap c xs) = c(xs�=id)

for all x ∈ |C| and xs ∈ T2 |C|. |C| is called the carrier and we call c the algebra structure.

We say that a set A forms a T -algebra if there is a monad operation a s.t. 〈A,a〉 is a
T -algebra.

An algebra over the monad TO now is a set |C| and a function c : TO|C|→ |C|. We can
use this structure to interpret symbols in O by setting:

⟦f⟧ (xs : |C|A)(p : P)B c(fp(xs))

Vice versa, given an O-algebra 〈|C|, ⟦−⟧〉 we can build the TO-algebra with carrier
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|C|:

c(x ∈ |C|)B x

c(fp(λa.ta))B ⟦f⟧ (λa.c(ta))(p)

Free Algebras

Defining multiplication for the TO monad is simple: We need µ : TO(TOX) → TOX,
i.e. a way to create a term with variables in X from a term where the variables are
in TOX. Given such a term, multiplication can just reinterpret the very same term
as a term in TOX by treating the former variables in TOX as extension, i.e. µ =�=id.

This idea can be used to define the notion of a free algebra:

Definition 2.7 (Free algebra). For each setX, the pair FXB 〈TX,�=id〉 forms a T -algebra
called the free T-algebra over X.

The bijection between TO andO-algebras assigns to the free algebra FTOX = 〈TOX,�=id〉
the term algebra FO over TOX given by:

⟦f⟧ (ts)(p)B fp(λa.ts(a))

The operation F can be seen as a function Set → Alg (i.e. mapping a set to an
algebra). We can define the inverse function U : Alg→ Set as UC B |C| and obtain
a bijection U(FX) ∼= TX (If F and U are functors in the category-theoretical sense
we get an adjunction U a F). This bijection of building a free algebra structure and
forgetting it againwill play amajor role in the denotational semantics for our calculi
cbpv, λeff, and λmon.

We can extend the Kleisli extension operator�=, which maps a function f : X→ TY

to a function (�=f) : TX → TY to algebras, in the following way. Given a T -algebra
C and a function X→ |C|, define (�=f) : TX→ |C| by

(xs�=f)B c(fmap f xs)

When C = FY = 〈TY,�=id〉, this operator coincides with the given Kleisli extension
operator, as shown in lemma 2.1.1.

Some special algebras

Apart from the free algebrawe introduce threemore standard algebras over a given
monad T : singleton algebras, exponential algebras, and product algebras. Under-
standing those constructions is both useful in understanding the concept of alge-
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bras and in the denotational semantics given in the next chapters.

Lemma 2.8.

• Singleton algebra: 〈{?}, λxs.?〉 is a T -algebra for any monad T .

• Exponential algebra: Given a T -algebra 〈|C|, c〉 and a set A,

〈|C|A, λfs.λx.c(fmap (λf.f(x)) fs)〉

forms a T -algebra.

• Product algebra: Given two T -algebras 〈|Ci|, ci〉, i ∈ {1, 2} we have a T -algebra as
follows: 〈|C1|× |C2|, λcs. 〈c1(fmap π1 cs), c2(fmap π2 cs)〉〉

We leave out the proofs here, but they are well-known.

2.2 cbpv: Call-by-push-value

Most commonly, when doing programming language semantics, one imposes ei-
ther a call-by-value or a call-by-name semantics to a λ-calculus with possibly some
additional structure. However, if one adds effects to the language, the evaluation
order matters and call-by-value and call-by-name yield different observational be-
haviour of terms. Instead of comitting to to one and defining the other indepen-
dently, we use cbpv which includes both behaviours as subcalculi.

Call-by-push-value (cbpv) is a computational metalanguage that subsumes both
call-by-value and call-by-name. It was introduced by Levy [11, 12] andwill serve as
the base language for the thesis. In the remainder of the chapter we introduce cbpv,
its operational semantics and an adequate (set-theoretic) denotational semantics.

2.2.1 Syntax and operational semantics of cbpv

Figures 2.1–2.4 show the definition of cbpv, its type system, and its reduction rules.

(values) V,W ::= x | () | (V1, V2) | inji V | {M}

(computations)
M,N ::= split(V, x1.x2.M) | case0(V)

| case(V, x1.M1, x2.M2) | V!
| return V | let x←M in N
| λx.M |M V

| 〈M1,M2〉 | prjiM

Figure 2.1: cbpv syntax
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(value types) A,B ::= 1 | A1 ×A2 | 0 | A1 +A2 | UC
(computation types) C,D ::= FA | A→ C | > | C1 & C2
(environments) Γ ::= x1 : A1, . . . , xn : An

Figure 2.2: cbpv types

Value typing Γ ` V : A

(x : A) ∈ Γ
Γ ` x : A Γ ` () : 1

Γ ` V1 : A1 Γ ` V2 : A2
Γ ` (V1, V2) : A1 ×A2

Γ ` V : Ai

Γ ` inji V : A1 +A2

Γ `M : C

Γ ` {M} : UC

Computation typing Γ `M : C

Γ ` V : A1 ×A2 Γ, x1 : A1, x2 : A2 `M : C

Γ ` split(V, x1.x2.M) : C

Γ ` V : 0

Γ ` case0(V) : C

Γ ` V : A1 +A2 Γ, x1 : A1 `M1 : C Γ, x2 : A2 `M2 : C

Γ ` case(V, x1.M1, x2.M2) : C

Γ ` V : UC

Γ ` V! : C

Γ ` V : A

Γ ` return V : FA

Γ `M : FA Γ, x : A ` N : C

Γ ` let x←M in N : C

Γ, x : A `M : C

Γ ` λx.M : A→ C

Γ `M : A→ C Γ ` V : A

Γ `M V : C Γ ` 〈〉 : >
Γ `M1 : C1 Γ `M2 : C2

Γ ` 〈M1,M2〉 : C1 & C2
Γ `M : C1 & C2
Γ ` prjiM : Ci

Figure 2.3: cbpv type system

cbpv distinguishes between value types and computation types. Terms of the first
type are non-computing objects, that can for instance be given as an argument to a
function. Terms of the latter type are computing objects, and terms of computation
type are the only terms that reduce. A computation returning a value is captured
by the construct return V , yielding an object of type FA if V is of type A. The value
can be extracted with the let-construct. To pass a computation as an argument (i.e.
to write a higher-order function) one has to thunk it first as {M}, yielding an object
of type UC ifMwas of type C. The inverse operationM! is called force.
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Reduction frames

(computation frames) C ::= let x← [ ] in N | [ ] V | prji [ ]

Reduction M −→M ′

(β.×) split((V1, V2), x1.x2.M) −→M[V1/x1, V2/x2]
(β.+) case(inji V, x1.M1, x2.M2) −→Mi[V/xi]
(β.U) {M}! −→M

(β.F) let x← return V inM −→M[V/x]
(β.→) (λx.M) V −→M[V/x]
(β.&) prji 〈M1,M2〉 −→Mi

(frame)
M −→M ′

C[M] −→ C[M ′]

Figure 2.4: cbpv operational semantics

2.2.2 Finite types in cbpv

We define ground types as exactly those value types that do not contain thunked
computations:

(ground values) G ::= 1 | G1 ×G2 | 0 | G1 +G2

Ground types will play an important role. Obviously, equality of ground values is
computationally decidable, even ifwe add additional computation constructs to the
language, which is also why we will use this definition for all presented languages.
Thus, our soundness theorems of the form “If ` M : FA, then M −→∗ return V”
will always restrict A to ground types.

We will need ground types with exactly n elements. In cbpv we can simply define
them as the n-ary sum of the 1-type:

F0 B 0

Fn+1 B 1+ Fn

We can define elements of the type Fn as 0n B (), (m+1)n B inj1mn. The elements
of Fn then are exactly 0n, . . . (n− 1)n.

We can define the function succ : Fn → Fn B λx.inj1 x such that for all m < n − 1,
succmn −→∗ (m+ 1)n.
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Lemma 2.9. For different natural numbers m 6= m ′ with m,m ′ 6 n we have mn 6= m ′n
syntactically.

Proof

Immediately from the definition. �

2.2.3 Syntactic sugar

We define several constructs that make it easier two write down terms in cbpv. In
cbpv one cannot apply two computations to each other, so we set:

MNB let x← N inM x

We can implement the type of booleans with F2. We can then implement the usual
if/then/else construct as:

if b then C1 else C2 B case(b, _.C1, _.C2).

Where it seems convenient we might write V for return V , as the ambiguity in ad-
dition to the notationMN does not change the operational behaviour of the term.

2.2.4 Denotational Semantics

We are not going to directly need denotational semantics for cbpv. However, we
can reuse the semantic definitions and most of the proofs for λeff and λmon.

We define the denotational semantics for cbpv for any monad T over Set fulfilling
the mono-requirement. The denotational semantics for types is shown in figure
2.5. For every value type A we associate a set ⟦A⟧ that contains the denotation of
the closed terms of type A. To every computation type C we associate a T -algebra
⟦C⟧.
The denotations of value types are the evident set-theoretic constructions, i.e. dis-
joint union for +, product for ×, a singleton set for 1 and the empty set for 0. The
type of thunks UC denotes the carrier of the algebra ⟦C⟧.
The denotation of computation types has more structure. For the >, & and → we
use the singleton, exponential and product constructions for algebras from section
2.1.2.

Themost interesting part is the denotational semantics for FA. Here we use the free
algebra for the monad T over the set ⟦A⟧.
Recall that a context Γ is just a partial function from variable names to value types
with a finite domain of definition Dom (Γ). A denotation for an environment then
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The semantics assigns to each well kinded:
• value type A a set ⟦A⟧;
• computation type C a T -algebra ⟦C⟧;
• context `k Γ : Ctxt a set ⟦Γ⟧; and

Value types

⟦1⟧B {?} ⟦A1 ×A2⟧B ⟦A1⟧× ⟦A2⟧ ⟦0⟧B ∅
⟦A1 +A2⟧B {1}× ⟦A1⟧ ∪ {2}× ⟦A2⟧ ⟦UC⟧B |⟦C⟧|

Computation types

⟦FA⟧B F⟦A⟧ ⟦A→ C⟧B 〈|⟦C⟧|⟦A⟧, λfs.λx.c(fmap (λf.f(x)) fs)〉
⟦>⟧B 〈{?}, λxs.?〉

⟦C1 & C2⟧B 〈|⟦C1⟧|× |⟦C2⟧|, λcs. 〈c1(fmap π1 cs), c2(fmap π2 cs)〉〉

Contexts ⟦Γ⟧B∏x∈Dom(Γ) ⟦Γ(x)⟧
Figure 2.5: cbpv denotational semantics for types

simply maps variable names to the denotation of value types.

We can give semantics to cbpv by setting T to the identity monad. However, for λeff
and λmon wewill need more involved monads and reuse the generalised semantics.

In our setting, a term can have multiple types, for example the function λx.x can
have type 1 → 1 or 0 → 0. Moreover, a given type judgement might have multiple
type derivations. We thus in fact give a Church-style semantics [21] to our calculi,
i.e. define the denotations for type judgements rather then for terms. However, we
will sometimes pretend to assign it to terms directly for brevity and better read-
ability.

Figure 2.6 defines the denotational semantics for terms. Value derivations Γ ` V : A

denote functions ⟦V⟧ : ⟦Γ⟧ → ⟦A⟧, and computation derivations Γ ` M : C denote
functions ⟦M⟧ : ⟦Γ⟧ → |⟦C⟧|. This does not reflect any use of the algebra structure
on ⟦C⟧ explicitly. However, as these definitions all give algebra structures over their
carrier sets, we obtain, for each function f : X → |⟦C⟧|, a Kleisli extension (�=f) :

TX → |⟦C⟧|. Our semantics makes use of the Kleisli extension in the semantics of
let x←M in N.

As a sanity check we prove the following lemma about the denotation of ground
types:

Lemma 2.10. For all ground types G and for all a ∈ ⟦G⟧ there exists a closed value term
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Value terms

⟦x⟧ (γ)B πx(γ) ⟦()⟧ (γ)B ? ⟦(V1, V2)⟧ (γ)B 〈⟦V1⟧ (γ), ⟦V2⟧ (γ)〉
⟦inji V⟧ (γ)B 〈i, ⟦V⟧ (γ)〉 ⟦{M}⟧ (γ)B ⟦M⟧ (γ)

Computation terms

⟦split(V, x1.x2.M)⟧ (γ)B ⟦M⟧ (γ[x1 7→ a1, x2 7→ a2]), where ⟦V⟧ (γ) = 〈a1, a2〉
⟦case0(V)⟧ is the empty map, as ⟦V⟧ : ⟦Γ⟧→ ∅ necessitates ⟦Γ⟧ = ∅

⟦case(V, x1.M1, x2.M2)⟧B
{
⟦M1⟧ (γ[x1 7→ a1]) ⟦V⟧ (γ) = 〈1, a1〉
⟦M2⟧ (γ[x2 7→ a2]) ⟦V⟧ (γ) = 〈2, a2〉

⟦V!⟧ (γ)B ⟦V⟧ (γ) ⟦return V⟧ (γ)B return ( ⟦V⟧ (γ))
⟦let x←M in N⟧ (γ)B ⟦M⟧ (γ)�=λa. ⟦N⟧ (γ[x 7→ a])

⟦λx.M⟧ (γ)B λa. ⟦M⟧ (γ[x 7→ a]) ⟦M V⟧ (γ)B (⟦M⟧ (γ))(⟦V⟧ (γ)) ⟦〈〉⟧ (γ)B ?

⟦〈M1,M2〉⟧ (γ)B 〈⟦M1⟧ (γ), ⟦M2⟧ (γ)〉 ⟦prjiM⟧ (γ)B πi(⟦M⟧ (γ))

Figure 2.6: cbpv denotational semantics for terms

` VGa : G such that ⟦VGa ⟧ = a.
Proof

Define VGa by induction on G:

V1? B () VG1×G2〈a1,a2〉 B (VG1a1 , V
G2
a2

) VG1+G2〈i,a〉 B inji V
Gi
a

�

2.2.5 Contextual equivalence for cbpv

We define contexts and their type system for cbpv as in Figure 2.7–2.8. Note that
it is straightforward to define contexts with two holes, but we omit this here for
conciseness. We say that a type environment Γ ′ extends a type environment Γ , and
write Γ ′ > Γ if Γ ′ extends Γ as a partial function from identifiers to value types.

