THE STRONG INVARIANCE THESIS FOR A λ -CALCULUS LOLA WORKSHOP 2017

Yannick Forster¹ Fabian Kunze^{1,2} Marc Roth^{1,3}

¹SAARLAND UNIVERSITY

²MAX PLANCK INSTITUTE FOR INFORMATICS

³CLUSTER OF EXCELLENCE (MMCI)

TURING MACHINES

TURING MACHINES (PROS)

- easy to imagine
- easy to explain
- de-facto the standard model of computation for computation theory and complexity theory

TURING MACHINES (CONS)

Notoriously hard to reason about (in a formally precise way):

- not compositional
- tedious encodings
- no nice abstractions for verification (e.g. no separation logic)
- ► Formalisation of Computability Theory is out of reach
- ► Formalisation of Complexity Theory is even further away

EXEMPLARY RELATED WORK

Ugo Dal Lago and Simone Martini *The Weak Lambda Calculus as a Reasonable Machine* Theoretical Computer Science, 2008

Beniamino Accattoli and Ugo Dal Lago (*Leftmost-Outermost*) Beta Reduction is Invariant, Indeed Logical Methods in Computer Science, 2016

EXEMPLARY RELATED WORK

- Ugo Dal Lago and Simone Martini *The Weak Lambda Calculus as a Reasonable Machine* Theoretical Computer Science, 2008
- Beniamino Accattoli and Ugo Dal Lago (*Leftmost-Outermost*) Beta Reduction is Invariant, Indeed Logical Methods in Computer Science, 2016
- Andrea Asperti and Wilmer Ricciotti *A formalization of multi-tape Turing machines* Theoretical Computer Science, 2015

ANOTHER MODEL OF COMPUTATION

A certain flavour of λ -calculus called L

- compositional
- straightforward encodings of data types
- equational reasoning for verification
- Formalisation for Computability theory
 - Yannick Forster and Gert Smolka Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq ITP 2017
- ► Reasonable with respect to time [Dal Lago, Martini (2008)]
- Reasonable with respect to space?

THE INVARIANCE THESIS

(Strong) Invariance Thesis

'Reasonable' machines can simulate each other within a polynomially bounded overhead in time and a constant-factor overhead in space.

[Slot, van Emde Boas (1998)]

THE INVARIANCE THESIS

(Strong) Invariance Thesis

'Reasonable' machines can simulate each other within a polynomially bounded overhead in time and a constant-factor overhead in space.

Ensures consistency w.r.t classes closed under poly-time/constant-space reductions.

[Slot, van Emde Boas (1998)]

CONTRIBUTION

- ► Simple time and space measures for L
- substitution-based interpreter with constant-factor overhead in space
- heap-based interpreter with polynomially bounded overhead in time
- hybrid interpreter fulfilling the strong invariance thesis

CONTRIBUTION

Theorem (Strong Invariance Thesis for L)

L and Turing Machines can simulate each other within a polynomially bounded overhead in time and a constant-factor overhead in space for decision functions with non-sublinear running time.

L: Weak Call-by-Value λ -Calculus

$$s,t ::= x \mid \lambda x.s \mid st$$

$$\frac{s \succ s'}{(\lambda x.s)(\lambda y.t) \succ s[x := \lambda y.t]} \qquad \frac{s \succ s'}{st \succ s't} \qquad \frac{t \succ t'}{st \succ st'}$$

- uniformly confluent (reductions to normal forms have the same length)
- data represented by abstractions (Scott encoding)
- recursion using fixed-point combinator

[Dal Lago, Martini (2008)]

Introduction	The calculus L	Simulating TMs	Simulating L with substitutions	Simulating L with a heap	Hybrid Interpreter
0 00000000	000	00	000000	00000	0000000

TIME MEASURE

If

$$s = s_0 \succ s_1 \succ \cdots \succ s_k$$

then

$$\mathsf{Time}(s) := k$$

i.e. the number of β -reduction steps

SPACE MEASURE

$$\mathsf{Space}(s) := \max_{\{s_i | s \succ^* s_i\}} |s_i|$$

i.e. size of the largest intermediate term of the reduction for

$$|x| = de Bruijn index of x$$

 $|st| = 1 + |s| + |t|$
 $|\lambda x.s| = 1 + |s|$

DEFINITION OF TURING MACHINE

- ► a finite type of states *Q*
- a transition function $\delta : Q \times \Sigma^{n+1} \to Q \times \Sigma^{n+1} \times \{L, N, R\}$
- ► a start state *s* : *Q*
- a halting function $Q \to \mathbb{B}$

Semantics: Loop δ until a halting state is reached.

