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Abstract

We present a framework to export programs in Coq to a weak call-by-value lambda calculus called
L. L can be seen as a very basic functional programming language, featuring abstraction, match-
constructs based on Scott’s encoding and full recursion.
The extraction from Coq is not verified itself, but produces proofs for the correctness of each single
extracted program semi-automatically. The frameworks builds on the Coq plugin Template Coq by
Gregory Malecha [4]. It eliminates the non-computational parts of the Coq program and produces
a term in L and the corresponding correctness statement, which in turn can be verified using several
provided automation tactics (developed in [3]).
Using the framework, one can focus on the interesting parts of developments in L, because the task
of programming is taken care of. We use the framework to develop a formalization of Computabil-
ity theory [2] as a case study.

1 Overview

This report is intended to be an overview of the basic ideas behind a framework rather than a docu-
mentation or a manual. It tries to be mostly self contained. The framework itself grew out of [2] and
heavily depends on the automation developed in [3].

We use Template Coq to get an inductive representation from Coq terms. We directly translate this
representation to our own intermediate representation, which is more concise and gives the possi-
bility to eliminate non computational parts. We describe this in in section 2.

In sections 3.1 and 3.2 we give a short introduction to L and Scott’s encoding and describe the math-
ematical idea behind the framework. The implementation in Coq using type classes is described in
sections 3.3 and 3.4.

Section 4.1 deals with the generation of correctness statements and 4.2 gives a short overview of the
semi-automatic proofs.

Finally, we reimplement the development of basic computability theory from [2] and compare the
two formalizations in section 5.

2 Representations for Coq terms

2.1 Template Coq

Template Coq [4] "is a quoting library for Coq. It takes Coq terms and constructs a representation of
their syntax tree as a Coq inductive data type"1 developed by Gregory Malecha.

1cited from https://github.com/gmalecha/template-coq/
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We use tactics provided by Template Coq to convert a Coq term to an inductive representation. We
give a short overview over this inductive representation and briefly describe our contributions to
Template Coq.

Inductive term : Type :=
| tRel : N→ term
| tVar : ident → term (** this can go away **)
| tMeta : N→ term (** NOTE: this can go away *)
| tEvar : N→ term
| tSort : sort → term
| tCast : term → cast_kind → term → term
| tProd : name → term (** the type **) → term → term
| tLambda : name → term (** the type **) → term → term
| tLetIn : name → term (** the type **) → term → term → term
| tApp : term → list term → term
| tConst : string → term
| tInd : inductive → term
| tConstruct : inductive → N→ term
| tCase : N(* # of parameters *) → term (** type info **) → term → list term → term
| tFix : mfixpoint term → N→ term
| tUnknown : string → term.

Because we are mainly interested in the computational part of Coq terms and especially in the ex-
traction of closed terms, many of those constructors are uninteresting for us.

The most important part of Template Coq for our purposes is the tactic quote_term k x, that takes a
tactic k (expecting one argument) and a term x. It then quotes the term x giving the result to the tactic
k.

The inductive representation of plus (without any unfolding) is Ast.tConst "Coq.Init.Nat.add". Inmany
cases, we need to be able to reproduce the term plus out of the string "Coq.Init.Nat.add". This was
previously not provided by Template Coq as a tactic, but only as a Vernacular command. We added
the tactic denote_term k x working inverse to quote_term for a restricted subset of the Ast.term type to
Template Coq2.

2.2 Intermediate Representation

The AST representation of Template Coq carries a lot of information which is unnecessary for the
purpose of extraction. To ease for instance the elimination of propositions before the extraction, we
define an intermediate representations, that specifies the subset of Coq which can be extracted. This
can also be seen as a clean interface to extract to other languages than L.

Inductive iTerm : Prop :=
iApp : iTerm → iTerm → iTerm (* application of two terms *)

| iLam : iTerm → iTerm (* fun *)
| iFix : iTerm → iTerm (* fix *)
| iConst (X:Type) : X → iTerm (* not unfolded constants *)
| iMatch : iTerm → list iTerm → iTerm (* matches with all the cases *)
| iVar : N→ N→ iTerm (* variables *)
| iType (X : Type) : X → iTerm. (* elimiNed terms *)

Almost every constructor should be self-explanatory. The match constructor carries the list of its
match branches, which are represented as abstractions. Variables have a second argument, that will
be used to conveniently extract fixed points (see section 3.2.3). The iType and iConst constructors will
be explained in the following sections.