Definition 2.11 (contextual equivalence). Let Γ ` P,Q : X be two cbpv phrases. We say
that P andQ are contextually equivalent and write P ' Qwhen for all closedwell-typed
ground-returners contexts ∅[Γ ′] ` X[ ] : FG[X]with Γ ′ > Γ and for all closed ground value
terms ` V : G, we have:

X[P] −→? return V ⇐⇒ X[Q] −→? return V

Lemma 2.12 (substitution). For all Γ ` P : X and 〈Vx〉x∈Dom(Γ) such that, for all x ∈
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(value contexts) Xval ::= [ ] | (Xval, V2) | (V1,Xval) | injiXval | {Xcomp}

(computation contexts)
Xcomp ::= [ ] | split(Xval, x1.x2.M)

| split(V, x1.x2.Xcomp) | case0(Xval)

| case(Xval, x1.M1, x2.M2)

| case(V, x1.Xcomp, x2.M2)

| case(V, x1.M1, x2.Xcomp) | Xval!
| return Xval
| let x← Xcomp in N
| let x←M in Xcomp
| λx.Xcomp | Xcomp V |M Xval
|
〈
Xcomp,M2

〉
|
〈
M1,Xcomp

〉
| prjiXcomp

Figure 2.7: cbpv contexts

Dom (Γ), ∆ ` Vx : Γ(x), we have ∆ ` P[Vx/x]x∈Dom(Γ) : X.

Proof

Straightforward induction over Γ ` P : X. �

Lemma 2.13 (context substitution). For all ∆[Γ ′] ` X[ ] : Y[X]:

1. For all Γ ` P : X where Γ ′ > Γ , we have ∆ ` X[P] : Y.

2. For all Γ ` P,Q : X where Γ ′ > Γ , we have ⟦P⟧ = ⟦Q⟧ implies ⟦X[P]⟧ = ⟦X[Q]⟧.
Proof

Both parts follow from a straightforward induction over the derivation of ∆[Γ ′] `
X[ ] : Y[X]. �

Lemma 2.14 (basic contextual equivalence properties). The relation ' is an equiva-
lence relation that is congruent w.r.t. cbpv terms, and contains the reduction relation −→.

2.2.6 Adequacy

Our denotational semantics is adequate, i.e. denotationally equivalent terms are
observationally equivalent. We prove this using a standard logical relations argu-
ment [17]. The lifting for the U type first appeared in [8].

For every (value/computation) type X, we define cbpvX = {P| ` P : X}. We define
the logical relations for a cbpv type X by induction on X as in Figure 2.9.

We first show some technical properties of the logical relations:
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Context typing Γ [∆] ` X[ ] : C[D]

Γ [Γ ] ` [ ] : X[X]

Value context typing

Γ [∆] ` X[ ] : A1[X] Γ ` V2 : A2
Γ [∆] ` (X[ ], V2) : A1 ×A2[X]

Γ ` V1 : A1 Γ [∆] ` X[ ] : A2[X]

Γ [∆] ` (V1,X[ ]) : A1 ×A2[X]

Γ [∆] ` X[ ] : Ai[X]

Γ [∆] ` injiX[ ] : A1 +A2[X]

Γ [∆] ` X[ ] : C[X]

Γ [∆] ` {X[ ]} : UC[X]

Computation context typing

Γ [∆] ` X[ ] : A1 ×A2[X] Γ, x1 : A1, x2 : A2 `M : C

Γ [∆] ` split(X[ ], x1.x2.M) : C[X]

Γ ` V : A1 ×A2 Γ, x1 : A1, x2 : A2[∆] ` M : C[X]

Γ [∆] ` split(V, x1.x2.X[ ]) : C[X]

Γ [∆] ` X[ ] : 0[X]

Γ [∆] ` case0(X[ ]) : C[X]

Γ [∆] ` X[ ] : A1 +A2[X] Γ, x1 : A1 `M1 : C Γ, x2 : A2 `M2 : C

Γ [∆] ` case(X[ ], x1.M1, x2.M2) : C[X]

Γ ` V : A1 +A2 Γ, x1 : A1[∆] ` X[ ] : C[X] Γ, x2 : A2 `M2 : C

Γ [∆] ` case(V, x1.X[ ], x2.M2) : C[X]

Γ ` V : A1 +A2 Γ, x1 : A1 `M1 : C Γ, x2 : A2[∆] ` X[ ] : C[X]

Γ ` case(V, x1.M1, x2.X[ ]) : C

Γ [∆] ` X[ ] : UC[X]

Γ [∆] ` X[ ]! : C[X]
Γ [∆] ` X[ ] : A[X]

Γ [∆] ` return X[ ] : FA[X]

Γ [∆] ` X[ ] : FA[X] Γ, x : A ` N : C

Γ [∆] ` let x← X[ ] in N : C[X]

Γ `M : FA Γ, x : A[∆] ` X[ ] : C[X]

Γ [∆] ` let x←M in X[ ] : C[X]

Γ, x : A[∆] ` X[ ] : C[X]

Γ [∆] ` λx.X[ ] : A→ C[X]

Γ [∆] ` X[ ] : A→ C[X] Γ ` V : A

Γ [∆] ` X[ ] V : C[X]

Γ `M : A→ C Γ [∆] ` X[ ] : A[X]

Γ [∆] ` M X[ ] : C[X]

Γ [∆] ` X[ ] : C1[X] Γ `M2 : C2

Γ [∆] ` 〈X[ ],M2〉 : C1 & C2[X]

Γ `M1 : C1 Γ [∆] ` X[ ] : C2[X]

Γ [∆] ` 〈M1,X[ ]〉 : C1 & C2[X]
Γ [∆] ` X[ ] : C1 & C2[X]
Γ [∆] ` prjiX[ ] : Ci[X]

Figure 2.8: cbpv context types
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Value relations RA ⊆ ⟦A⟧× cbpvA

R1 B {〈?, V〉|V ' ()}
RA1×A2 B {〈〈a1, a2〉, V〉|∃V1, V2∀i.Vi : Ai. 〈ai, Vi〉 ∈ RAi , V ' (V1, V2)} R0 B ∅

RA1+A2 =
⋃
i=1,2

{
〈ιia, V〉

∣∣∃V ′ : Ai. 〈a, V ′〉 ∈ RAi , V ' inji V
′}

RUC B {〈a, V〉|∃M : C. 〈a,M〉 ∈ RC, V ' {M}} note the thunk in {M}

Computation relations RC ⊆ |⟦C⟧|× cbpvC

RFA B {〈return a,M〉|∃V : A. 〈a, V〉 ∈ RA,M ' return V}
RA→C B {〈f,M〉|∀ 〈a, V〉 ∈ RA, 〈f(a),M V〉 ∈ RC} R> B {〈?,M〉|M ' 〈〉}
RC1&C2 B {〈〈c1, c2〉,M〉|∃M1 : C1,M2 : C2.M ' 〈M1,M2〉 , ∀i. 〈ci,Mi〉 ∈ RCi}

Figure 2.9: cbpv logical relations

Lemma 2.15. The logical relations RX are closed under contextual equivalence. Explicitly:
For all 〈a, P〉 ∈ RX and ` Q : X, P ' Q implies 〈a,Q〉 ∈ RX.

Proof

By induction on X. �

Lemma 2.16. For all ground types G, a ∈ ⟦G⟧, and closed value terms ` V : ,V ′ : G:

〈a, V〉 , 〈a, V ′〉 ∈ RG =⇒ V ' V ′

Proof

By induction on G. �

Lemma 2.17 (basic lemma). For all Γ ` P : X, γ ∈ ⟦Γ⟧ and 〈Vx〉x∈Dom(Γ):

(for all x ∈ Dom (Γ): 〈πxγ, Vx〉 ∈ RΓ(x)) =⇒
〈⟦P⟧γ, P[Vx/x]x∈Dom(Γ)

〉
∈ RX

Proof

We prove the lemma by induction over type derivations. The cases are all straight-
forward. As an example, we show the value type derivation rule for (×-I) and the
computation type derivation for (×-E):

(×-I):
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Assume the inductive hypothesis for Γ ` vi : Ai, i = 1, 2, i.e.:
〈⟦Vi⟧γ, Vi[Vx/x]x∈Dom(Γ)

〉
∈

RAi .

But
〈⟦(V1, V2)⟧γ, (V1, V2)[Vx/x]x∈Dom(Γ)

〉
is equal to〈

〈⟦V1⟧γ, ⟦V2⟧γ〉, (V1[Vx/x]x∈Dom(Γ), V2[Vx/x]x∈Dom(Γ))
〉

and in RA1×A2 by the definition of RA1×A2 .

(×-E): Assume the inductive hypothesis for Γ ` V : A1×A2, Γ, x1 : A1, x2 : A2 `M : C.
Consider any γ, [Vx/x]x∈Dom(Γ) as in the IH. Then by the the first IH we have that〈⟦V⟧γ, V[Vx/x]x∈Dom(Γ)

〉
is in RA1×A2 , so by definition there are ` Vx1 : A1,` Vx2 :

A2, a1 ∈ ⟦A1⟧ , a2 ∈ ⟦A2⟧ such that ⟦V⟧γ = 〈a1, a2〉, V[Vx/x]x∈Dom(Γ) ' (Vx1 , Vx2)

and〈ai, Vxi〉 ∈ RAi for i = 1, 2.

But then γ ′ B γ[x1 7→ a1, x2 7→ a2], 〈Vx〉x∈Dom(Γ ′) where Γ ′ B Γ, x1 : A1, x2 : A2 satisfy
the premise of the second IH, so we have

〈⟦M⟧γ ′,M[Vx/x]x∈Dom(Γ)

〉
∈ RC.

But:
〈⟦split(V, x1.x2.M)⟧γ, split(V, x1.x2.M)[Vx/x]x∈Dom(Γ)

〉
∈ RC and this is equiv-

alent to〈⟦M⟧γ ′, split(V[Vx/x]x∈Dom(Γ), x1.x2.M[Vx/x]x∈Dom(Γ\{x1,x2}))
〉
∈ RC We then have〈⟦split(V, x1.x2.M)⟧γ, split(V, x1.x2.M)[Vx/x]x∈Dom(Γ)

〉
∈ RC

=
〈⟦M⟧γ ′, split(V[Vx/x]x∈Dom(Γ), x1.x2.M[Vx/x]x∈Dom(Γ))

〉
∈ RC

⇐
〈⟦M⟧γ ′, split((Vx1 , Vx2), x1.x2.M[Vx/x]x∈Dom(Γ))

〉
∈ RC

⇐
〈⟦M⟧γ ′,M[Vx/x]x∈Dom(Γ)

〉
∈ RC

where both implications follow from Lemma 2.14 and Lemma 2.15. �

Theorem 2.18 (adequacy). Denotational equivalence implies contextural equivalence.
Explicitly: Given a monad satisfying the mono requirement, then for all Γ ` P,Q : X, if
⟦P⟧ = ⟦Q⟧ then P ' Q.
Proof

Let Γ ` P1, P2 : X be any well-typed phrases satisfying ⟦P1⟧ = ⟦P2⟧. Consider any
closed well-typed ground-returner context ∅[Γ ′] ` X[ ] : FG[X] with Γ ′ > Γ . By
Lemma 2.13, ⟦X[P1]⟧ = ⟦X[P2]⟧. Let c be this common denotation.

Consider any i ∈ {1, 2}. By the basic lemma:

〈c,X[Pi]〉 ∈ RFG

By RFG’s definition, there exist 〈ai, Vi〉 ∈ RG such that c = return ai and X[Pi] '
return Vi.
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Thus:
return a1 = c = return a2

The mono requirement implies that a1 = a2. Therefore, by Lemma 2.16, V1 ' V2.
Therefore:

X[P1] ' return V1 ' return V2 ' X[P2]

Therefore X[P1] −→? return V iff X[P2] −→? return V , hence P1 ' P2. �

Corollary 2.19 (soundness). All well-typed closed ground returners reduce to a normal
form. Explicitly: for all `M : FG there exists some ` V : G such that:

M −→? return V

Proof

Pick the identity monad, which satisfies the mono requirement, and consider the
induced denotational semantics.

By the basic lemma, 〈⟦M⟧γ,M〉 ∈ RFG, so by definition ⟦M⟧ = return a andM '
return V for some 〈a, V〉 ∈ RG. As M is a ground-returner, we can instantiate
M ' return V at the empty context and at V , and deduce that M −→? return V
iff return V −→? return V , and the latter holds by reflexivity.

Note that by Lemma 2.16 and Lemma 2.10, we can choose V B VGa �



Chapter 3

Effect handlers: λeff

In this chapterwe recall λeff [9], an extension of cbpvwith effects and effect handlers.
This calculus can be seen as the core calculus of actual programming languages
featuring effects and handlers like eff [1]. Effects arise from the use of operations
like raise for exceptions, set and get for global store, or read and write for I/O.
In λeff, one can declare such effect operations, use them to construct effectful code
and specify how they are implemented by providing effect handlers. This leads to
a clear separation between an effect and its implementation.

Section 3.1 introduces the syntax of λeff, a small-step operational semantics and a
sound type system. We define contextual equivalence for λeff in section 3.2. We
then use this definition to give an equational specification every implementation of
exceptions and global store has to fulfil in section 3.3, before we present the imple-
mentations and prove them correct. Finally, we introduce a denotational semantics
for λeff in section 3.4, prove its adequacy and the soundness of the type system.

3.1 Syntax and operational semantics of λeff

Figure 3.1 introduces the syntax of λeff and figure 3.2 the operational semantics.
Figures 3.3–3.5 define the typing relation. As in the whole thesis we highlight parts
that are different from cbpv via shading.