[Asperti, Ricciotti (2015)], [Dal Lago, Martini (2008)]

DEFINITION OF TURING MACHINE

- ► a finite type of states *Q*
- a transition function $\delta : Q \times \Sigma^{n+1} \to Q \times \Sigma^{n+1} \times \{L, N, R\}$
- a start state s : Q
- a halting function $Q \to \mathbb{B}$

Semantics: Loop δ until a halting state is reached. Encode δ and halting function using Scott encodings (linear size, polynomial operations) and loop.

[Asperti, Ricciotti (2015)], [Dal Lago, Martini (2008)]

DEFINITION OF TURING MACHINE

- ► a finite type of states *Q*
- a transition function $\delta : Q \times \Sigma^{n+1} \to Q \times \Sigma^{n+1} \times \{L, N, R\}$
- ► a start state *s* : *Q*
- a halting function $Q \to \mathbb{B}$

Semantics: Loop δ until a halting state is reached. Encode δ and halting function using Scott encodings (linear size, polynomial operations) and loop.

In Coq:

Generation and verification of L-code from functional specification is automatic with our framework. Time-complexity of the extract is semi-automatic. Space-complexity has to be done by hand. [Asperti, Ricciotti (2015)], [Dal Lago, Martini (2008)]

Introduction	The calculus L	Simulating TMs	Simulating L with substitutions	Simulating L with a heap	Hybrid Interpreter
0 00000000	000	0 0	000000	00000	0000000

Theorem (Invariance thesis part I)

L can simulate Turing machines with a polynomially bounded overhead in time and a constant-factor overhead in space.

Let $\mathbf{I} := \lambda x . x$:

 $(\lambda xy.x x) \mathbf{I} ((\lambda xy.x x)\mathbf{II})$

Let $\mathbf{I} := \lambda x . x$:

$(\lambda xy.x x) \mathbf{I} ((\lambda xy.x x)\mathbf{II}) \succ (\lambda y.\mathbf{I} \mathbf{I}) ((\lambda xy.x x)\mathbf{II})$

Let $\mathbf{I} := \lambda x . x$:

$(\lambda xy.x x) \mathbf{I} ((\lambda xy.x x)\mathbf{II}) \succ (\lambda y.\mathbf{II}) ((\lambda xy.x x)\mathbf{II}) \\ \succ (\lambda y.\mathbf{II}) ((\lambda y.\mathbf{II})\mathbf{I})$

Let $\mathbf{I} := \lambda x . x$:

$(\lambda xy.x x) \mathbf{I} ((\lambda xy.x x)\mathbf{II}) \succ (\lambda y.\mathbf{I} \mathbf{I}) ((\lambda xy.x x)\mathbf{II}) \\ \succ (\lambda y.\mathbf{I} \mathbf{I}) ((\lambda y.\mathbf{II})\mathbf{I}) \\ \succ (\lambda y.\mathbf{I} \mathbf{I}) (\mathbf{I} \mathbf{I})$

Let $\mathbf{I} := \lambda x . x$:

$$\begin{aligned} (\lambda xy.x x) \mathbf{I} ((\lambda xy.x x)\mathbf{II}) &\succ (\lambda y.\mathbf{I} \mathbf{I}) ((\lambda xy.x x)\mathbf{II}) \\ &\succ (\lambda y.\mathbf{I} \mathbf{I}) ((\lambda y.\mathbf{II})\mathbf{I}) \\ &\succ (\lambda y.\mathbf{I} \mathbf{I}) (\mathbf{I} \mathbf{I}) \\ &\succ (\lambda y.\mathbf{I} \mathbf{I})\mathbf{I} \end{aligned}$$