2see https://github.com/gmalecha/template-coq/commit/c6de18e0ba00980e82f61c98e2348c292f86faa5
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2.3 Eliminating Propositions

The Extraction command in Coq conveniently removes all proofs and computation on types from the
terms and extracts the computationally relevant part only. This is especially useful in the case of
deciders, for instance of type

∀ x y : N, { x = y } + {x 6= y }

which can be extracted to a term of type N→ N→ bool in the obvious way. We mimic this behavior.
Currently, we eliminate non computational part by a heuristic, that works in all interesting cases.
The key idea is that we compute the typeLevel of a Coq term t in Ltac. If t : Type, it has typeLevel 0. If
t : X → Y, it has typeLevel n+ 1 if Y has typeLevel n.

We eliminate parts of the term that have typeLevel 0.

3 Extraction

3.1 A Weak Call-By-Value Lambda Calculus

We use a weak call-by-value lambda calculus called L, already used in the development of com-
putability theory in [2].L is syntactically a lambda calculus with de-Bruijn variables and uses the
following reduction rules:

(λs) v � s0v

s � s′

s t � s′t
t � t′

st � st′

Wewrite�∗ for the reflexive, transitive closure of� and≡ for the equivalence closure. Note that�∗
is a subrelation of ≡ and s ≡ λt ↔ s�∗ λt. For further properties of L see [2], chapters 2 and 3.

3.2 Scott’s Encoding

There are several well-known ways to represent constructor types in the lambda calculus. One is a
representation via Church’s encoding, which does not work in the setting of call-by-value reduction.

A second way would be to encode the terms as natural numbers via some sort of Gödelization and
encode this number, as it is often done in Computability theory. While this is technically easy, pro-
gramming with such encoded terms is almost impossible.

Thus we use Scott’s encoding [1], which was used for terms by Mogensen [5], similar to the develop-
ment in [2]. Scott’s encoding encodes a term t as the match-construct that is implicitly hidden in the
term.

As an example, natural numbers are encoded via a recursive procedure x 7→ x as follows:

0 := λzs.z

Sn := λzs.s n

One can now define the constructor S as a lambda term:

pSq := λxzs.s x

We say that pxq is the extracted version of the Coq term x. We also say that pxq internalizes the Coq
term x. We will use both terminologies interchangeably.
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We will from now on always use the notation x to refer to the Scott encoding of a Coq term x. Note
that we have p2q = pSq (pSq p0q) = pSq (pSq 0)�∗ 2. In general, we get pxq�∗ x.

Arbitrary constructor datatypes can be encoded in a similar way:

Assume that the typeX hasn constructors c1, . . . , cn. For any k-ary constructor ci an element ci x1 . . . xk
is represented as

λ c1 . . . cn. ci x1 . . . xk

3.2.1 Application, Abstraction, Variables

The subset of Coq consisting of applications, abstractions and variables is essentially a typed version
of the pure λ-calculus. It thus is straightforward how to internalize those terms.

If psq internalizes a term s and ptq internalizes a term t then psqptq internalizes the application s t.
On a high level we see that always psq ptq�∗ ps tq.

Abstractions and variables are also straightforward in the obvious way.

3.2.2 Match

Internalizing match constructs is easy, because a Scott encoding is essentially nothing more than a
match construct.

Now every term λ c1 . . . cn. ci x1 . . . xk yields a match construct. The Coq-match
match t with

| c1x1 . . . xk1
⇒f1 x1 . . . xk1

| . . .
| cnx1 . . . xkn ⇒fn x1 . . . xkn

end

is simply done with t f1 . . . fn.

Note that this onlyworks for strongly normalizing terms, which is no problem in our setting, because
every term in Coq is strongly normalizing and extraction will preserve this property.

3.2.3 Fix

Fix is technically the hardest part. In contrast to [2] we do not use a fixed point combinator here. For
a well behaving fixed point combinator R, we would like to have the property that Ru ≡ u (R u) for
a procedure u. This seems impossible in a call-by-value setting and the best equation one can get is
Ru ≡ λx.u (R u) x. Even more problematic, a term Ru is no procedure anymore (because it is an
application). The last can be solved by the definition of a function ρ : T→ T following [6].