The relevant syntactic additions to cbpv are effect operations op V (λx.M), handling
constructs handleMwithH and effect handlersHwhich describe how these effects
should be executed. Handlers are a set of clauses andhave to contain a return clause
return x 7→ M. Furthermore, they can have finitely many more handler clauses
op p k 7→ N, where the operation symbols have to be distinct, which we emphasise
by using the symbol for disjoint union ] in the definition. Although the λx.M in
operations is technically part of the syntax we will often treat it as an ordinary cbpv
function and write op V MwhereM is of function type instead.
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(values) V,W ::= x | () | (V1, V2) | inji V | {M}

(computations)
M,N ::= split(V, x1.x2.M) | case0(V)

| case(V, x1.M1, x2.M2) | V!
| return V | let x←M in N
| λx.M |M V

| 〈M1,M2〉 | prjiM
| op V(λx.M) | handleM with H

(handlers) H ::= {return x 7→M}

| H ] {op p k 7→ N} where op does not occur in H

Figure 3.1: λeff-calculus syntax

Reduction frames

(hoisting frames) H ::= let x← [ ] in N | [ ] V | prji [ ]
(computation frames) C ::= H | handle [ ] with H

Reduction M −→M ′

(β.×) split((V1, V2), x1.x2.M) −→M[V1/x1, V2/x2]
(β.+) case(inji V, x1.M1, x2.M2) −→Mi[V/xi]
(β.U) {M}! −→M

(β.F) let x← return V inM −→M[V/x]
(β.→) (λx.M) V −→M[V/x]
(β.&) prji 〈M1,M2〉 −→Mi

(frame)
M −→M ′

C[M] −→ C[M ′]

(hoist.op)
x /∈ FV(H)

H[op V(λx.M)] −→ op V(λx.H[M])

(handle.F)
Hreturn = λx.M

handle (return V) with H −→M[V/x]

(handle.op)
Hop = λp k.N x /∈ FV(H)

handle op V(λx.M) with H
−→ N[V/p, {λx.handleM with H}/k]

Figure 3.2: λeff-calculus operational semantics
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(kinds) K ::= Val | Eff | CompE | Ctxt | Hndlr
(value types) A,B ::= 1 | A1 ×A2 | 0 | A1 +A2 | UEC
(computation types) C,D ::= FA | A→ C | > | C1 & C2
(effect signatures) E ::= {op : A→ B} ] E | ∅
(handler types) R ::= A E⇒E ′ C
(environments) Γ ::= x1 : A1, . . . , xn : An

Figure 3.3: λeff-calculus kinds and types

Value kinding `k A : Val

`k 1 : Val
`k A1 : Val `k A1 : Val

`k A1 ×A2 : Val `k 0 : Val

`k A1 : Val `k A1 : Val
`k A1 +A2 : Val

`k E : Eff `k C : CompE
`k UEC : Val

Effect kinding `k E : Eff

`k A : Val `k B : Val op /∈ E `k E : Eff
`k {op : A→ B} ] E : Eff `k ∅ : Eff

Computation kinding `k C : CompE

`k A : Val `k E : Eff
`k FA : CompE

`k A : Val `k C : CompE
`k A→ C : CompE `k > : CompE

`k C1 : CompE `k C2 : CompE
`k C1 & C2 : CompE

Context kinding `k Γ : Ctxt

for all x ∈ Dom (Γ): `k Γ(x) : Val
`k Γ : Ctxt

Handler kinding `k X : Hndlr

`k Γ : Ctxt `k A : Val `k E, E ′ : Eff `k C : CompE ′
`k A E⇒E ′ C : Hndlr

Figure 3.4: λeff-calculus kinding rules



3.1. Syntax and operational semantics of λeff 22

Value typing Γ ` V : A where `k Γ : Ctxt and `k A : Val

(x : A) ∈ Γ
Γ ` x : A Γ ` () : 1

Γ ` V1 : A1 Γ ` V2 : A2
Γ ` (V1, V2) : A1 ×A2

Γ ` V : Ai

Γ ` inji V : A1 +A2

Γ `E M : C

Γ ` {M} : UEC

Computation typing Γ `E M : C where `k Γ : Ctxt and `k C : CompE

Γ ` V : A1 ×A2 Γ, x1 : A1, x2 : A2 `E M : C

Γ `E split(V, x1.x2.M) : C

Γ ` V : 0

Γ `E case0(V) : C

Γ ` V : A1 +A2 Γ, x1 : A1 `E M1 : C Γ, x2 : A2 `E M2 : C

Γ `E case(V, x1.M1, x2.M2) : C

Γ ` V : UEC

Γ `E V! : C

Γ ` V : A

Γ `E return V : FA

Γ `E M : FA Γ, x : A `E N : C

Γ `E let x←M in N : C

Γ, x : A `E M : C

Γ `E λx.M : A→ C

Γ `E M : A→ C Γ ` V : A

Γ `E M V : C Γ `E 〈〉 : >
Γ `E M1 : C1 Γ `E M2 : C2

Γ `E 〈M1,M2〉 : C1 & C2
Γ `E M : C1 & C2
Γ `E prjiM : Ci

(op : A→ B) ∈ E Γ ` V : A Γ, x : B `E M : C

Γ `E op V(λx.M) : C

Γ `E M : FA Γ ` H : A E⇒E ′ C
Γ `E ′ handleM with H : C

Handler typing Γ ` H : A E⇒E ′ C where

E = {op
i
: Ai → Bi}i

H = {return x 7→M} ] {op
i
p k 7→ Ni}i

[Γ, p : Ai, k : UE ′(Bi → C) `E ′ Ni : C]i Γ, x : A `E ′ M : C

Γ ` H : A E⇒E ′ C

Figure 3.5: λeff-calculus type system
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Handlers H define how to proceed when an operation is encountered during the
evaluation of a program. They have clauses Hopi = λpi ki.Ni for every possible op-
eration op

i
, defining how to deal with operations that occur with parameter pi and

continuation ki (rule handle.op). The idea is that (if we ignore the second argu-
ment of operations for a moment) when an operation op

i
V is encountered inside a

contextH the evaluation proceeds with the matching handling termNi, where the
parameter pi is bound to V and the continuation ki is set to the continuation where
op
i
V in H is replaced by the passed value:

handle H[op
i
V] with H −→∗ Ni[V pi, {λx.handle H[return x] with H}/ki].

If Ni then invokes ki with an argument, the evaluation gets resumed at the point
where the operationwas called. Our handlers are deep, meaning the resumed com-
putation gets executed under the presence of the same handler. If Ni does not use
ki, the previous computation is just discarded.

The actual formalisation generalises this idea a bit, to ease implementations of ac-
tual effects and the definition of the small step semantics. Operations have a second
argument λx.N : B → C, carrying the current continuation. This allows us to de-
fine H[opV(λx.N)] −→ opV(λx.H[N]). The new construct generalises the previous
construct by defining ôp V B op V (λx.return x). Plotkin and Power call the sim-
plified form of operations the generic effect of op [19]. They are equivalent to our
operations, because we can set op V(λx.N)B let x← ôp V in N.

Furthermore, following [2] we enforce every handler H to have a return clause
Hreturn ≡ λx.M that defines how the term handle return V with H proceeds (rule
handle.F). This will be useful for implementing certain effects like store.

Finally, the typing judgement for λeff is parameterised by a set E of effect operations
that may occur during evaluation and so is the type U of thunked computations.
Effect operations op have an arity A→ B. The idea is that they can be invoked with
a parameter of typeA and the computationmight resume later with a value of type
B.

3.2 Contextual equivalence

Similar to cbpv we define contextual equivalence for λeff. We first extend the con-
texts of cbpv to contexts of λeff by adding the contexts in figure 3.6. Figure 3.7 shows
how to type them. The typing judgment for λeff-contexts is, similar to the judgment
for terms, parameterised by a set E of effects and a set E ′ of allowed effects for the
term to be inserted.

The definition of contextual equivalence is then a generalisation that also accounts



3.2. Contextual equivalence 24

For the omitted parts see cbpv contexts in figure 2.7.

(value contexts) Xval ::= . . .

(computation contexts)
Xcomp ::= . . .

| opXval (λx.M) | opV (λx.Xcomp)

| handle Xcomp with H
| handleM with Xhan

(handler contexts)
Xhan ::= [ ]

|
{
return x 7→ Xcomp

}
| H ] {op p k 7→ N}

| {return x 7→M} | H ]
{
op p k 7→ Xcomp

}
Figure 3.6: λeff-calculus contexts

for effect signatures:

Definition 3.1 (contextual equivalence). Let Γ `E ′ P,Q : X be two λeff phrases. We say
that P and Q are contextually equivalent, and write P 'E Q when, for all closed well-
typed ground-returner contexts ∅[Γ ′] `E[E ′] X[ ] : FG[X] with Γ ′ > Γ and for all closed
ground value terms ` V : G, we have:

X[P] −→? return V ⇐⇒ X[Q] −→? return V

Wewrite P ' Q for P '∅ Q (i.e. for closed, effect-free ground-returners in the definition).

We prove the following lemma as sanity check for our definition:

Lemma 3.2. For all Γ `E P,Q : X, P ' Q iff ∀E, P 'E Q.

Proof

The⇐-direction is immediate. For the other direction, let E = {opi : Ai → Bi}16i6n
be an effect signature and consider the context Y B ∅[Γ ] `∅[E] handle [ ] with H :

F(G+ Fn)[X]whereHreturn = λx.return (inj1 x) andHopi = λp, k.return (inj2 in). Re-
call that Fn is the finite type with exactly n elements 0n, . . . , (n− 1)n.

Now assume X[P] −→∗ return V . This means that Y[X[P]] −→∗ return (inj1 V).
Thus, Y[X[Q]] −→∗ return (inj1 V), because Y[X[ ]] is an effect free ground returner
context. But this can only be the case if X[Q] −→∗ return V . �

Lemma 3.3 (basic contextual equivalence properties). The relation' is an equivalence
relation that is congruent w.r.t. λeff contexts, and contains the reduction relation −→.
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Context typing Γ [∆] `E[E ′] X[ ] : C[X]

Γ [Γ ] `E[E] [ ] : X[X]

Value context typing see figure 2.8, where just the rule for thunks is replaced by:

Γ [∆] `E[E ′] X[ ] : C[X]

Γ [∆] ` {X[ ]} : UEC[X]

Computation context typing see figure 2.8 and:

(op : A→ B) ∈ E Γ [∆] `E[E ′] X[ ] : A[X] Γ, x : B `E M : C

Γ [∆] `E[E ′] opX[ ] (λx.M) : C[X]

(op : A→ B) ∈ E Γ ` V : A Γ, x : B[∆] `E X[ ] : C[X]

Γ [∆] `E[E ′] opV (λx.X[ ]) : C[X]

Γ `E M : FA Γ [∆] `[E ′′] H : A E⇒E ′ C[X]
Γ [∆] `E ′[E ′′] handleM with Xhan[ ] : C[X]

Γ [∆] `E[E ′′] Xcomp[ ] : FA[X] Γ ` H : A E⇒E ′ C
Γ [∆] `E ′[E ′′] handle Xcomp[ ] with H : C[X]

Handler context typing Γ [∆] `[E ′′] H : A E⇒E ′ C[X]

E = {op
i
: Ai → Bi}i

H =
{
return x 7→ Xcomp[ ]

}
] {op

i
p k 7→ Ni}i

[Γ, p : Ai, k : UE ′(Bi → C) `E ′ Ni : C]i Γ, x : A[∆] `E ′ Xcomp[ ] : C[X]

Γ [∆] `[E ′′] H : A E⇒E ′ C[X]

E = {op
i
: Ai → Bi}i

H = {return x 7→M} ] {op
i
p k 7→ Ni}i ]

{
op p k 7→ Xcomp[ ]

}
[Γ, p : Ai, k : UE ′(Bi → C) `E ′ Ni : C]i

Γ, p : A, k : UE ′(B→ C)[∆] `E ′ Xcomp[ ] : C[X] Γ, x : A `E ′ M : C

Γ [∆] `[E ′′] H : A E⇒E ′ C[X]

Figure 3.7: λeff-calculus context types
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3.3 Programming in λeff

We demonstrate how to program with effect handlers by implementing exception
handlers and a global store handler.

3.3.1 Exceptions in λeff

One way to implement exceptions is to give terms raise and try that can be used
in the following style:

try{1+ raise "number"}{λs.if s = "number" then 0 else 1}

That is, we want to have terms

raise : string→ FA

try : U{exc : string→0}FA→ UE(string→ FA)→ FA

for every type A and effect signature Ewith exc 6∈ E, where exc : string→ 0.

The general idea is that try{M}N ' try{M ′}N ifM −→M ′ and try{return V}M '
return V , but for any stacked hoisting frameH∗wehave try{H∗[raise s]}M 'M! s.
With stacked hoisting frame we mean H∗ ::= [ ] | H[H∗].

We will implement raise using the operation exc :

raiseB λs.let x← exc s (λx.return x) in case0(x)

Consequently, try handles the effect:

tryB λc h.handle c! with H

where Hreturn B λx.return x and Hexc B λs k.h! s. That means, whenever no op-
eration is encountered, the computation just proceeds, but when an operation is
encountered, its argument is passed to the second argument, the exception han-
dler h.

We have

try{return V}M = handle {return V}! with H
−→ handle return V with H
−→ return V
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and

try{H∗[raise s]}M = handle {H∗[raise s]}! with H
−→ handle H∗[raise s] with H
= handle H∗[let x← exc s(λx.return x) in case0(x)] with H
−→ handle exc s (λx.H∗[let y← return x in case0(x)]) with H
−→M!s[λx.handle H∗[let y← return x in case0(x)]) with H/k]
=M!s

as wanted. Note that becauseM!s does not mention k, the continuation is just ig-
nored.

3.3.2 Global store in λeff

We implement a single cell of global storage by giving terms

withst : A→ U{get,set}C→ C

get : 1→ FA

set : A→ F1

for an arbitrary value type A. get and set are just generic effect for the operations
get and set. We wrap the entire program with the withst construct to simulate
this global state. The handler now simply translates the effectful computation to a
pure computation:

withst V NB (handle N! with H)V
Hreturn B λx.λ_.return x
Hget B λ_ k.λs.(ks)s
Hset B λs k.λ_.(k())s

get ()B get () (λx.return x)
set sB set s (λx.return x)

The correctness properties are:

withst V {return V ′} ' return V ′

withst V {M} ' withst V {M} ′ ifM −→M ′

withst V {H∗[get ])} ' withst V {H∗[return V]}
withst V (H∗[set V ′]) ' withst V ′ (H∗[return ()])
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The first two properties follow immediately from the definition. The third and
fourth property are also straightforward to prove:

withst V {H∗[get ])} = (handle {H∗[get ]}! with H)V
−→ (handle H∗[get ] with H)V
−→∗ (λs.(λx.handle H∗[return x] with H)ss)V
−→∗ (handle H∗[return V] with H)V
←− withst V {H∗[return V]}

withst V (H∗[set V ′]) = (handle {H∗[set V ′]}! with H)V
−→ (handle H∗[set V ′] with H)V
−→∗ (λ_.(λx.handle H∗[return x] with H)()V ′)V
−→∗ (handle H∗[return ()] with H)V ′

←− withst V ′ (H∗[return ()])

3.4 Denotational semantics for λeff

We give a set-theoretic denotational semantics for λeff.

The semantics assigns to each well kinded:

• value type `k A : Val a set ⟦A⟧;
• effect `k E : Eff a (parameterised) signature ⟦E⟧;
• computation type `k C : CompE a ⟦E⟧-algebra ⟦C⟧;
• context `k Γ : Ctxt a set ⟦Γ⟧; and
• handler `k X : Hndlr an algebra and a function into the carrier of that algebra.

We use the cbpv denotations (see figure 2.5) for value types and contexts, where
⟦UEC⟧ is the carrier for the ⟦E⟧-algebra ⟦C⟧ (which is the same carrier as for the
corresponding T⟦E⟧-algebra).

Effect signatures `k E : Eff are assigned a (parameterised) signature ⟦E⟧ in the sense
of 2.3:

⟦{op : A→ B} ] E⟧B 〈{op} ∪ |⟦E⟧|, arity⟦E⟧[op 7→ 〈⟦A⟧, ⟦B⟧〉]
〉 ⟦∅⟧B 〈∅, ¡〉

Recall that our cbpv semantics was parameterised by a monad T . This comes in
handy now. For a computation with possible effects E (i.e. `k C : CompE) we use
the cbpv denotation with T = T⟦E⟧, associating to `k FA : CompE the free algebra
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FT⟦E⟧⟦A⟧. Formally, we will use an ⟦E⟧ algebra as denotation, which is sound due
to the observation following def. 2.6 that T⟦E⟧ and E algebras are isomorphic, as
shown in Figure 2.5.