Let $\mathbf{I} := \lambda x . x$:

$$(\lambda xy.x x) \mathbf{I} ((\lambda xy.x x)\mathbf{II}) \succ (\lambda y.\mathbf{I} \mathbf{I}) ((\lambda xy.x x)\mathbf{II}) \succ (\lambda y.\mathbf{I} \mathbf{I}) ((\lambda y.\mathbf{II})\mathbf{I}) \succ (\lambda y.\mathbf{I} \mathbf{I}) (\mathbf{I} \mathbf{I}) \succ (\lambda y.\mathbf{I} \mathbf{I})\mathbf{I} \succ \mathbf{I} \mathbf{I}$$

Let $\mathbf{I} := \lambda x . x$:

$$(\lambda xy.x x) \mathbf{I} ((\lambda xy.x x)\mathbf{II}) \succ (\lambda y.\mathbf{I} \mathbf{I}) ((\lambda xy.x x)\mathbf{II}) \\ \succ (\lambda y.\mathbf{I} \mathbf{I}) ((\lambda y.\mathbf{II})\mathbf{I}) \\ \succ (\lambda y.\mathbf{I} \mathbf{I}) (\mathbf{I} \mathbf{I}) \\ \succ (\lambda y.\mathbf{I} \mathbf{I})\mathbf{I} \\ \succ \mathbf{I} \mathbf{I} \\ \succeq \mathbf{I}$$

ENCODING TERMS

- terms: prefix notation with tokens @, λ , \triangleright and |.
- ► Positions: strings with tokens @_L, @_R, λ

Example

 $(\lambda xy.xy)(\lambda x.x) \approx (\lambda \lambda 10)(\lambda 0)$ is encoded by string $@\lambda \lambda @ \triangleright | \triangleright \lambda \triangleright$. In this term, '1' occurs at position $@_L \lambda \lambda @_L$

SUBSTITUTION-BASED INTERPRETER

To compute $s \succ s'$, use tapes pre, funct, arg, post, position:

- 1. Find the first β -redex,
 - copy to pre until $@\lambda$ is read
 - copy next *complete* term to funct (and remember its position on the position tape)
 - if the next token is λ, copy the next term to arg and remaining tokens to post
 - otherwise, move funct onto pre and start from beginning
- 2. copy funct to pre, replacing variable with arg
- 3. copy post to pre

[Dal Lago, Martini (2008)]

COMPLEXITY ANALYSIS

$\mathcal{O}(|s|^2) \text{ time } \qquad \begin{array}{l} \text{Per step for } s \succ s': \\ \mathcal{O}(|s|^2) \text{ time } \qquad \mathcal{O}(|s|+|s'|) \text{ space } \end{array}$

COMPLEXITY ANALYSIS

$$\mathcal{O}(|s|^2) \text{ time} \qquad \qquad \mathcal{O}(|s|+|s'|) \text{ space}$$

In total for
$$s = s_0 \succ s_1 \succ \cdots \succ s_k$$
:
 $\mathcal{O}(\sum_i |s_i|^2)$ time $\mathcal{O}(max_i |s_i|) = \mathcal{O}(\text{Space}(s))$ space

Introduction	The calculus L	Simulating TMs	Simulating L with substitutions	Simulating L with a heap	Hybrid Interpreter
0 00000000	000	00	000000	00000	0000000

Theorem (Invariance thesis part II for space) *Turing machines can simulate L with a constant-factor overhead in space.*

EXPLOSIVE TERMS

 $\overline{2} := \lambda xy.x (xy)$ can double the size of a term in one step:

 $\overline{2} t \succ \lambda y.t (t y)$

So, with $\mathbf{I} := \lambda x.x$: $\underbrace{\overline{2}(\overline{2}(\cdots(\overline{2} \mathbf{I})))}_{k \text{ times}} \mathbf{I}(x)$

normalizes in k L-steps, but needs $\Omega(2^k)$ interpretation time

 $\overline{2}:=\lambda xy.x\left(x\,y\right)$

 $\overline{2}(\overline{2}I)I$

 $\overline{2}:=\lambda xy.x\left(x\,y\right)$

 $\overline{2}(\overline{2}\mathbf{I})\mathbf{I}\succ \overline{2}(\lambda y.h_1(h_1y))\mathbf{I} \qquad h_1:=\mathbf{I}$

 $\overline{2} := \lambda x y. x (x y)$

 $\overline{\mathbf{2}}(\overline{\mathbf{2}}\mathbf{I})\mathbf{I} \succ \overline{\mathbf{2}}(\lambda y.h_1(h_1y))\mathbf{I} \qquad h_1 := \mathbf{I} \\ \succ (\lambda y.h_2(h_2y))\mathbf{I} \qquad h_1 := \mathbf{I}, h_2 := (\lambda y.h_1(h_1y))$

 $\overline{2} := \lambda x y. x (x y)$

$$\begin{split} \overline{\mathbf{2}}(\overline{\mathbf{2}}\mathbf{I})\mathbf{I} &\succ \overline{\mathbf{2}}(\lambda y.h_1(h_1y))\mathbf{I} & h_1 := \mathbf{I} \\ &\succ (\lambda y.h_2(h_2y))\mathbf{I} & h_1 := \mathbf{I}, h_2 := (\lambda y.h_1(h_1y)) \\ &\succ h_2(h_2h_3) & h_1 := \mathbf{I}, h_2 := \lambda y.h_1(h_1y), h_3 := \mathbf{I} \end{split}$$

 $\overline{2} := \lambda x y. x (x y)$

 $\begin{aligned} \overline{\mathbf{2}}(\overline{\mathbf{2}}\mathbf{I})\mathbf{I} &\succ \overline{\mathbf{2}}(\lambda y.h_1(h_1y))\mathbf{I} & h_1 &:= \mathbf{I} \\ &\succ (\lambda y.h_2(h_2y))\mathbf{I} & h_1 &:= \mathbf{I}, h_2 &:= (\lambda y.h_1(h_1y)) \\ &\succ h_2(h_2h_3) & h_1 &:= \mathbf{I}, h_2 &:= \lambda y.h_1(h_1y), h_3 &:= \mathbf{I} \\ &\succ^2 h_2((\lambda y.h_1(h_1y))\mathbf{I}) \end{aligned}$

$$\begin{aligned} \overline{\mathbf{2}}(\overline{\mathbf{2}}\mathbf{I})\mathbf{I} &\succ \overline{\mathbf{2}}(\lambda y.h_1(h_1y))\mathbf{I} & h_1 := \mathbf{I} \\ &\succ (\lambda y.h_2(h_2y))\mathbf{I} & h_1 := \mathbf{I}, h_2 := (\lambda y.h_1(h_1y)) \\ &\succ h_2(h_2h_3) & h_1 := \mathbf{I}, h_2 := \lambda y.h_1(h_1y), h_3 := \mathbf{I} \\ &\succ^2 h_2((\lambda y.h_1(h_1y))\mathbf{I}) \\ &\succ h_2(h_1(h_1h_4)) & \dots, h_4 := \mathbf{I} \end{aligned}$$

$$\begin{aligned} \overline{\mathbf{2}}(\overline{\mathbf{2I}})\mathbf{I} &\succ \overline{\mathbf{2}}(\lambda y.h_1(h_1y))\mathbf{I} & h_1 &:= \mathbf{I} \\ &\succ (\lambda y.h_2(h_2y))\mathbf{I} & h_1 &:= \mathbf{I}, h_2 &:= (\lambda y.h_1(h_1y)) \\ &\succ h_2(h_2h_3) & h_1 &:= \mathbf{I}, h_2 &:= \lambda y.h_1(h_1y), h_3 &:= \mathbf{I} \\ &\succ^2 h_2((\lambda y.h_1(h_1y))\mathbf{I}) & \\ &\succ h_2(h_1(h_1h_4)) & \dots, h_4 &:= \mathbf{I} \\ &\succ^2 h_2(h_1(\mathbf{II})) \end{aligned}$$