We define:

A := λzg.g(λx.zzgx)

ρs := λx..A A s x

and have that (ρ u) t ≡ u (ρ u) t for procedures u and t.

A technical difficulty comes up when dealing with nested fixed-points or functions of the form
fun x ⇒fix f y :=.... The introduction of the additional λx in ρ requires us to essentially increase
every de-Bruijn index following to a fix by one. We do this by annotating every variable with the
corrected de-Bruijn index. This is because we will need the initial index as well as the corrected one
later.
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Ltac annotateVariables’ t L :=
let f x :=annotateVariables’ x L in
match eval hnf in t with
| iVar ?n ?m ⇒
let m’ :=eval lazy in (m + elAt’ L m) in
constr: (iVar n m’)

| iApp ?s ?t ⇒
let s’ :=annotateVariables’ s L in
let t’ :=annotateVariables’ t L in
constr: (iApp s’ t’)

| iLam ?s ⇒
let s’ :=annotateVariables’ s (0 :: L) in
constr: (iLam s’)

| iFix ?s ⇒
let s’ :=annotateVariables’ s (0::map S L) in
constr: (iFix s’)

| iMatch ?s ?l ⇒
let l’ :=list_map iTerm f l in
let s’ :=annotateVariables’ s L in
constr:(iMatch s’ l’)

| iType ⇒iType
| iConst ?f ⇒constr:(iConst f)
| _ ⇒fail 1000 "annotation failed in:" t
end.

Ltac annotateVariables t :=annotateVariables’ t (@nil N).

The tactic maintains a list L of natural numbers. The m’th number in L stores the number of fix

introduced between the binder and the variablem in the current context.

3.3 A Typeclass for Scott Encodings

On paper, we use the notation 2 or true to denote the Scott encoded terms 2 and true . In Coq, without
furtherworkwe need towrite for instance N_enc 2 and bool_enc true. The typeclassmechanism of Coq
allows us to use overloading as on paper.

Class registered (X : Type) :=mk_registered
{
enc_f : X → term ; (* the encoding function for X *)
proc_enc : ∀ x, proc (enc_f x) (* encodings need to be a procedure *)

}.
Arguments enc_f X {registered} _.

A type now can be registered by giving an encoding function and a proof that this function yields
procedures only. Note that this allows for more than Scott encodings. Our automation will never-
theless only work for Scott encodings.

We define a tactic to register encodings easily:
Ltac register encf :=refine (@mk_registered _ encf _);
abstract (now ((induction 0 || intros);simpl;value)).

The value tactic is taken from [3].

Registration is straightforward now:
Instance register_bool : registered bool.
Proof.
register bool_enc.

Defined.

Instance register_N : registered N.
Proof.
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register N_enc.
Defined.

Note that we close the Instance with the Defined command to make enc_f available for computations.
The proof remains opaque because we use the abstract3 tactic.

The following definition makes the overloading possible:
Definition enc (X : Type) (H:registered X) : X → term :=enc_f X.
Global Arguments enc {X} {H} _ : simpl never.

We use a well-known trick here. Note that the function enc essentially is just a projection on one of
its arguments. But, the only non-implicit argument is the third one. Especially, the argument H, from
which the result is taken, is made implicit. Now when one writes enc 2, Coq derives (if possible)
automatically the argument H : registered N, takes the projection function and applies it to 2.

Thus, the following computation works:
Compute (enc 0, enc false, enc 2).

= ((λ (λ 1)), (λ (λ 0)), (λ (λ O (λ (λ O (λ (λ 1)))))))
: term * term * term

3.4 A Typeclass and Tactics for Internalization

The translation to L-terms which was described mathematically in the last sections can be done by a
short Ltac tactic. But we want to be able to reuse previously internalized subterms. This is why we
employ the typeclass mechanism of Coq again. We introduce a typeclass internalized now, that will
be extended in the following sections.

Class internalized (X : Type) (x : X) :=
{ internalizer : term ;
proc_t : proc internalizer

}.

Definition int (X : Type) (x : X) (H : internalized x) :=internalizer.
Global Arguments int {X} {ty} x {H} : simpl never.