We postpone the denotational semantics for handler types for now and explain it
after the introduction of denotational semantics for terms.

We again give denotations to derivations of types. Value derivations again denote
functions, and E-computation derivations denote functions into the carrier of an
⟦E⟧-algebra.
For the cbpv fragment of the language we use the same definitions as Figure 2.6.
As the bijection between ⟦E⟧-algebras and T⟦E⟧-algebras acts as the identity on the
carrier set, this semantics is well-defined.

The semantics of an effect operation (in an effect signature E) is simply this opera-
tion considered as an element of the T⟦E⟧-algebra:

⟦op V(λx.M)⟧ (γ)B op⟦V⟧γ(λb : ⟦B⟧ . ⟦M⟧ (γ[x 7→ b]))

where op : A→ B ∈ E.

The denotation of a handling construct is the Kleisli-extended denotation of the
return-clause applied to the denotation of the handled term:

⟦handleM with H⟧ (γ)B ⟦M⟧ (γ)�=f

where ⟦H⟧ (γ) = 〈D, f : ⟦A⟧→ |⟦C⟧|〉 and the Kleisli extension is with respect to the
⟦E⟧-algebra structure D given on the carrier of the ⟦E ′⟧-algebra denoted by C.

Finally, we define the semantics of handlers. The semantics for handlers needs to
contain the semantics of the return clause, i.e. a function ⟦A⟧→ ⟦C⟧. Furthermore,
in order to define the needed Kleisli-extension we need an algebra over E. The
interpretation of each symbol in this algebra is given by all the handling clauses.

Thus, we define the semantics of handler types to be pairs of algebras and return-
clause denotations:

⟦A E⇒E ′ C⟧B
∑

⟦E⟧-algebras with carrier |⟦C⟧|
|⟦C⟧|⟦A⟧

The algebra for a given handler consists of the set |⟦C⟧| and an interpretation ac-
cording to the clauses for operation handling.

Each handler term Γ ` H : X thus denotes a function from ⟦Γ⟧ into ⟦X⟧. Given a
well-typed handler term Γ ` H : A E⇒E ′ C, matching the single rule for deriving
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this judgement, and any γ ∈ ⟦Γ⟧, define an ⟦E⟧-algebra structure on ⟦C⟧ by setting:

⟦op
i
⟧ (γ)(k ∈ |⟦C⟧|⟦Bi⟧)(p ∈ ⟦Ai⟧)B ⟦Ni⟧ (γ[p 7→ p, k 7→ k]) ∈ |⟦C⟧|

We therefore have a ⟦E⟧-algebra structure Dγ = 〈|⟦C⟧|, ⟦−⟧ (γ)〉. Define a function
fγ : ⟦A⟧→ |⟦C⟧| by:

fγ(a ∈ ⟦A⟧)B ⟦M⟧ (γ[x 7→ a])

Thus we define the semantics of the handler term as follows:

⟦H⟧ (γ)B 〈Dγ, fγ〉 ∈
∑

⟦E⟧-algebras with carrier |⟦C⟧|
|⟦C⟧|⟦A⟧

3.4.1 Adequacy proof

We only changed the denotational semantics for the cbpv part of λeff up to isomor-
phism. We can therefore reuse all of the proofs for cbpv and only have to prove the
additional cases.

Lemma 3.4 (substitution). For all Γ ` P : X and 〈Vx〉x∈Dom(Γ) such that, for all x ∈
Dom (Γ), ∆ ` Vx : Γ(x), we have ∆ ` P[Vx/x]x∈Dom(Γ) : X.

Lemma 3.5 (context substitution). For all ∆[Γ ′] `E[E ′] X[ ] : Y[X]:

1. For all Γ `E ′ P : X where Γ ′ > Γ , we have ∆ `E X[P] : Y.

2. For all Γ `E ′ P,Q : X where Γ ′ > Γ , we have ⟦P⟧ = ⟦Q⟧ implies ⟦X[P]⟧ = ⟦X[Q]⟧.
For every value type A, define λeffA B {V | ` V : A} and for every computation type
C and effect signature E: λeffC,E = {M | `E M : C}. Define handlers(A E⇒E ′ C) B{
H
∣∣ ` H : A E⇒E ′ C

}
.

We define logical relations indexed by λeff types and effect signatures as in Fig-
ure 3.8. The value relations are exactly the same as for cbpv. The computation
relations are supersets of those for cbpv, as we now add effect operations to every
relation. Handler relations merely state that the operation clauses and the return
clause preserve the relation.

Lemma 3.6. The logical relations R
A
and R

E,C
are closed under contextual equivalence.

Explicitly: For all 〈a, P〉 ∈ R
E,X

and ` Q : X, P ' Q implies 〈a,Q〉 ∈ R
E,X

and similarly for
value relations.

Proof

By induction over X. �
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Value relations R
A
⊆ ⟦A⟧× λeffA

R
1
B {〈?, V〉|V ' ()}

R
A1×A2

B
{
〈〈a1, a2〉, V〉

∣∣∣∃V1, V2∀i.Vi : Ai. 〈ai, Vi〉 ∈ RAi , V ' (V1, V2)
}

R
0
B ∅

R
A1+A2

=
⋃

i∈{1,2}

{
〈ιia, V〉

∣∣∣∃V ′ : Ai. 〈a, V ′〉 ∈ RAi , V ' inji V
′
}

R
UEC
B {〈a, V〉|∃M : C. 〈a,M〉 ∈ R

E,C
, V ' {M}}

Computation relations R
E,C
⊆ |⟦C⟧|× λeffE,C

R
E,FA
B R ′

E,FA
∪ {〈return a,M〉|∃V : A. 〈a, V〉 ∈ R

A
,M ' return V}

R
E,A→C B R ′

E,A→C
∪ {〈f,M〉|∀ 〈a, V〉 ∈ R

E,A
, 〈f(a),M V〉 ∈ R

E,C
}

R
E,> B R ′

E,>
∪ {〈?,M〉|M ' 〈〉}

R
E,C1&C2

B R ′
E,C1&C2

∪
{
〈〈c1, c2〉,M〉

∣∣∃M1 : C1,M2 : C2.M ' 〈M1,M2〉 ,∀i. 〈ci,Mi〉 ∈ RE,Ci

}
where

R ′
E,C
B { 〈

op
a
(λb.c), N

〉
| ∃VM.

〈a, V〉 ∈ R
E,A

(op : A→ B) ∈ E
〈λb.c, λx.M〉 ∈ R

E,B→C

N ' op V (λx.M)

}

Handler relations RAE⇒E ′C ⊆ ⟦A E⇒E ′ C⟧× handlers(A E⇒E ′ C)

RAE⇒E ′C B {

〈〈Dγ, fγ〉, H〉 |
(op

i
: A→ B) ∈ E, Dγ = 〈|⟦C⟧|, ⟦−⟧ (γ)〉 ,

∀i.∃MNi. 〈fγ, λx.M〉 ∈ RE ′,A→C∧,
∀ 〈a, V〉 ∈ R

E,A
, 〈k, λx.M ′〉 ∈ RB→ C.〈

⟦op
i
⟧ (γ) (λx.kx�=f)a,Ni[V/p, (λx.handleM ′ with H)/k]

〉
}

Figure 3.8: λeff-calculus logical relations
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We restate Lemma 2.16 here, where the proof is unchanged because the ground
types and relations for ground types are unchanged:

Lemma 3.7. For all ground types G, a ∈ ⟦G⟧, and closed value terms ` V : ,V ′ : G:

〈a, V〉 , 〈a, V ′〉 ∈ R
G

=⇒ V ' V ′

Lemma 3.8 (basic lemma). For all Γ `E P : X, γ ∈ ⟦Γ⟧ and 〈Vx〉x∈Dom(Γ):

(for all x ∈ Dom (Γ): 〈πxγ, Vx〉 ∈ RE,Γ(x)) =⇒
〈⟦P⟧γ, P[Vx/x]x∈Dom(Γ)

〉
∈ R

E,X

Proof

We only prove the new additional computation cases for λeff:

(op) Assume (op : A → B) ∈ E, Γ ` V : A,
〈⟦V⟧γ, V[Vx/x]x∈Dom(Γ)

〉
∈ R

E,A
and

Γ ` λx.M : B→ C.

We have to show that
〈⟦opV(λx.M)⟧γ,opV(λx.M)[Vx/x]x∈Dom(Γ)

〉
∈ R

E,C
. This

is the case iff RC contains〈
op(⟦V⟧γ) (λb : ⟦B⟧.M(γ[x 7→ b]))γ,op(V[Vx/x]x∈Dom(Γ))(λx.M[Vx/x]x∈Dom(Γ))

〉
.

By the definition of the logical relations, this boils down to showing that〈⟦V⟧γ, V[Vx/x]x∈Dom(Γ)

〉
∈ R

E,A
, (op : A→ B) ∈ E and〈

λb : ⟦B⟧.M(γ[x 7→ b]), λx.M[Vx/x]x∈Dom(Γ)

〉
∈ R

E,B→C . Everything follows im-
mediately from the assumptions (with the observation that λb : ⟦B⟧.M(γ[x 7→
b]) = ⟦λx.M⟧γ).

(handle) Assume Γ ` M : FA,
〈⟦M⟧γ,M[Vx/x]x∈Dom(Γ)

〉
∈ R

E,FA
, Γ ` H : A E⇒E ′ C and〈⟦H⟧γ,H[Vx/x]x∈Dom(Γ)

〉
∈ RAE⇒E ′C. Let ⟦H⟧ (γ) = 〈D, f〉. We have to show

that
〈⟦handleM with H⟧γ,handleM with H[Vx/x]x∈Dom(Γ)

〉
∈ R

E ′,C
.

By definition of R
E,FA

, eitherM ' return V orM ' opV(λx.M ′). The first case
is similar to the let-case of cbpv. We only show the second case here, where
we also know that ⟦M⟧γ = op

a
(λb.c), 〈a, V〉 ∈ R

E,A
and 〈λb.c, λx.M ′〉 ∈ R

E,B→C .
We have〈⟦handleM with H⟧γ,handleM with H[Vx/x]x∈Dom(Γ)

〉
∈ R

E′,C

⇐⇒
〈
opa(λb.c)�=Df, handle op (V[Vx/x]x∈Dom(Γ)) (λx.M

′[Vx/x]x∈Dom(Γ)) withH[Vx/x]x∈Dom(Γ)

〉
∈ R

E′,C

⇐=
〈
opa(λb.c)�=Df,N[V/p, {λx.handleM ′ with H}/k][Vx/x]x∈Dom(Γ)

〉
∈ R

E′,C (' closed)
Def. bijection

↓
⇐=

〈⟦op⟧ (γ) (λb.cb�=f) a,N[V/p, {λx.handleM ′ with H}/k][Vx/x]x∈Dom(Γ)

〉
∈ R

E′,C
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This now holds by the definition of RAE⇒E ′C and the induction hypothesis for
H.

(let) The let-case is very similar to the handle-case, therefore we omit it here.

The case for handler typing follows immediately from the inductive hypotheses.�

Theorem 3.9 (adequacy). Denotational equivalence implies contextual equivalence. Ex-
plicitly: For all Γ `E P,Q : X, if ⟦P⟧ = ⟦Q⟧ then P ' Q.
Proof

Let Γ ` P1, P2 : X be any well-typed phrases satisfying ⟦P1⟧ = ⟦P2⟧. Consider any
closed well-typed ground-returner context ∅[Γ ′] ` X[ ] : FG[X] with Γ ′ > Γ . By
Lemma 3.5, ⟦X[P1]⟧ = ⟦X[P2]⟧. Let c be this common denotation.

Consider any i ∈ {1, 2}. By the basic lemma:

〈c,X[Pi]〉 ∈ RFG

By RFG’s definition, there exist 〈ai, Vi〉 ∈ RG such that one of the two cases applies:

• c = return ai and X[Pi] ' return Vi.

Thus:
a1 = return a1 = c = return a2 = a2

Therefore, by Lemma 3.7, V1 ' V2 and:

X[P1] ' return V1 ' return V2 ' X[P2]

Thus X[P1] −→? return V iff X[P2] −→? return V , hence P1 ' P2.

• or c = op
a
f and X[Pi] ' op A (λx.M) for some (op : A→ B) ∈ ∅, which clearly

is a contradiction.

�

Corollary 3.10 (soundness and strong normalisation). All well-typed, effect-free closed
ground returners reduce to a normal form. Explicitly: for all `∅ M : FG there exists some
` V : G such that:

M −→? return V

Proof

By the basic lemma, 〈⟦M⟧γ),M〉 ∈ RFG, so by definition either ⟦M⟧ = return a,M '
return V for some 〈a, V〉 ∈ RG or ⟦M⟧ = op

a
f and op ∈ ∅, which is a contradiction.
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AsM is a ground-returner, we can instantiateM ' return V at the empty context
M −→? return V iff return V −→? return V , and the latter holds by reflexivity.

Note that by Lemma 3.7 and Lemma 2.10, we can choose V B VGa �



Chapter 4

Monadic reflection: λmon

Filinski [7, 6] introduces monadic reflection, a way of incorporating monads into
the syntax of a language. With monadic reflection, the user can introduce new ef-
fects using a construct called leteffect. This construct lets the user define a monad,
based on already existing effects of the language. The language has a reflect oper-
ation that gives the user the ability to use the definition of the underlying monad
to implement an effect. The reify operation allows the user to get a representation
of a computation in terms of the underlying monad.

Filinski introduces a calculus for monadic reflection featuring recursion and recur-
sive types that is loosely based on cbpv [7]. We make the relation to cbpv more
explicit, and simplify it by removing all recursive constructs to obtain the calculus
λmon. This way we ensure that our analysis focuses on monadic reflection only.

4.1 Syntax and operational semantics of λmon

Figure 4.1 introduces the syntax of the λmon-calculus. We add a reification con-
struct [N]ε and a reflection construct µ̂ε(N) to the cbpv base calculus. The construct
leteffect ε � e be (α.C,Nu, Nb) in N allows us to define new effects.

Note that following Filinski [7] the leteffect-construct contains a type C, so we have
types in the syntax of terms.

We almost exactly take the cbpv types as shown in figure 4.2. The only difference
is the type of thunked computations, that is parameterised with a single effect e.
We use a single effect here instead of a set of effect operations, as a single monad
can implement many effects. We additionally include type variables α in the value
types.