$$\overline{\mathbf{2}}(\overline{\mathbf{2I}})\mathbf{I} \succ \overline{\mathbf{2}}(\lambda y.h_1(h_1y))\mathbf{I} \qquad h_1 := \mathbf{I} \\ \succ (\lambda y.h_2(h_2y))\mathbf{I} \qquad h_1 := \mathbf{I}, h_2 := (\lambda y.h_1(h_1y)) \\ \succ h_2(h_2h_3) \qquad h_1 := \mathbf{I}, h_2 := \lambda y.h_1(h_1y), h_3 := \mathbf{I} \\ \succ^2 h_2((\lambda y.h_1(h_1y)))\mathbf{I}) \\ \succ h_2(h_1(h_1h_4)) \qquad \dots, h_4 := \mathbf{I} \\ \succ^2 h_2(h_1(\mathbf{II})) \\ \succ^5 h_2\mathbf{I} \qquad \dots, h_5 := \mathbf{I}, h_6 := \mathbf{I}$$

$$\overline{\mathbf{2}}(\overline{\mathbf{2I}})\mathbf{I} \succ \overline{\mathbf{2}}(\lambda y.h_1(h_1y))\mathbf{I} \qquad h_1 := \mathbf{I} \\
\succ (\lambda y.h_2(h_2y))\mathbf{I} \qquad h_1 := \mathbf{I}, h_2 := (\lambda y.h_1(h_1y)) \\
\succ h_2(h_2h_3) \qquad h_1 := \mathbf{I}, h_2 := \lambda y.h_1(h_1y), h_3 := \mathbf{I} \\
\succ^2 h_2((\lambda y.h_1(h_1y))\mathbf{I}) \\
\succ h_2(h_1(h_1h_4)) \qquad \dots, h_4 := \mathbf{I} \\
\succ^2 h_2(h_1(\mathbf{II})) \\
\succ^5 h_2\mathbf{I} \qquad \dots, h_5 := \mathbf{I}, h_6 := \mathbf{I} \\
\succ h_1(h_1h_7)$$
SAABLAN

 $\overline{2} := \lambda x y. x (x y)$

$$\begin{split} \overline{\mathbf{2}}(\overline{\mathbf{2I}})\mathbf{I} \succ \overline{\mathbf{2}}(\lambda y.h_1(h_1y))\mathbf{I} & h_1 := \mathbf{I} \\ \succ (\lambda y.h_2(h_2y))\mathbf{I} & h_1 := \mathbf{I}, h_2 := (\lambda y.h_1(h_1y)) \\ \succ h_2(h_2h_3) & h_1 := \mathbf{I}, h_2 := \lambda y.h_1(h_1y), h_3 := \mathbf{I} \\ \succ^2 h_2((\lambda y.h_1(h_1y))\mathbf{I}) \\ \succ h_2(h_1(h_1h_4)) & \dots, h_4 := \mathbf{I} \\ \succ^2 h_2(h_1(\mathbf{II})) \\ \succ^5 h_2\mathbf{I} & \dots, h_5 := \mathbf{I}, h_6 := \mathbf{I} \\ \succ h_1(h_1h_7) \\ \succeq^* \mathbf{I} & \\ \end{split}$$

COMPUTER SCIENCE

HEAP-BASED INTERPRETER

 $s = s_0 \succ \cdots \succ s_i \succ \cdots \succ \succ s_k$

Tapes: main (contains s_i), heap, hc (heap counter) Invariant: size of heap is always polynomial in k and |s|.

HEAP-BASED INTERPRETER

 $s = s_0 \succ \cdots \succ s_i \succ \cdots \succ \succ s_k$

Tapes: main (contains s_i), heap, hc (heap counter) Invariant: size of heap is always polynomial in k and |s|.