The key part again is the definition of int. It uses the same trick as the function enc before. After a
function, say, plus is registered, one can write int plus to get the corresponding L-term.

We will now focus on how to use this class and the mathematically described ideas to write a tac-
tic translating intermediate terms to lambda terms. We already explained every interesting non-
technical problem but one. This appears in the context of lists and options, in general where poly-
morphic datatypes appear.

First, we define how to encode options:
Section Fix_X.
Variable X:Type.
Variable intX : registered X.

Definition option_enc (t:option X) :term :=
match t with
| Some t ⇒λ(λ (1 (enc t)))
| None ⇒λ(λ 0)
end.

Global Instance register_option : registered (option X).

3See https://coq.inria.fr/refman/Reference-Manual011.html#hevea_tactic189
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Proof.
register option_enc.

Defined.

Global Instance term_None : internalized (@None X).
Proof.
...

Defined.

Global Instance term_Some : internalized (@Some X).
Proof.
...

Defined.
End Fix_X.

Weomit the proof scripts for now. Note that in order to generate correctness statementswe have to in-
ternalize @Some X instead of Some only. Using this definitions the problem comes upwhen internalizing,
say, the term @Some N. After Prop/Type-elimination the term is represented as iApp (iConst Some) (iType N).
One can now easily see that the usual approach does not work here. Internalizing iType N will yield
a dummy term, but internalizing Some does not work, because we have only registered @Some N. Thus,
our internalization tactic has to be a bit more complex. We first give the code and explain the inter-
esting parts afterwards:

Ltac reconstruct t :=
match t with
| iApp ?s ?t ⇒
let s’ :=reconstruct s in
let t’ :=reconstruct t in
constr: (s’ t’)

| iType (Some ?x) ⇒constr:(x)
| iType None ⇒constr:(True)
| iConst ?f ⇒constr:(f)
| _ ⇒fail 1000 "reconstruction failed for:" t
end.

Ltac toLambda t (* : iTerm → L.term + Coq.term *) :=
match t with
| iVar ?n ?m ⇒let v :=eval cbv in (@inl term True (Lvw.var m)) in constr: v
| iLam ?t ⇒
match toLambda t with
| inl ?x ⇒constr : (@inl term True (λ x ))
end

| iApp ?s ?t ⇒
let x :=toLambda s in
match x with
| inl ?r1 ⇒
let y :=toLambda t in
match y with
inl ?r2 ⇒constr: (@inl term True (app r1 r2))

| inr _ ⇒fail 1000 "internalized lhs" s "succesfully, but rhs " t "failed"
end

| inr ?r1 ⇒
let r2 :=reconstruct t in
constr:( @inl term True (int (r1 r2)) )

(* if internalization failed *)
| inr ?r1 ⇒
let r2 :=reconstruct t in
constr: (@inr True _ (r1 r2))

| inr ?r1 ⇒
fail 1000 "internalization failed for" r1 "(reconstructing" t "didn’t work)"

end
| @iConst ?X ?x ⇒
constr: (@inl term True (int x))
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| @iConst ?X ?x ⇒
constr: (@inr True X x)

| iFix ?s ⇒
match toLambda s with
inl ?s’ ⇒constr:(@inl term True(Lvw.rho (Lvw.λ s’)))

| _ ⇒fail 100 "failed under fix" t
end

| iMatch ?s ?l ⇒
let l’ :=matchToApp s l in
let t :=toLambda l’ in
constr:(t)

| iType _ ⇒constr: ( @inl term True I)
| _ ⇒fail 100 "failed to internalize iterm " t
end.

The toLambda tactic takes an iTerm as argument. It then returns either an L-term, or, if that did notwork,
tries to reconstruct the Coq-term. The cases for variables, abstractions, fix and match are straightfor-
ward.

We explain the behavior on applications, constants and eliminated Types by means of an example.

On the argument iApp (iConst @Some) (iType N), it will first try to internalize iConst @Some in the usual
way. Since this fails, it returns inr @Some, reconstructs the right hand side also (yielding simply N),
puts the two parts together and tries to internalize @Some N afterwards, finally succeeding.

4 Automated Verification

Until now we described how to extract L-terms from Coq code. The clear structure of the extraction
and Scott’s encoding allow us now to formulate and prove correctness properties of the extracted
terms highly automated.