Effects can be either user-defined effects ε or the base effect (in our case, no effect
at all) ⊥. Effect hierarchies contain the name of the introduced effect together with
the action of types, the return term Nu and the bind term Nb. Filinski calls them
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(values) V,W ::= x | () | (V1, V2) | inji V | {M}

(computations)
M,N ::= split(V, x1.x2.M) | case0(V)

| case(V, x1.M1, x2.M2) | V!
| return V | let x←M in N
| λx.M |M V

| 〈M1,M2〉 | prjiM
| [N]ε | µ̂ε(N)

| leteffect ε � e be (α.C,Nu, Nb) in N

Figure 4.1: λmon-calculus syntax

(effects) e ::= ⊥|ε
(value types) A,B ::= 1 | A1 ×A2 | 0 | A1 +A2 | UeC | α

(computation types) C,D ::= FA | A→ C | > | C1 & C2
(effect hierarchies) Σ ::= · | Σ, ε � e ∼ (α.C,Nu, Nb)

(type environments) Θ ::= α1, . . . , αn
(environments) Γ ::= x1 : A1, . . . , xn : An

Figure 4.2: λmon-calculus kinds and types

effect signatures, but because they are inherently different from effect signatures in
λeff and the notion from universal algebra, we call them effect hierarchies. As user-
defined effects always have to be based on a previously existing effect, we obtain a
semi-lattice of effects. The effect hierarchy contains this ordering as e ≺ ε.

We will oftentimes only need effect hierarchies with less information. For conve-
nience, we will still write Σ to denote an effect hierarchy that only contains the or-
dering, or only the mapping of effects to Nu and Nb. We write Σ ′ ⊇ Σ if Σ ′ extends
Σ, i.e. if Σ ′ is a suffix-extension of Σ as a list.

We also add type environmentsΘwhich are finite sets of type variables originating
from the leteffect construct.

Figure 4.3 introduces a kind system for λmon. The judgment for value types is
straightforward. We now have multiple computation kinds Compe for each e ∈ Σ.
Intuitively, e-computations may only invoke the effect e.

Vale type judgments Θ | Γ `Σ V : A differ from their cbpv counterpart in two ways:
They include type variable contexts Θ, and an effect hierarchy Σ, where we require
that A is well-kinded under Θ and Σ.

For computation judgments Θ | Γ `Σ,e M : C we also add an effect e ∈ Σ and we
require that Θ | Σ `k C : Compe (as well as the well-kinding of e, Σ and Γ ). If we
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Effect hierarchy kinding Θ `k Σ : Eff

Θ `k · : Eff
Θ,α `k C : Compe ε 6∈ Σ Θ `k Σ : Eff

Θ `k Σ, ε � e ∼ (α.C,Nu, Nb) : Eff

Value kinding Θ | Σ `k A : Val for Θ `k Σ : Eff

Θ | Σ `k 1 : Val
Θ | Σ `k A1 : Val Θ | Σ `k A1 : Val

Θ | Σ `k A1 ×A2 : Val Θ | Σ `k 0 : Val

Θ | Σ `k A1 : Val Θ | Σ `k A1 : Val
Θ | Σ `k A1 +A2 : Val

Θ | Σ `k e : Eff Θ | Σ `k C : Compe
Θ | Σ `k UeC : Val

α ∈ Θ
Θ | Σ `k α : Val

Effect kinding Σ `k e : Eff for Θ `k Σ : Eff

Σ `k ⊥ : Eff
ε ∈ Σ

Σ `k ε : Eff

Computation kinding Θ | Σ `k C : Compe for Θ `k Σ : Eff and Σ `k e : Eff

Θ | Σ `k FA : Compe

Θ | Σ `k A : Val Θ | Σ `k C : Compe
Θ | Σ `k A→ C : Compe

Θ | Σ `k > : Compe

Θ | Σ `k C1 : Compe Θ | Σ `k C2 : Compe
Θ | Σ `k C1&C2 : Compe

Context kinding Θ | Σ `k Γ : Ctxt for Θ `k Σ : Eff

for all x ∈ Dom (Γ): Θ | Σ `k Γ(x) : Val
Θ | Σ `k Γ : Ctxt

Figure 4.3: λmon-calculus kind system
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Value typing Θ | Γ `Σ V : A for Θ `k Σ : Eff, Θ | Σ `k Γ : Ctxt, and Θ | Σ `k A : Val

(x : A) ∈ Γ
Θ | Γ `Σ x : A Θ | Γ `Σ () : 1

Θ | Γ `Σ V1 : A1 Θ | Γ `Σ V2 : A2
Θ | Γ `Σ (V1, V2) : A1 ×A2

Θ | Γ `Σ V : Ai

Θ | Γ `Σ inji V : A1 +A2

Θ | Γ `Σ,e M : C

Θ | Γ `Σ {M} : UeC

Computation typing Θ | Γ `Σ,e M : C for Θ `k Σ : Eff, Σ `k e : Eff, Θ | Σ `k Γ :

Ctxt, and Θ | Σ `k C : Compe

Θ | Γ `Σ V : A1 ×A2 Θ | Γ, x1 : A1, x2 : A2 `Σ,e M : C

Θ | Γ `Σ,e split(V, x1.x2.M) : C

Θ | Γ `Σ V : 0

Θ | Γ `Σ,e case0(V) : C

Θ | Γ `Σ V : A1 +A2 Θ | Γ, x1 : A1 `Σ,e M1 : C Θ | Γ, x2 : A2 `Σ,e M2 : C

Θ | Γ `Σ,e case(V, x1.M1, x2.M2) : C

Θ | Γ `Σ V : UeC

Θ | Γ `Σ,e V! : C
Θ | Γ `Σ V : A

Θ | Γ `Σ,e return V : FA

Θ | Γ `Σ,e M : FA Θ | Γ, x : A `Σ,e N : C

Θ | Γ `Σ,e let x←M in N : C

Θ | Γ, x : A `Σ,e M : C

Θ | Γ `Σ,e λx.M : A→ C

Θ | Γ `Σ,e M : A→ C Θ | Γ `Σ V : A

Θ | Γ `Σ,e M V : C Θ | Γ `Σ,e 〈〉 : >

Θ | Γ `Σ,e M1 : C1 Θ | Γ `Σ,e M2 : C2

Θ | Γ `Σ,e 〈M1,M2〉 : C1 & C2
Θ | Γ `Σ,e M : C1 & C2
Θ | Γ `Σ,e prjiM : Ci

Θ | Γ `Σ,ε N : FA (ε ∼ α.C, e ≺ ε) ∈ Σ
Θ | Γ `Σ,e [N]ε : C[A/α]

Θ | Γ `Σ,e N : C[A/α] (ε ∼ α.C, e ≺ ε) ∈ Σ
Θ | Γ `Σ,ε µ̂ε(N) : FA

Θ,α1 | ∅ `Σ,e Nu : α1 → C[α1/α]

Θ,α1, α2 | ∅ `Σ,e Nb : Ue(C[α1/α])→ Ue(α1 → C[α2/α])→ C[α2/α]

Θ | Γ `(Σ,ε∼(α.C,Nu,Nb),e≺ε),e M : D

Θ | Γ `Σ,e leteffect ε � e be (α.C,Nu, Nb) inM : D

Figure 4.4: λmon-calculus type system
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have for a termM that Θ | Γ `Σ,e M : C this means that the typeM has type C and
can invoke effect e if supplied with a typeAα for every α ∈ Θ and awell-typed term
tx of type A for every (x : A) ∈ Γ [A

α
/α]α∈Θ (we prove this in Lemma 4.2). We will

sometimes call e the level of the computation.

To refer to both computations and values we will sometimes write Θ | Γ `Σ,e P : X.
If P is a value V , this simply means Θ | Γ `Σ V : X. For Θ | Γ `Σ,e P : X we always
implicitly assume that e,Σ and X are well-kinded:

The interesting typing rules are those for µ̂ε(−) and [−]ε. Reflection µ̂ε(N) types
as a value returning computation of type FA at level ε i.e. as a value returning
computation with effect ε, if N is of type C[A/α] at level e, i.e. a computation that
has the type matching the definition of ε.

Dually, if N is a computation at level ε, [N]ε turns this into a computation of type
C[A/α] at level e, i.e. replaces the effect εwith its implementation as amonadwhich
uses effect e.

Finally, for the (leteffect)-rule, we first have to check thatNu andNb are closed terms
which have the matching types to serve as return and bind.

The operational semantics for λmon is shown in figure 4.5.

To reify a value-returning computationwe use the return of themonad (rule (reify)).
Reflection uses the supplied bind operation to sequence its argument before the
remainder of the computation. It captures the remaining computation bymatching
with the nearest enclosing reify-construct.

To match the reify with the closest reflect, we require that the reified effects in the
frame H do not contain ε.

The various (leteff-)rules ensure that the normal forms of effect free computations
are of canonical shape, for instance return V for FA : Comp⊥.

4.2 Programming in λmon

We only briefly sketch how to implement exceptions in λmon and omit store. Filinski
[7] describes how to implement exceptions and store in detail.

Define:

Cex B α+ string
Nex
u B λx.return inj1 x

Nex
b B λx f.let y← x in case(y, x.fx, s.return (inj2 s)))

ex � ⊥ ∼ (α.Cex, Nex
u , N

ex
b )
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Reduction frames

(computation frames) C ::= let x← [ ] in N | [ ] V | prji [ ] | [[ ]]
ε

(hoisting contexts) H ::= [ ] | leteffect ε � e be (α.C,Nu, Nb) in H | C[H]

Reduction `Σ M −→M ′

(β.×) `Σ split((V1, V2), x1.x2.M) −→M[V1/x1, V2/x2]
(β.+) `Σ case(inji V, x1.M1, x2.M2) −→Mi[V/xi]
(β.U) `Σ {M}! −→M

(β.F) `Σ let x← return V inM −→M[V/x]
(β.→) `Σ (λx.M) V −→M[V/x]
(β.&) `Σ prji 〈M1,M2〉 −→Mi

(frame)
`Σ M −→M ′

`Σ C[M] −→ C[M ′]

(reify)
(ε = (Nu, Nb)) ∈ Σ

`Σ [return V]ε −→ NuV

(reflect)
(ε ∼ (α.C,Nu, Nb)) ∈ Σ ε 6∈ effects(H)

`Σ [H[µ̂ε(N)]]ε −→ Nb {N} {(λx.[H[return x]]ε)}

(leteff)
H = leteffect ε � e be (α.C,Nu, Nb) in [ ]Σ,ε∼(α.C,Nu,Nb),e≺εM −→M ′

`Σ H[M] −→ H[M ′]

(leteff-return)
`Σ leteffect ε � e be (α.C,Nu, Nb) in return V −→ return V

(leteff-lambda)
H = leteffect ε � e be (α.C,Nu, Nb) in [ ]

`Σ H[λx.N] −→ λx.H[N]

(leteff-pair)
H = leteffect ε � e be (α.C,Nu, Nb) in [ ]

`Σ H[〈N1, N2〉] −→ 〈H[N1],H[N2]〉

(leteff-unit)
`Σ leteffect ε � e be (α.C,Nu, Nb) in 〈〉

−→ 〈〉

where

effects([]) = ∅
effects(leteffect ε � e be (α.C,Nu, Nb) in H) = effects(H)

effects([H]ε) = {ε} ∪ effects(H)

effects(C[H]) = effects(H) (for C 6= [[]]ε)

Figure 4.5: λmon-calculus operational semantics
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We can then define

raiseB λs.µ̂ex(return (inj2 s))
tryB λch.let s← [c]ex in case(s, a.return a, x.hx)

We do not recall and check the correctness properties here, as this is done exten-
sively by Filinski [7].

4.3 Denotational semantics for λmon

We define the denotational semantics for λmon using mutual recursion over types,
effects and terms for every level. This is because in λmon types contain effects, effects
contain terms and terms have types.

For a type variable environment Θ, we use θ ∈ ⟦Θ⟧ to denote the fact that θ is a
tuple of sets induced by Θ.

The semantics assigns to each θ ∈ ⟦Θ⟧ and well kinded

• value type Θ | Σ `k A : Val a set ⟦A⟧ (θ);
• effect Σ `k e : Eff a monad ⟦e⟧;
• e-based computation type Θ | Σ `k C : Compe a ⟦e⟧-algebra ⟦C⟧ (θ);
• context Θ | Σ `k Γ : Ctxt a set of tuples ⟦Γ⟧ (θ) induced by Γ

We will write γ for a denotation in ⟦Γ⟧ (θ).
We will only assign a denotation to terms that fulfil the following conditions, this
our semantics is partial. We require that for leteffect ε � e be (α.C,Nu, Nb) inM
the two functions returnε and �=ε induced by Nu and Nb form a monad. If they
do not, the semantics is undefined. Following Felleisen we require the monads to
be layered, i.e. a monad morphism Te → Tε. We call a term P that has a denotation
a proper term.

We define ⟦Θ⟧B∏α∈Θ Set.

For types we reuse the cbpv semantics (figure 2.5) again, with the following differ-
ences:

We use the same denotations for value types as we did for cbpv, i.e. for instance
⟦A1 ×A2⟧ (θ) = ⟦A1⟧ (θ)× ⟦A2⟧ (θ). We additionally set ⟦α⟧ (θ) = θ(α).
For effects introduced as leteffect ε � e be (α.C,Nu, Nb) in we define

⟦ε⟧B 〈Te, returne,�=e〉



4.3. Denotational semantics for λmon 42

where

TεXB |⟦C⟧ (θ[α 7→ X])|

returnεX B ⟦Nu⟧ (θ[α 7→ X]) : X→ TεX

�=εX,Y B ⟦Nb⟧ (θ[α1 7→ X,α2 7→ Y]) : TεX→ (X→ TεY)→ TεY.

and define ⟦⊥⟧ to be the identity monad.

The denotations for computations are unchanged from cbpv, apart from the F-type.

All the algebras are indeed Te algebras for types at level e by Lemma 2.8. We set

⟦Θ | Σ `k FA : Compe⟧ (θ)B F⟦e⟧(⟦A⟧ (θ))

where F⟦e⟧ is the free algebra for the monad ⟦e⟧. Note that this means at level ε that
|⟦FA⟧ (θ)| = Tε(⟦A⟧ (θ)) = |⟦C[A/α]⟧ (θ)|.
Finally, as before we define ⟦Γ⟧ (θ)B∏x∈Dom(Γ) ⟦Γ(x)⟧ (θ).
Note that in contrast to λeff the semantics for λmon is finite:

Lemma 4.1. ⟦A⟧ (θ) and |⟦C⟧ (θ)| are always finite if θ = 〈Aα〉α∈Θ and all Aα are finite.