 For beta-reduction of (λx.t₁)t₂: Copy t₂ to heap, replace x in t₁ with address

HEAP-BASED INTERPRETER

 $s = s_0 \succ \cdots \succ s_i \succ \cdots \succ \succ s_k$

Tapes: main (contains s_i), heap, hc (heap counter) Invariant: size of heap is always polynomial in k and |s|.

 For beta-reduction of (λx.t₁)t₂: Copy t₂ to heap, replace x in t₁ with address (linear in the heap, O(|t₁|) many copies of an address linear in the heap)

HEAP-BASED INTERPRETER

 $s = s_0 \succ \cdots \succ s_i \succ \cdots \succ \succ s_k$

Tapes: main (contains s_i), heap, hc (heap counter) Invariant: size of heap is always polynomial in k and |s|.

- For beta-reduction of (λx.t₁)t₂: Copy t₂ to heap, replace x in t₁ with address (linear in the heap, O(|t₁|) many copies of an address linear in the heap)
- ► For variable-unfolding of *x*: Find the element associated to *x* in the heap

HEAP-BASED INTERPRETER

 $s = s_0 \succ \cdots \succ s_i \succ \cdots \succ \succ s_k$

Tapes: main (contains s_i), heap, hc (heap counter) Invariant: size of heap is always polynomial in k and |s|.

- For beta-reduction of (λx.t₁)t₂: Copy t₂ to heap, replace x in t₁ with address (linear in the heap, O(|t₁|) many copies of an address linear in the heap)
- ► For variable-unfolding of *x*: Find the element associated to *x* in the heap (linear in the heap)

HEAP-BASED INTERPRETER

 $s = s_0 \succ \cdots \succ s_i \succ \cdots \succ \succ s_k$

Tapes: main (contains s_i), heap, hc (heap counter) Invariant: size of heap is always polynomial in k and |s|.

- ► For beta-reduction of (\(\lambda x.t_1\)t_2\): Copy t₂ to heap, replace x in t₁ with address (linear in the heap, \(\mathcal{O}(|t_1|)\) many copies of an address linear in the heap)
- ► For variable-unfolding of *x*: Find the element associated to *x* in the heap (linear in the heap)

A bit more complicated for de-Bruijn, but doable.

COMPLEXITY ANALYSIS

Theorem *There is a constant c such that any reduction* $s = s_0 \succ \cdots \succ s_k$ *in* L *can be simulated by the heap-based Turing machine in time and space* $O(|s| \cdot k^c)$.

Introduction	The calculus L	Simulating TMs	Simulating L with substitutions	Simulating L with a heap	Hybrid Interpreter
0 00000000	000	00	000000	00000	0000000

Theorem (Invariance thesis part II for time) *Turing machines can simulate L with a polynomially bounded overhead in time.*

SUB-LINEAR-LOGARITHMICLY SMALL TERMS

Let N := $(\lambda xy.x x)$ I, then $\underbrace{N(\dots(N \ I) \dots)}_{k \text{ times}}$ $\succ^{k} \underbrace{(\lambda y.I \ I)(\dots((\lambda y.I \ I) \ I) \dots)}_{k \text{ times}} I) \dots)$ $\succ^{2k} I$

Needs 3k entries (with addresses of size O(k)) on heap, but definition permits only O(k) space

COMPLEXITY OVERVIEW

 $s = s_0 \succ s_1 \succ \cdots \succ s_k$

for s_k with constant size:

	substitution-based	heap-based
time	$\mathcal{O}(\sum_i s_i ^2)$	$\mathcal{O}(\operatorname{poly}(\operatorname{Time}(s)))$
space	$\mathcal{O}(Space(s))$	$\mathcal{O}(s \cdot k^c)$

PROBLEM ANALYSIS

 $s = s_0 \succ \cdots \succ s_k$

Heap-based interpreter needs $O(|s| \cdot k^c)$ space on sublinar-logarithmically reducing terms (in *k* steps).

PROBLEM ANALYSIS

 $s = s_0 \succ \cdots \succ s_k$

Heap-based interpreter needs $O(|s| \cdot k^c)$ space on sublinar-logarithmically reducing terms (in *k* steps).