Section 4.1 describes how we generate correctness statements. Section 4.2 the connection to the au-
tomation that can be used to generate the corresponding proofs.

4.1 Generating Correctness Statements

One can read the corresponding correctness lemma of a term from its type. The correctness lemma
of plus : N→ N→ N reads ∀ n m : N, (int plus) (enc n) (enc m) >* enc (plus n m).

One choice would be now to generate the correctness lemma via a tactic and store it in the instance
of the internalized class. This would be easy to work with, but bear the risk that trivial correctness
lemmas get used. Thus proof reading Coq proofs generated by our framework would be consider-
ably more complicated, because the statement that a term was correctly internalized is based on the
concrete correctness statement.

We use a different but similar approach. First, we give an inductive datatype TT X which inductively
represents the type X. We then define a function internalizesF : TT X → Prop that generates the cor-
rectness lemma for each proof by structural recursion over the TT object. While proof reading, one
simply needs to check that internalizesF is well-behaving, every other statement then can be trusted.

Inductive TT : Type → Type :=
TyB t (H : registered t) : TT t

| TyElim t : TT t
| TyAll t (ttt : TT t) (f : t → Type) (ftt : ∀ x, TT (f x))
: TT (∀ (x:t), f x).

Arguments TyB _ {_}.
Arguments TyAll {_} _ {_} _.

Notation "! X" :=(TyB X) (at level 69).
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Notation "X  Y" :=(TyAll X (fun _ ⇒Y)) (right associativity, at level 70).

We allow the representation of a base type only if it can be encoded already. We mark the parts of a
type which correspond to previously eliminated parts by introducing the constructor TyElim.

The TyAll constructor is able to represent dependent types. If we assume that we registered how to
encode the type sumbool, the TT representation for ∀ x y : N, { x = y } + { x 6= y } is

TyAll (! N)
(fun x : N⇒
TyAll (! N) (fun y : N⇒! {x = y} + {x 6= y}))

: TT (∀ x y : N, {x = y} + {x 6= y})

We define the internalizesF function by a proof script:

Definition internalizesF (p : Lvw.term) t (ty : TT t) (f : t) : Prop.
revert p. induction ty as [ t H p | t H p | t ty internalizesHyp R ftt internalizesF’];
simpl in *; intros.
- exact (p >* enc f).
- exact (p >* I).
- exact (∀ (y : t) u, proc u → internalizesHyp y u → internalizesF’ _ (f y) (app p u)).

Defined.

The idea is clear: internalizesF (p : L.term) (t : Type) (ty : TT t) (f : t) expresses the statement
that the L-term p correctly internalizes the term f of type t. It works by structural recursion over
the TT object. A term p internalizes f : t for t being registered if p � f . We require eliminated terms
to reduce to the term I .

The function casewhere the term f has type ∀t, R t ismost interesting. Wedefine that it is internalizes
by a term p if p u internalizes fy for every y : t and internalization u of y that is a procedure. In the
definition internalizesF’ is essentially internalizesF, with some slight changes in the arguments.

Class internalizedClass (X : Type) (ty : TT X) (x : X) :=
{ internalizer : term ;
proc_t : proc internalizer ;
correct_t : internalizesF internalizer ty x

}.

Definition int (X : Type) (ty : TT X) (x : X) (H : internalizedClass ty x) :=internalizer.
Global Arguments int {X} {ty} x {H} : simpl never.

Definition correct (X : Type) (ty : TT X) (x : X) (H : internalizedClass ty x) :=correct_t.
Global Arguments correct {X} {ty} x {H} : simpl never.

Notation "’internalized’ f" :=
(internalizedClass $(let t :=type of f in let x :=toTT t in exact x)$ f)
(at level 100, only parsing).

At first the decision to add a parameter instead of a new field seems odd. But, we can observe that
there is at most one meaningful TT instance for every type. This statement is obviously (due to the
term meaningful) nor provable in Coq, nor is the TT instance computable in Coq.