4.3.1 Denotations of terms

Giving denotations to derivation of types instead of terms is crucial for λmon. A
derivation Θ | Γ `Σ,e M : C denotes for every Θ-denotation θ a function of type∏
γ∈⟦Γ⟧(θ) |⟦C⟧ (θ)| for every θ ∈ ⟦Θ⟧. A value derivation Θ | Γ `Σ V : A denotes for

every θ ∈ ⟦Θ⟧ a function∏γ∈⟦Γ⟧(θ) ⟦A⟧ (θ).
The denotation for µ̂ε(N) now has to be an element in |⟦FA⟧ (θ)| = |⟦C[A/α]⟧ (θ)| for
the Tε-algebra ⟦FA⟧ (θ). To define this, we have access to ⟦N⟧ (θ) ∈ |⟦C[A/α]⟧ (θ)| at
level e, so we can set

⟦µ̂ε(N)⟧ (θ)(γ)B ⟦N⟧ (θ)(γ).
Note that because terms denote functions to the carrier set of the algebra we do not
have to worry about the level here.

The same idea works for the semantics of reify for the same reason, and, obviously,
as it does not have any influence on the computation, for the leteffect construct:

⟦Θ | Γ `Σ,e [N]ε : C[A/α]⟧ (θ)(γ) : ⟦Γ⟧ (θ)→
∣∣⟦FA : Compe⟧ (θ)

∣∣ = |⟦C[A/α]⟧ (θ)|
⟦[N]ε⟧ (θ)(γ)B ⟦N⟧ (θ)(γ)
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⟦Θ | Γ `Σ,e leteffect ε � e be (α.C,Nu,Nb) inN :D⟧ (θ)(γ)B
{
⟦N⟧ (θ)(γ) ifNu andNb form a monad
undefined otherwise

The other denotations are as for cbpv (see figure 2.5), with the return and bind at
level e taken from the monad Te, i.e. for instance

⟦Θ | Γ `Σ,e return V : FA⟧ (θ)(γ)B returne ( ⟦V⟧ (θ)(γ)).

Weprove this semantics to be adequate and sound in Lemma 4.11 and Lemma 4.12.
As a sanity check, we can look at the term [return V]ε which reduces to Nu V .

⟦[return V]ε⟧ (θ)(γ) = returnε ( ⟦V⟧ (θ)(γ)) = ⟦Nu⟧ (θ)(?) (⟦V⟧ (θ)(γ)) = ⟦Nu V⟧ (θ)(γ)

Asimilar observation shows that the semantics is correct for the term [let x← µ̂ε(N) inM]ε

which steps to Nb N(λx.M), because the bind that is used in the denotation for the
let-construct is at level ε, i.e. induced by Nb in the definition of ε.

4.4 Differences to Filinski’s calculus

Our elimination of recursive constructs and the explicit basing on cbpv introduces
several differences to Filinski’s calculus [7].

Filinski’s value returning computation type is parameterised by an effect (FeA) and
he introduces an effect basing judgment `Σ e � C expressing that C is a computa-
tion thatmight invoke the effect e. For e ≺ ε and`Σ ε � C one can always rebaseC to
`Σ e � C. Because we make the level of every computation explicit, we can remove
the annotation on F. Rebasing is not built-in to λmon, but the user has to make this
points where terms change their level explicit using coercions (see section 4.4.1).

This change enables us to use the exact same rule for let-constructs as in cbpv, where
for Filinski the return-type C hat to be based on e ifM : FeA.

When introducing an effect ε � e in Filinski, the underlying monads have to be
layered (i.e. we need a monad morphism Te → Tε. Because we eliminate rebasing,
we can relax this condition.

We also do not introduce an explicit subeffecting judgement. Our ordering is de-
fined in an effect hierarchy Σ and we write (e ň e ′) ∈ Σ for the transitive closure of
the relation induced by the (e ≺ e ′) ∈ Σ and (e � Σ ′) ∈ Σ for the reflexive, transitive
closure.

Because we use cbpv explicitly, we have to make a design choice how to incorporate
the term Nb. The alternative to our presentation would be to let Nb be synctacti-
cally a context Θ[Θ] | ∅[∅] `Σ[Σ],e[e] Nb : (UΣ(α1 → C[α2/α])→ C[α2/α])[C[α1/α]]. We
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chose this presentation using explicit thunking, because it seems to be closer to
Filinsis presentation.

Filinski only allows leteffect at the toplevel and distinguished programs and terms.
We allow leteffect anywhere and merge those two notions. Every program of Filin-
ski can still be typechecked in our system, and by lifting all leteffects to the toplevel
and introducing coercions at the right points, this is also the case in the other di-
rection.

4.4.1 Coercions

Oftentimes one wants to use computations at level e at a higher level ε � e. In Filin-
ski’s calculus, this is implicitly always possible. We make the level of computation
explicit as in Haskell, which makes some terms that are well-typed in Filinski’s
calculus now not typeable.

We can fix this problem and obtain that every program of Filinski’s calculus can be
translated to our calculus by inserting so called coercions (“liftings” in Haskell).

We define coercee≺ε(M) for a Θ | Γ `Σ,e M : FA as

coercee≺ε(M)B µ̂ε(let x←M in [return x]ε).

We then have Θ | Γ `Σ,ε coercee≺ε(M) : FA.

The inverse of this operation is reification, as for [coercee≺ε(M)]ε ' Nb (let x ←
M in [return x]ε) (λx.return x) ' Nb (let x ← M in Nux) (λx.return x) ' let x ←
M in Nb (Nux) (λx.return x) ' let x←M in return x 'M.

4.5 Contextual equivalence

We extend cbpv contexts for λmon as shown in figure 4.6 and show their typing
in figure 4.7. To simplify the presentation, we exclude the contexts leteffect ε �
e be (α.C,Xcomp[ ], Nb) in N and leteffect ε � e be (α.C,Nu,Xcomp[ ]) in N, because
this does not change the notion of contextual equivalence.

The following two lemmas are slightly more involved for λmon than they were be-
fore, because we have to incorporate the Θ:

Lemma 4.2 (substitution). For allΘ | Γ `Σ,e P : X, 〈Vx〉x∈Dom(Γ) and 〈Aα〉α∈Θ: such that,
for all x ∈ Dom (Γ), Θ̂ | ∆ `Σ,e Vx : Γ [Aα

/α]α∈Θ(x), we have Θ̂ | ∆ `Σ,e P[Vx/x]x∈Dom(Γ) :

X[A
α
/α]α∈Θ.

Lemma 4.3 (context substitution). For all Θ[Θ ′] | ∆[Γ ′] `Σ[Σ ′],e[e ′] X[ ] : Y[X]:

1. For all Θ | Γ `Σ ′,e ′ P : X where Γ ′ > Γ , we have Θ | ∆ `Σ,e X[P] : Y.
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For the omitted parts see cbpv contexts in figure 2.7.

(value contexts) Xval ::= . . .

(computation contexts)
Xcomp ::= . . .

| [Xcomp]ε | µ̂ε(Xcomp)

| leteffect ε � e be (α.C,Nu, Nb) in Xcomp

Figure 4.6: λmon-calculus contexts

2. For all Θ | Γ `Σ ′,e ′ P,Q : X where Γ ′ > Γ and X[P],X[Q] are proper terms, we have
⟦P⟧ = ⟦Q⟧ implies ⟦X[P]⟧ = ⟦X[Q]⟧.

We call a context X a proper context if for all pluggable proper terms P, X[P] is
proper.

Contextual equivalence for λmon is straightforward. We do not use the the detour
via defining contextual equivalence parameterised by an effect hierarchy Σ as we
did for λeff.

Definition 4.4 (contextual equivalence). Let Θ | Γ `Σ,e P,Q : X be two proper λmon
terms. We say that P and Q are contextually equivalent, and write P ' Q when, for
all closed, effect-free well-typed proper ground-returner contexts ∅[Θ] | ∅[Γ ′] `∅[E],⊥[e]
X[ ] : FG[X] with Γ ′ > Γ are defined and for all closed ground value terms Θ | `∅ V : G[],
we have:

X[P] −→? return V ⇐⇒ X[Q] −→? return V

Lemma 4.5 (basic contextual equivalence properties). The relation' is an equivalence
relation that is congruent w.r.t. λmon terms, and contains the reduction relation −→ in the
following sense: If ⟦M⟧ (θ) is defined andM −→M ′ thenM 'M ′.

Corollary 4.6. If for proper termsM,M ′ we haveM −→M ′, then X[M] ' X[M ′].

Proof

Follows immediately from the last lemma, asM −→ M ′ =⇒ M ' M ′ and ' is a
congruence. �

4.6 Adequacy

Proving adequacy for the denotational semantics of λmon is the most delicate proof
in this thesis. We use logical relations again. But this time the simple lifting from
section 3.4 is insufficient. Instead, we employ a technique called >>-lifting (read:
“top-top-lifting”) [16, 15, 13, 10] and use two intermediate relations.
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Context typing Θ[Θ ′] | Γ [∆] `Σ[Σ ′],e[e ′] X[ ] : C[X]

Θ[Θ] | Γ [Γ ] `Σ[Σ] [ ] : X[X]

Value context typing as in figure 2.8, suitably modified with type variable envi-
ronments.

Computation context typing as in figure 2.8 and:

Θ[Θ ′] | Γ [∆] `Σ[Σ ′],e[e ′] X[ ] : FA[X] (ε ∼ α.C) ∈ Σ
Θ[Θ ′] | Γ [∆] `Σ[Σ ′],e[e ′] [X[ ]]ε : C[A/α][X]

Θ[Θ ′] | Γ [∆] `Σ[Σ ′],e[e ′] X[ ] : C[A/α][X] (ε ∼ α.C) ∈ Σ
Θ[Θ ′] | Γ [∆] `Σ[Σ ′],e[e ′] µ̂ε(X[ ]) : FA[X]

Θ,α1 | ∅ `Σ,e Nu : α1 → C[α1/α]

Θ,α1, α2 | ∅ `Σ,e Nb : Ue(C[α1/α])→ Ue(α1 → C[α2/α])→ C[α2/α]

Θ[Θ ′] | Γ [∆] `(Σ,ε∼(α.C,Nu,Nb),e≺ε)[Σ ′],e[e ′] X[ ] : D[X]

Θ[Θ ′] | Γ [∆] `Σ[Σ ′],e[e ′] leteffect ε � e be (α.C,Nu, Nb) in X[ ] : D[X]

Figure 4.7: λmon-calculus context types
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Doczkal and Schwinghammer [3] use >>-lifting to prove strong normalisation of
cbpv. We follow their approach and extend it to λmon.

We define

λΘ,Σ,emon (C)B {P | Θ | ∅ `Σ,e P : C}

λΘ,Σmon (A)B {P | Θ | ∅ `Σ P : A}

XΘ,Σ,emon (FG[C])B
{
X
∣∣ ∅[Θ] | ∅[∅] `Σ[Σ],⊥[e] X[ ] : FG[C]

}
All our relations are parameterised by type variable environments Θ, effect hierar-
chiesΣ, effects e for computations, λmon typesX and ρ =

〈
ρα ⊆ θ(α)× λΘ,Σmon (Aα)

〉
α∈Θ

for a sequence 〈∅ | Σ `k Aα : Val〉α∈Θ, i.e. ρ is an α-indexed sequence of relations.
We then define Rv

Θ,Σ,e,C
(ρ) ⊆ |⟦C⟧ (θ)|× λΘ,Σ,emon (C[A

α
/α]α∈Θ).

The idea is that if Rv
Θ,Σ,e,C

(ρ) is a relation between denotations and terms, then its
>>-lifting is a relation with possibly more elements, i.e.

R
Θ,Σ,e,C

(ρ) ⊆ (Rv
Θ,Σ,e,C

(ρ))>> ⊆ |⟦C⟧ (θ)|× λΘ,Σ,emon (C[A
α
/α]α∈Θ).

The >-lifting of R
Θ,Σ,e,C

(ρ) is a relation (Rv
Θ,Σ,e,C

(ρ))> between denotations of contexts
and contexts, i.e (Rv

Θ,Σ,e,C
(ρ))> ⊆ (|⟦C⟧ (θ)|→ |⟦FG⟧ (θ)|)×XΘ,Σ,emon (FG

[
C[A

α
/α]α∈Θ

]
).

The relations are defined in figure 4.8.

Lemma 4.7. The logical relations R
Θ,Σ,e,X

(ρ) are closed under contextual equivalence. Ex-
plicitly: For all 〈a, P〉 ∈ R

Θ,Σ,e,X
(ρ) and `Σ,e Q : X, P ' Q implies 〈a,Q〉 ∈ R

Θ,Σ,e,X
(ρ) and

analogously for value relations.

Proof

For value types X, the proof carries over from cbpv. For computation types, the
statement follows immediately from the definition of >>-lifting. �

We restate Lemma 2.16 for completeness:

Lemma 4.8. For all ground types G, a ∈ ⟦G⟧ (θ), and closed value terms ` V, V ′ : G:

〈a, V〉 , 〈a, V ′〉 ∈ R
Θ,Σ,G

(ρ) =⇒ V ' V ′

Lemma 4.9. For all Θ, Σ, derivations (α,Θ) | Σ `k X : Compe (or Θ | Σ `k X : Val),
〈∅ | Σ `k Aα : Val〉α∈Θ, θ = 〈⟦Aα⟧ (?)〉α∈Θ, ρ =

〈
R∅,Σ,Aα (?)

〉
α∈Θ, and Θ | Σ `k A : Val we

have
R

(α,Θ),Σ,e,X
(ρ
[
α 7→ R

∅,Σ,A[Aα/α]α∈Θ
(?)
]
) = R

Θ,Σ,e,X[A/α]
(ρ)
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Value relations R
Θ,Σ,A

(ρ) ⊆ ⟦A⟧ (θ)× λΘ,Σmon (A)

R
Θ,Σ,1

(ρ)B {〈?, V〉|V ' ()}

R
Θ,Σ,A1×A2

(ρ)B
{
〈〈a1, a2〉, V〉

∣∣∣∃V1, V2∀i.Vi : Ai. 〈ai, Vi〉 ∈ RΣ,Ai (ρ), V ' (V1, V2)
}

R
Θ,Σ,0

(ρ)B ∅

R
Θ,Σ,A1+A2

(ρ) =
⋃
i=1,2

{
〈ιia, V〉

∣∣∣∃V ′ : Ai. 〈a, V ′〉 ∈ RΘ,Σ,Ai (ρ), V ' inji V
′
}

R
Θ,Σ,UeC

(ρ)B {〈a, V〉|∃M : C. 〈a,M〉 ∈ R
Θ,Σ,e,C

(ρ), V ' {M}} R
Θ,Σ,α

(ρ)B ρ(α)

Computation relations Rv
Θ,Σ,e,C

(ρ) ⊆ |⟦C⟧ (θ)|× λΘ,Σ,emon (C)

Rv
Θ,Σ,⊥,FA

(ρ)B {〈a, return V〉|∃ 〈a ′, V〉 ∈ R
Σ,A

(ρ), a = return a ′}
Rv
Θ,Σ,ε,FA

(ρ)B {〈a, return V〉|∃ 〈a ′, V〉 ∈ R
Σ,A

(ρ), a = return a ′} ∪{
〈a, µ̂ε(N)〉

∣∣∣(ε ∼ α.C) ∈ Σ, 〈a,N〉 ∈ R
Θ,Σ,e,C[A/α]

(ρ)
}

Rv
Θ,Σ,e,A→C

(ρ)B {〈f, λx.M〉|∀ 〈a, V〉 ∈ R
Θ,Σ,e,A

(ρ), 〈f(a), (λx.M) V〉 ∈ R
Θ,Σ,e,C

(ρ)}

Rv
Θ,Σ,e,>

(ρ)B {〈?, 〈〉〉} Rv
Θ,Σ,e,C1&C2

(ρ)B
{
〈〈c1, c2〉, (M1,M2)〉

∣∣∣〈ci,Mi〉 ∈ RΘ,Σ,e,Ci (ρ)
}

>- and >>-liftings (Rv
Θ,Σ,e,C

(ρ))> ⊆ (|⟦C⟧ (θ)|→ |⟦FG⟧ (θ)|)×XΘ,Σ,emon (FG[C]) and

(Rv
Θ,Σ,e,C

(ρ))>> ⊆ |⟦C⟧ (θ)|× λΣmon(C)

(Rv
Θ,Σ,e,C

(ρ))> B
{
〈f,X〉

∣∣∅[Θ] | ∅[∅] `Σ[Σ],⊥[e] X[ ] : FG[C].∀〈a,M〉 ∈ Rv
Θ,Σ,e,C

(ρ) .