Substitution-based interpreter needs more than polynomial time on explosive terms where $|s_i|$ is asymptotically non-polynomial.

PROBLEM ANALYSIS

 $s = s_0 \succ \cdots \succ s_k$

Heap-based interpreter needs $O(|s| \cdot k^c)$ space on sublinar-logarithmically reducing terms (in *k* steps).

Substitution-based interpreter needs more than polynomial time on explosive terms where $|s_i|$ is asymptotically non-polynomial.

But: Heap-based interpreter works on explosive terms!

Hybrid interpreter

Input: A term *s*. Set k = 0.

Execute the substitution-based interpreter on *s* for *k* steps:

- ► If a normal form is reached, output it.
- ► If the space consumption is larger than |s| · k^c, abort and use the heap-based interpreter for k steps.
- ► If no normal form is reached, delete everything except s, set k := k + 1 and repeat.

TIME ANALYSIS

Running time for fixed *s* and *k*:

In total:

TIME ANALYSIS

Running time for fixed *s* and *k*:

heap-based interpreter: $|s| \cdot k^c$

In total:

TIME ANALYSIS

Running time for fixed *s* and *k*:

heap-based interpreter: $|s| \cdot k^c$

In total:

TIME ANALYSIS

Running time for fixed *s* and *k*:

unfolding the normal form: poly(|s|, Time(s)))

In total:

TIME ANALYSIS

Running time for fixed *s* and *k*:

unfolding the normal form: $poly(|s|, \mathsf{Time}(s)))$

$$\mathcal{O}(\underbrace{\text{poly}(|t|, \text{Time}(s))}_{\text{unfolding the normal form }t} + \sum_{k=0}^{\text{Time}(s)} \underbrace{|s| \cdot k^{c}}_{\text{heap-based}}$$

TIME ANALYSIS

Running time for fixed *s* and *k*:

substitution-based interpreter: $\mathcal{O}(\sum_{i=1}^{k} |s_i|^2)$

$$\mathcal{O}(\underbrace{\text{poly}(|t|, \text{Time}(s))}_{\text{unfolding the normal form }t} + \sum_{k=0}^{\text{Time}(s)} \underbrace{|s| \cdot k^{c}}_{\text{heap-based}}$$

TIME ANALYSIS

Running time for fixed *s* and *k*:

substitution-based interpreter: $\mathcal{O}(\sum_{i=1}^{k} |s_i|^2)$

TIME ANALYSIS

Running time for fixed *s* and *k*:

because of the space bound: $|s_i| \le |s| \cdot k^c$

TIME ANALYSIS

Running time for fixed *s* and *k*:

because of the space bound:
$$|s_i| \le |s| \cdot k^c$$

thus $\sum_{i=1}^k |s_i|^2 \le k \cdot |s|^2 \cdot k^{2c}$

TIME ANALYSIS

Running time for fixed *s* and *k*:

because of the space bound:
$$|s_i| \le |s| \cdot k^c$$

thus $\sum_{i=1}^k |s_i|^2 \le k \cdot |s|^2 \cdot k^{2c}$

TIME ANALYSIS

Simplified:

$$\subseteq \mathcal{O}(\operatorname{poly}(|s|,\operatorname{\mathsf{Time}}(s)) + \operatorname{\mathsf{Time}}(s)^{2c+2} \cdot |s|^2)$$

SPACE ANALYSIS

Space consumption for fixed *s* and *k*:

In total:

 $\mathcal{O}(\max_{k \leq \operatorname{Space}(s)})$

Space consumption for fixed *s* and *k*:

substitution-based interpreter: $\max_{i \in \{0,...,k\}} |s_i|$

In total:

 $\mathcal{O}(\max_{k \leq \mathsf{Space}(s)}$

Space consumption for fixed *s* and *k*:

substitution-based interpreter: $\max_{i \in \{0,...,k\}} |s_i| = \mathcal{O}(\text{Space}_k(s))$

$$\mathcal{O}(\max_{k \leq \operatorname{Space}(s)})$$

Space consumption for fixed *s* and *k*:

substitution-based interpreter: $\max_{i \in \{0,...,k\}} |s_i| = \mathcal{O}(\text{Space}_k(s))$

$$\mathcal{O}(\max_{k \leq \mathsf{Space}(s)} \mathsf{Space}_k(s) \hspace{1cm})$$