This is because the statement that there is at most one representation as TT X for every type X is true
externally, but can not be proven in Coq. Not even a function ∀ X : Type, TT X would be definable in
Coq. This is whywe need to add the toTT part as a parameter. If we assume that a function of type for
instance X → Y is internalized, we also should be able to assume the right correctness lemma. Thus
we add the TT object as parameter, but hide it for the user when writing it down.
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4.2 Proving Correctness using Tactics

(* this can be used to internalize with an anonymous term, defined in coq*)
Ltac internalizeWith’ t_arg:=
match goal with
| [ `internalizedClass _ ?f ] ⇒
let t :=(let t’ :=eval lazy [enc] in t_arg in eval cbn in t’) in
let h :=visableHead t in
(* this allows to branch if the head is opaque (e.g. a constructor) *)
let e1 :=eval cbv in h in
let e :=

match h with
e1 ⇒t

| _ ⇒(let t’ :=eval lazy [h enc] in t in t’)
end

in
let t’ :=eval lazy [decision] in e in
let ter :=to_iTerm_elim t’ in
let ter’ :=annotateVariables ter in
let Lter’ :=toLambda ter’ in
match Lter’ with
| inl ?Lter
⇒apply Build_internalizedClass with (internalizer:=Lter); [try value|cbn]

end
end.

The internalizeWith’ tactic is the core of our tactics to assist the internalization of terms. It expects the
term which should be internalized as argument t_arg.

If the head of the t_arg can be unfolded, it unfolds it. After that, every occurrence of decision is
unfolded to its concrete instance. The resulting term gets converted to an iTerm and propositions and
types get eliminated. At last, variables get annotated and the whole term is extracted. As a last step,
the Build_internalizedClass constructor is applied.

There are two open goals: One is to prove that the internalized term is a procedure, which can be
handled by the value tactic. The other goal is the correctness lemma itself, which is left open for the
user.

With the help of the extensive automation from Kunze15 these proofs can be done with few tactic calls
in most cases. The only thing a user has to do is start the induction and do (if needed) some destructs
by hand. Everything else, especially all reductions, is handled by the tactic crush.

5 Case Study

[2] develops a formalization of basic Computability theory in L.We reimplemented the formalization
using the framework presented here. The following table presents a comparison in lines of Coq-code
between the two approaches, concerning the verification of the most interesting procedures.

Formalization Thesis Framework
Natural Numbers 110 60
Equality on terms and N 85 46
Lists 230 113
Substitution and Self Interpretation 209 74
Enumeration of terms 143 26
Inverse Encoding of N 37 9
In Total 777 319

The definition of the framework and the corresponding tactics is roughly 650 lines long.

10



References

[1] Haskell B. Curry, J. Roger Hindley, and Jonathan P. Seldin. Combinatory Logic: Volume II. North-Holland Publishing
Company, 1972.

[2] Yannick Forster. A formal and constructive theory of computation, Bachelor thesis, 2014. Available electronically at
https://www.ps.uni-saarland.de/~forster/bachelor.php.

[3] Fabian Kunze. Bachelor thesis, work in progress, 2015. Available electronically at https://www.ps.uni-saarland.de/
~kunze/bachelor.php.

[4] Gregory Malecha. Template Coq, 2015. Available electronically at https://github.com/gmalecha/template-coq/.

[5] Torben Æ. Mogensen. Efficient self-interpretations in lambda calculus. J. Funct. Program., 2(3):345–363, 1992.

[6] Gert Smolka. Computation theory. Lecture Notes for Computational Logic 2, 2015. Available electronically at https:
//courses.ps.uni-saarland.de/cl2/.

11

https://www.ps.uni-saarland.de/~forster/bachelor.php
https://www.ps.uni-saarland.de/~kunze/bachelor.php
https://www.ps.uni-saarland.de/~kunze/bachelor.php
https://github.com/gmalecha/template-coq/
https://courses.ps.uni-saarland.de/cl2/
https://courses.ps.uni-saarland.de/cl2/

	Overview
	Representations for Coq terms
	Template Coq
	Intermediate Representation
	Eliminating Propositions

	Extraction
	A Weak Call-By-Value Lambda Calculus
	Scott's Encoding
	Application, Abstraction, Variables
	Match
	Fix

	A Typeclass for Scott Encodings
	A Typeclass and Tactics for Internalization

	Automated Verification
	Generating Correctness Statements
	Proving Correctness using Tactics

	Case Study 
	References