∃V.X[M] ' return V ∧ 〈fa, return V〉 ∈ Rv
Σ,⊥,FG

(ρ)
}

(Rv
Θ,Σ,e,C

(ρ))>> B
{
〈c,M〉

∣∣∣∀ 〈f,X〉 ∈ (Rv
Θ,Σ,e,C

(ρ))>.∃V.X[M] ' return V ∧ 〈fc, return V〉 ∈ Rv
Σ,⊥,FG(ρ)

}
R
Θ,Σ,e,C

(ρ)B (Rv
Θ,Σ,e,C

(ρ))>>

Figure 4.8: λmon-calculus logical relations
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Lemma 4.10 (basic lemma). For all Θ, Σ, derivations Θ | Γ `Σ,e P : X,
〈∅ | Σ `k Aα : Val〉α∈Θ, θ = 〈⟦Aα⟧ (?)〉α∈Θ, ρ =

〈
R∅,Σ,Aα (?)

〉
α∈Θ, γ ∈ ⟦Γ⟧ (θ), and

〈Vx〉x∈Dom(Γ),

if for all x ∈ Dom (Γ): 〈πxγ, Vx〉 ∈ RΘ,Σ,e,Γ(x)(ρ) then 〈⟦P⟧ (θ)γ, P[Vx/x]x∈Dom(Γ)〉 ∈ RΘ,Σ,e,X(ρ)

and for all Θ, Σ, 〈∅ | Σ `k Aα : Val〉α∈Θ, θ = 〈⟦Aα⟧ (?)〉α∈Θ, ρ =
〈
R∅,Σ,Aα (?)

〉
α∈Θ, and

∅ | Σ `k A,B : Val,

∀(ε ∼ (α.C,Nu, Nb)) ∈ Σ :

〈⟦Nu⟧ (θ)(?), Nu〉 ∈ R(α,Θ),Σ,e,α→C(ρ
[
α 7→ R∅,Σ,A(?)

]
)

∧ 〈⟦Nb⟧ (θ)(?), Nb〉 ∈ R(α1,α2,Θ),Σ,e,Ue(C[α1/α])→Ue(α1→C[α2/α])→C[α2/α]
(ρ
[
α1 7→ R∅,Σ,A(?), α2 7→ R∅,Σ,B(?)

]
)

Proof

The logical relations for values are not changed, so the proofs are exactly the same
as for cbpv.

The interesting computation cases for λmon are:

(reify) Assume Θ | Γ `Σ,ε N : FA and
〈⟦N⟧ (θ)γ,N[Vx/x]x∈Dom(Γ)

〉
∈ R

Θ,Σ,ε,FA
(ρ). Note

that `k A[Aα
/α]α∈Θ : Val. By the induction hypothesis for Nu we know that

〈⟦Nu⟧ (θ)(?), Nu〉 ∈ R(α,Θ),Σ,e,α→C(ρ
[
α 7→ R

∅,Σ,A[Aα/α]α∈Θ
(?)
]
)

which is equivalent to 〈⟦Nu⟧ (θ)(?), Nu〉 ∈ RΘ,Σ,e,A→C[A/α]
(ρ) by Lemma 4.9 and

show that 〈⟦[N]ε⟧ (θ)γ, [N]ε[Vx/x]x∈Dom(Γ)

〉
∈ R

Θ,Σ,e,C[A/α]
(ρ)

which is equivalent to〈⟦N⟧ (θ)(γ), [N[Vx/x]x∈Dom(Γ)]
ε
〉
∈ R

Θ,Σ,e,C[A/α]
(ρ).

To do so take an arbitrary 〈f,X〉 ∈ (Rv
Θ,Σ,e,C[A/α]

(ρ))> and show that

〈f(⟦N⟧ (θ)γ), return V〉 ∈ R
Θ,Σ,e,F[⊥]G(ρ)∧X[[N[Vx/x]x∈Dom(Γ)]

ε] ' return V

for some V . This is the case if 〈f,X[[[ ]]ε]〉 ∈ (Rv
Σ,ε,FA

(ρ))>.

1. Take 〈a, return V ′〉 ∈ Rv
Σ,ε,FA

(ρ) and show 〈fa, return V ′′〉 ∈ Rv
Σ,⊥,FG

(ρ) and

X[[return V ′]ε] ' return V ′′.

We have X[[return V ′]ε] ' X[NuV
′] by Lemma 4.6. By the inductive
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hypothesis for Nu, we are done.

2. Take 〈a, µ̂ε(N ′)〉 ∈ Rv
Σ,ε,FA

(ρ). WehaveX[µ̂ε(N ′)] ' X[Nb {N
′} {λx.return x}] '

return V ′ with (fa, return V ′) ∈ Rv
Θ,Σ,⊥,FG

(ρ) by the inductive hypotheses
for Nu and Nb, Lemma 4.9 and because 〈a,N ′〉 ∈ R

Θ,Σ,e,C[A/α]
(ρ).

(reflect) Assume Θ | Γ `Σ,e N : C[A/α] and
〈⟦N⟧ (θ)γ,N[Vx/x]x∈Dom(Γ)

〉
∈ R

Θ,Σ,e,C[A/α]
(ρ).

We have
〈⟦µ̂ε(N)⟧ (θ)γ, µ̂ε(N)[Vx/x]x∈Dom(Γ)

〉
∈ R

Σ,ε,FA
(ρ) if and only if〈⟦N⟧ (θ)(γ), µ̂ε(N[Vx/x]x∈Dom(Γ))

〉
∈ R

Σ,ε,FA
(ρ).

Let 〈f,X〉 ∈ (Rv
Σ,ε,FA

(ρ))>. We have
〈⟦N⟧ (θ)γ, µ̂ε(N[Vx/x]x∈Dom(Γ))

〉
∈ Rv

Σ,ε,FA
(ρ)

because
〈⟦N⟧ (θ)γ,N[Vx/x]x∈Dom(Γ)

〉
∈ R

Θ,Σ,e,C[A/α]
(ρ) and thus

X[µ̂ε(N[Vx/x]x∈Dom(Γ))] ' return V and
〈
f(⟦N⟧ (θ)γ),X[µ̂ε(N[Vx/x]x∈Dom(Γ))]

〉
∈

Rv
Σ,⊥,FG

(ρ) as needed.

(return) The case for return is not specific for λmon, but serves as an example for the
omitted cases. Assume Θ | Γ `Σ V : A,

〈⟦V⟧ (θ)γ, V[Vx/x]x∈Dom(Γ)

〉
∈ R

Σ,A
(ρ).

We have 〈⟦return V⟧ (θ)γ, return V[Vx/x]x∈Dom(Γ)

〉
∈ R

Θ,Σ,e,FA
(ρ)

⇐⇒
〈
return ⟦V⟧ (θ)(γ), return (V[Vx/x]x∈Dom(Γ))

〉
∈ R

Θ,Σ,e,FA
(ρ)

Let 〈f,X〉 ∈ (Rv
Θ,Σ,e,FA

(ρ))>. Wehave
〈
return ⟦V⟧ (θ)γ, return V[Vx/x]x∈Dom(Γ)

〉
∈

Rv
Θ,Σ,e,FA

(ρ) because of the inductive hypothesis, thus

〈f(return ⟦V⟧ (θ)γ), return V ′〉 ∈ R
Σ,⊥,FA(ρ)∧X[return V[Vx/x]x∈Dom(Γ)] ' return V ′

as needed.
(let) Assume the inductive hypothesis for Θ | Γ `Σ,e M : FA and Θ | Γ, x : A `Σ,e N :

C. We have to show that
〈⟦M⟧ (θ)(γ)�=λa. ⟦N⟧ (θ)(γ[x 7→ a]), let x←M[Vx/x]x∈Dom(Γ) inN[Vx/x]x∈Dom(Γ)

〉
∈ R

Θ,Σ,e,C
(ρ).

Take 〈f,X〉 ∈ (Rv
Θ,Σ,e,C

(ρ))>. We have to show that there is a V with

〈f(⟦M⟧ (θ)(γ)�=λa. ⟦N⟧ (θ)(γ[x 7→ a])), return V〉 ∈ R
Σ,⊥,FG(ρ)

and
X[let x←M[Vx/x]x∈Dom(Γ) in N[Vx/x]x∈Dom(Γ)] ' return V.

To do so show that〈
λy.f(y�=λa. ⟦N⟧ (θ)(γ[x 7→ a])),X[let x← [ ] in N[Vx/x]x∈Dom(Γ)]

〉
∈ (Rv

Θ,Σ,e,FA
(ρ))>.
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Take 〈c,N ′〉 ∈ Rv
Θ,Σ,e,FA

(ρ).

We have f(c�=λa. ⟦N⟧ (θ)(γ[x 7→ a])) = f((⟦Nb⟧ (θ)(?)) c (λa. ⟦N⟧ (θ)(γ[x 7→
a])) and X[let x ← N ′ in N[Vx/x]x∈Dom(Γ)] ' X

[
Nb {N ′} {N[Vx/x]x∈Dom(Γ ′)}

]
by

lemma Lemma 4.5 and Lemma 4.6. By the inductive hypothesis forNbwe are
done.

(leteffect) Assume Θ | Γ `Σ ′,e N : D and
〈⟦N⟧ (θ)γ,N[Vx/x]x∈Dom(Γ)

〉
∈ R

Θ,Σ ′,e,D
(ρ) for

Σ ′ = Σ, ε � e ∼ (α.C,Nu, Nb).

We have have to show that〈⟦N⟧ (θ)(γ), leteffect ε � e be (α.C,Nu, Nb) in N[Vx/x]x∈Dom(Γ)

〉
is in R

Θ,Σ,e,D
(ρ) = (Rv

Θ,Σ,e,D
(ρ))>>.

Let 〈f,X〉 ∈ (Rv
Θ,Σ,e,D

(ρ))>. We show that 〈f,X[leteffect ε � e be (α.C,Nu, Nb) in [ ]]〉
is in fact in (Rv

Σ ′,e,D
(ρ))>, which directly implies the claim together with the in-

ductive hypothesis.

We only prove the case for D = FA here, all other cases are similar.

So let D = FA and 〈c,M〉 ∈ Rv
Σ ′,e,FA

(ρ).

1. IfM if of the shape return V ′ we have

X[leteffect ε � e be (α.C,Nu, Nb) inM] ' X[M]

because of Lemma 4.6. Because 〈f,X〉 ∈ (Rv
Σ,e,FA

(ρ))> we find V with
X[leteffect ε � ebe (α.C,Nu, Nb) inM] ' X[M] ' return V and 〈fc, return V〉 ∈
Rv
Σ,⊥,FG

(ρ)

2. If e = ε ′ and M is of the shape µ̂ε ′(N ′), we can split up X[leteffect ε �
e be (α.C,Nu, Nb) in µ̂ε

′
(N ′)] to

M ′ B X ′[[C[leteffect ε � e be (α.C,Nu, Nb) in µ̂ε
′
(N ′)]]ε

′
]

becauseX[M] is a⊥-computation and µ̂ε ′(N) a computation at level e = ε ′
and find

M ′ −→ Nb N
′ (λx.C[leteffect ε � e be (α.C,Nu, Nb) in return x])

' Nb N ′ (λx.C[return x])
←− X ′[[C[µ̂ε

′
(N ′)]]ε

′
]

= X[µ̂ε
′
(N ′)]

and thus X[leteffect ε � e be (α.C,Nu, Nb) in µ̂ε
′
(N ′)] ' X[µ̂ε

′
(N ′)] as
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wanted.

The case for the effect hierarchies follows immediately by induction.

�

Theorem 4.11 (adequacy). Denotational equivalence implies contextual equivalence. Ex-
plicitly: for all Θ | Γ `Σ,e P,Q : X, if ⟦P⟧ = ⟦Q⟧ then P ' Q.
Proof

Let Θ | Γ `Σ,e P1, P2 : X be any well-typed phrases satisfying ⟦P1⟧ = ⟦P2⟧ where
both ⟦Pi⟧ are defined. Consider any closed well-typed ground-returner context
∅[Θ] | ∅[Γ ′] `∅[E],⊥[e] X[ ] : FG[X] with Γ ′ > Γ s.t. both ⟦X[Pi]⟧ are defined. By
Lemma 4.3, ⟦X[P1]⟧ (θ)(?) = ⟦X[P2]⟧ (θ)(?). Let c be this common denotation.

Consider any i ∈ {1, 2}. By the basic lemma:

〈c,X[Pi]〉 ∈ R∅,∅,⊥,FG(?) = (Rv
∅,∅,⊥,FG

(?))>>

Now because 〈id, [ ]〉 ∈ (Rv
∅,∅,⊥,FG

(?))> we have for each i ∈ {1, 2}, 〈c, return Vi〉 ∈
Rv
∅,∅,⊥,FG

(?) with return Vi ' X[Pi] for some Vi. By the definition of Rv
∅,∅,⊥,FG

(?), there
exist ai with 〈ai, Vi〉 ∈ R∅,∅,⊥,G(?) such that c = return ai. But return is the identity
for the monad belonging to FG at level ⊥.

Thus:
a1 = return a1 = c = return a2 = a2

Therefore, by Lemma 4.8, V1 ' V2. Therefore:

X[P1] ' return V1 ' return V2 ' X[P2]

Therefore X[P1] −→? return V iff X[P2] −→? return V , hence P1 ' P2. �

Filinski also proves Felleisen-style type soundness [22] for his calculus, but via the
route of progress and preservation and under the presence of recursion and possi-
ble non-termination. Using adequacy, we can also prove strong normalisation for
our calculus.

Corollary 4.12 (soundness and strong normalisation). All well-typed, effect-free closed
ground returners reduce to a normal form. Explicitly: for all `Σ,⊥ M : FG there exists some
`Σ V : G such that:

M −→? return V

Proof

By the basic lemma, 〈⟦M⟧ (θ)γ,M〉 ∈ R∅,Σ,⊥,FG(?) = (Rv
∅,Σ,⊥,FG

(?))>>. Now because
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〈id, [ ]〉 ∈ (Rv
∅,Σ,⊥,FG

(?))> we have 〈⟦M⟧ (θ)γ, return V〉 ∈ Rv
∅,Σ,⊥,FG

(?) with return V '
M for some V . By setting the context in the definition of contextual equivalence to
the empty one we findM −→∗ return V . �

We have now established that our introduced semantics is adequate. The proof
using logical relations was more involved than the proof for λeff, because we had
to use >>-lifting and incorporate the type variable contexts. We will now use the
adequacy results from the last two chapters to compare the expressivness of λmon
and λeff.



Chapter 5

Expressiveness

We now come to the main contribution of the thesis and analyse the expressive
power of λeff and λmon. We base this prove on a notion of macro expressability [5].
To express λeff in λmon, we have to express the syntactic constructs of λeff that do not
occur in cbpv by macros in terms of λmon.

We first will define what it means for λeff to be macro (typed) expressible in λmon
(and vice versa). The concept of macro expressability is adapted from Felleisen
[5]. We then prove that λeff can macro express λmon, i.e. that there is a structure
preserving translation from λmon to λeff. Finally, we prove that λmon cannot typed
macro express λeff, because λmon only has finitely many observationally different
terms whereas λeff has infinitely many.

5.1 Definition of macro expressability

Felleisen [5] introduced a formal notion of expressiveness of a programming lan-
guage. His definition of macro expressability is relative: he defines what it means
for a programming language to be able to express certain additional constructs.
The idea is that an extension L ′ of a language L can be expressed in the language
L itself if L ′-programs can be translated to L programs and the common program
structure can be left unchanged.

As most programming languages are Turing-complete (and so are λeff and λmon if
one adds certain types and recursion), the Church-Turing thesis states that there is
always a translation. Macro expressability refines the notion of expressability and
requires a local translation, that does not change the program structure.

We extend Felleisens concept and define expressiveness for the two extensions λmon
and λeff of cbpv.

Definition 5.1. We say that λmon is typed macro expressible in λeff if there is a family of
functions Σ : Termsλmon → Termsλeff where the parameter Σ is an effect hierarchy such that:
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1. The functions Σ are homomorphic on all cbpv constructs, i.e.:

()Σ = ()

(V1,V2)Σ = (V1Σ,V2Σ)

injiVΣ = injiVΣ
{M}

Σ
= {MΣ}

split(V, x1.x2.M)
Σ
= split(VΣ, x1.x2.MΣ)

case0(V)
Σ
= case0(VΣ)

case(V, x1.M1, x2.M2)Σ = case(VΣ, x1.M1Σ
, x2.M2Σ

)

V !Σ = VΣ!
return V

Σ
= return VΣ

let x←M inNΣ = let x←MΣ inNΣ
λx.MΣ = λx.MΣ

MVΣ =MΣ NΣ

〈M1,M2〉Σ =
〈
M1Σ

,M2Σ

〉
prjiMΣ

= prjiMΣ

2. For the additional constructs of λmon we have:

[N]ε
Σ
= Xε1[NΣ]

µ̂ε(N)
Σ
= Xε2[NΣ]

leteffect ε � e be (α.C,Nu, Nb) in N
Σ
= Xε3[NΣ ′ ]

for contexts Xi of λeff and Σ ′ B Σ, ε ∼ (α.C,Nu, Nb).

3. If
λmon
`∅,⊥ P : FG and P is proper, then for all proper

λmon
`∅ V : G it holds that P λmon−−→

∗

return V ⇐⇒ P∅
λeff−−→
∗
return V .

4. For all proper P with
λmon
`Σ,e P : X there is a λeff-type X and an effect signature E with

λeff
`E P : X.

Leaving out condition 4 and the semantic definability (i.e. properness) requirement yields
the notion of untyped macro expressability of λmon in λeff.

Definition 5.2. We say that λeff is typed macro expressible in λmon if there is a function
: Termsλeff → Termsλmon such that:

1. The function is homomorphic on all cbpv constructs, as in the last definition.

2. For the additional constructs of λeff we have:

handle N with H = XH[E]

op
V
f = Xop[V ][f]

for λmon contexts XH,Xop with the last one being a context with two holes, where P
is always proper.

3. If
λeff
`∅ P : FG, then P λeff−−→

∗
return V ⇐⇒ P

λmon−−→ return V .

4. For all P with
λeff
`E P : X there is a λmon-type X, an effect hierarchy Σ and an effect e ∈ Σ
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with
λmon
`Σ,e P : X.

Leaving out condition 4 yields the notion of macro expressability of λeff in λmon.

5.2 λmon is macro expressible in λeff

We first give an untyped translation from λmon to λeff and prove a simulation result.
To express λmon in λeff we use the idea that µ̂ε(N) behaves like an effect operation
and [N]ε like the handling construct.

µ̂ε(N)
Σ
= opε {NΣ} (λx.return x)

[N]ε
Σ
= handle NΣ with HΣε

for (ε ∼ (Nu, Nb)) ∈ Σ and
HΣε B

{
return V 7→ NuΣV, op

εp f 7→ NbΣ p f
}

∪
{
opε ′p f 7→ opε ′p f

∣∣∣ε 6= ε ′ ∈ E}
leteffect ε � e be (α.C,Nu, Nb) in N

Σ
= NΣ,ε∼(Nu,Nb)

In the second case, if ε does not occur in Σ, the translation is not defined. Note that
if NΣ is defined, NΣ ′ is defined for every Σ ′ ⊇ Σ.

Note that the translation ignores any type information.

We first prove a technical lemma:

Lemma 5.3. Let Σ be an effect hierarchy,H a hoisting context and Θ | Γ `Σ,e H[µ̂ε(N) : C.
If ε ′ 6∈ effects(H) then for all ε � ε ′ ∈ Σ: H[µ̂ε(N)]

Σ

λeff−−→
∗
opε {N}(λx.H[return x]

Σ ′
) for

some Σ ′ ⊇ Σ

We now show that whenever a program makes a single step in λmon, the translated
program can mirror this via several steps in λeff (where possibly, if the step comes
from a leteffect, the parameter is extended):

Lemma 5.4. If `Σ,e P : X for some type X, then `Σ P
λmon−−→ P ′ =⇒ PΣ

λeff−−→
∗
P ′Σ ′ for some

Σ ′ ⊇ Σ.

Proof

By induction over P λmon−−→ P ′. If the reduction is a cbpv reduction, everything follows
immediately by the inductive hypotheses. The only interesting cases are:

(reify) Case [return V]ε λmon−−→ Nu V . We have

[return V]ε
Σ
= handle return V with HEε

λeff−−→ NuΣV = Nu VΣ
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(reflect) Case (ε ∼ (α.C,Nu, Nb)) ∈ Σ and [H[µ̂ε(N)]]ε λmon−−→ Nb {N} (λx.[H[return x]]ε).
We have:

[H[µ̂ε(N)]]ε
Σ
= handle H[µ̂ε(N)]

Σ
with HΣε

λeff−−→
∗
handle opε

{NΣ}
(λx.H[return x]

Σ ′
) with HΣε (Lemma 5.3)

λeff−−→ NbΣ {NΣ} (λx.handle H[return x]
Σ ′

with HΣε )
= NbΣ {NΣ} (λx.[H[return x]]ε

Σ ′
)

= Nb {N} (λx.[H[return x]]ε)
Σ ′

(leteff) CaseM λeff−−→ M ′ and leteffect ε � e be (α.C,Nu, Nb) inM
λmon−−→ leteffect ε �

e be (α.C,Nu, Nb) inM ′. We have for E ′ = ε ∼ (NuΣ, NbΣ), E:

leteffect ε � e be (α.C,Nu, Nb) inM
Σ

=ME ′

λeff−−→M ′E ′

= leteffect ε � e be (α.C,Nu, Nb) inM ′
Σ

(leteff-return) Case leteffect ε � e be (α.C,Nu, Nb) in return V λmon−−→ return V . We have

leteffect ε � e be (α.C,Nu, Nb) in return V
Σ
= return V = return V

Σ

�

We proved that if P makes a step, P∅ simulates that step in zero or more steps. It is
not the case that if P∅ can make a step, then so can P, because

let y← µ̂ε(N) inM
Σ
−→ opε {NΣ} (λx.let y← return x inMΣ)

but there is no P ′with P ′Σ = opε {NΣ} (λx.let y← return x inMΣ). We can however
prove the following result:

Lemma 5.5. If
λmon
`∅,⊥ P : FG, then P∅

λeff−−→
∗
return V =⇒ P

λmon−−→
∗
return V

Proof

By `∅,⊥ P : FG and Lemma 4.12 P ' return V ′ for some V ′, i.e. P λmon−−→
∗
return V ′.

By the last lemma, P λeff−−→
∗
return V ′

Σ
= return V ′, so V = V ′ because reduction for

λeff is deterministic.
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Thus, P λmon−−→
∗
return V . �

Both lemmas taken together yield the necessary condition 3 of macro expressabil-
ity:

Corollary 5.6. If
λmon
`∅,e P : FG, then P λmon−−→

∗
return V ⇐⇒ P∅

λeff−−→
∗
return V .

Proof

If P λmon−−→
∗
return V , then P∅

λeff−−→
∗
return V

Σ
= return V , the other direction is the

corollary. �

Theorem 5.7. λeff can macro express λmon

Proof

The function Σ obviously fulfills the first and second necessary property of macro
expressiveness. The third property was proven in the last lemma. �

However, the given translation does not suffice to also prove macro typed express-
ability:

Lemma 5.8. There is
λmon
`∅,⊥ P : X such that P∅ is not typeable in λeff.

Proof

Look at the program

leteffect ε � ⊥ be (α.Fα, return⊥,�=⊥) in
[let x← µ̂ε(return ()) in let y← µ̂ε(return ((), ())) in return (x, y)]ε

This program has type F(1× (1× 1)).

The translation of this contains two occurenes of opε, one where the parameter is
of type U(F1), one where it is of type U(F(1× 1)). This is not allowed in λeff. �

The problematic program is pathological, but the very same problem arises for
instance when translating the continutation monad in λmon to λeff. We conjecture
that this problem cannot be simply overcome without changing the type system of
λeff. We describe this conjecture in more detail in Chapter 6.

5.3 λeff is not macro typed expressible in λmon

The key idea in proving that λeff is not expressible in λmon is that λeff has infinitely
many observationally distinguishable terms, but λmon only has finitely many ober-
vationally different terms at any type, as the adequate denotational semantics given
in section 4.3 is finite.
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To do so, we define the syntactic abbreviation N;M B let _ ← N in M. Further-
more, we define the generic effect operation tick B op ()(λx.return x) as well as
tick0 B return () and tickn+1 B tick;tickn. Note that for any n and any E with
(op : 1→ 1) ∈ Ewe have `E tickn : F1.

Recall that Fn is the finite type with n elements and succ the successor function on
this type.

Define ∅ ` Hn : 1 {op:1→1}⇒∅ Fn as return V 7→ return (),op n f 7→ succ(f()).

Note that for natural numbersn andmwithm 6 nwehave`∅ handle tickmwithHn :

Fn and handle tickm with Hn λeff−−→
∗
return mn.

Lemma 5.9. For any natural number n, m1 6 n and m2 6 n with m1 6= m2 there is a
handler H such that handle tickm1 with H 6' handle tickm2 with H.

Proof

Wehavehandle tickmi withHn λeff−−→
∗
return (mi)n by the last lemma, but return (m1)n 6'

return (m2)n, thus

handle tickm1 with H 6' handle tickm2 with H.

�

We call two λeff-terms Γ `E N,M : X obervationally different if N 6'M.

Lemma 5.10. λeff has countably many obervationally different terms of type

`k F1 : Comp{op:1→1}.

We can use this to prove that λeff is not typed macro expressible in λmon. Explicitly:

Theorem 5.11. There is no function : Termsλeff → Termsλmon such that is homomorphic
on all syntactic constructs of cbpv and we have for all programs P:

If
λeff
`∅ P : FG, then P λmon−−→

∗
return V ⇐⇒ P

λeff−−→
∗
return V

Proof

Consider how terms
λeff
` {tick:1→F1} N : F1 get translated. They have to be terms N : X

for some type X. Now because λmon has a finite model (Lemma 4.1), we can only
have finitely many obervationally different terms in the type X, say k many. Con-
sider the k+ 1 terms tick0, . . . , tickk. Their translations cannot all be obervationally
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different, so we have n 6= mwith n,m 6 k such that tickn ' tickm . But we have

handle tickn with Hk λmon−−→
∗
return nk = return nk

handle tickm with Hk λmon−−→
∗
return mk = return mk

and nk 6= mk, so handle tickn with Hk 6' handle tickm with Hk , which is a contra-
diction. �

We have now established that λmon cannot typed macro express λeff, because λeff
has infinitely many observationally distinguishable terms. The λeff-calculus can
untyped macro express λmon, by implementing reification as a handler for the re-
flection effect.



Chapter 6

Conclusion

In this thesis, we compared themacro expressiveness of effect handlers andmonadic
reflection.

As it turns out, effects and handlers cannot be expressed using monadic reflec-
tion. Our proof in section 5.3 is based on a finite, set-theoretic adequate model for
the λmon-calculus and the fact that λeff has infinitely many observationally different
terms. The field of study of the expressiveness of programming languages is ex-
tensive, but usually considers positive expressability results. Negative results, i.e.
to show that no translation exists, are harder to achieve.

Monadic reflection can be expressed in terms of untyped effect operations and
handlers, as proven in section 5.2. We conjecture that there is no translation such
that the resulting program is always well-typed. Such a translation would have to
implement effect operations and handlers for the continuation monad. However,
as the continuation monad is unranked, and effect handlers can only implement
ranked monads, we conjecture this to be impossible.

Apart from carrying out this proof, it would be interesting for future work to anal-
yse if our simple type system for λeff could be, for example, extended with poly-
morphism, to be able to macro typed express λmon.

It would also be interesting to analyse further translations. As handlers are a form
of a delimited control structure, we want to compare effect handlers and monadic
reflection to a calculus with direct access to delimited control features. For all pairs
of calculi it would also be interesting to analyse whether, if local translations are
not possible, there are still global translations possible.
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