Space consumption for fixed *s* and *k*:

heap-based interpreter: $\mathcal{O}(|s| \cdot k^c)$

$$\mathcal{O}(\max_{k \leq \operatorname{Space}(s)} \operatorname{Space}_k(s) \hspace{1cm})$$

Space consumption for fixed *s* and *k*:

heap-based interpreter: $\mathcal{O}(|s| \cdot k^c)$

$$\mathcal{O}(\max_{k \leq \mathsf{Space}(s)} \mathsf{Space}_k(s) + |s| \cdot k^c)$$

SPACE ANALYSIS

Space consumption for fixed *s* and *k*:

because of the space bound: $\text{Space}_k(s) \ge |s| \cdot k^c$

In total:

$$\mathcal{O}(\max_{k \leq \mathsf{Space}(s)} \mathsf{Space}_k(s) + |s| \cdot k^c)$$

SPACE ANALYSIS

Space consumption for fixed *s* and *k*:

because of the space bound: $\text{Space}_k(s) \ge |s| \cdot k^c$

In total:

$$\mathcal{O}(\max_{k \leq \mathsf{Space}(s)} \mathsf{Space}_k(s) + \mathsf{Space}_k(s))$$

SPACE ANALYSIS

Simplified:

$$\mathcal{O}(\max_{k \leq \text{Space}(s)} \text{Space}_k(s) + \text{Space}_k(s))$$

 $\subseteq \mathcal{O}(\mathsf{Space}(s))$

Introduction	The calculus L	Simulating TMs	Simulating L with substitutions	Simulating L with a heap	Hybrid Interpreter
0 00000000	000	00	000000	00000	00000000

Theorem (Strong Invariance Thesis for L)

L and Turing Machines can simulate each other within a polynomially bounded overhead in time and a constant-factor overhead in space for decision functions with non-sublinear running time.

WORK IN PROGRESS: FORMALISATION

	spec	proof
Functional correctness of L-interpreters	1192	1390
L-extraction framework		610
TM-interpreter (no verified complexity analysis)		335

WORK IN PROGRESS: FORMALISATION

	spec	proof
Functional correctness of L-interpreters	1192	1390
L-extraction framework		610
TM-interpreter (no verified complexity analysis)		335

Missing:

- ► TM implementation and verification of L-interpreters
- ► Time and space analysis of L-interpreters
- Time and space analysis of TM-interpreter

SUMMARY

The weak call-by-value λ -calculus L is as reasonable for complexity theory as Turing machines.

SUMMARY

The weak call-by-value λ -calculus L is as reasonable for complexity theory as Turing machines.

Future work:

- Formalise the complexity analysis
- Complexity theory using L: NP, many-one-reductions, hierarchy theorems, ...

SUMMARY

The weak call-by-value λ -calculus L is as reasonable for complexity theory as Turing machines.

Future work:

- Formalise the complexity analysis
- Complexity theory using L: NP, many-one-reductions, hierarchy theorems, ...

Thanks!

THE HEAP-BASED INTERPRETER

Use environments on a heap to delay substitutions:

- ▶ call (thunk) c = s(E): pair of encoded L-term *s* and heap-address *E*
- ▶ heap *H*: list of entries (\perp or c#E'), addressed by position.
- ► call stack *CS*: list of tuples (@_L, *c*) or (@_R, *c*) (for @_R, *c* fully reduced)
- ▶ interpreter state: current call CC, CS and H.
- initial state: CC = s(0), CS = [] and $H = [\bot]$)

Example

The result of $(\lambda x.x) ((\lambda xy.xy) (\lambda x.x)) \succ (\lambda x.x) (\lambda x.xy)_{\lambda x.x}^{y}$ is represented by

 $CC = (\lambda @ \triangleright | \triangleright) \langle 1 \rangle$ $CS = [(@_{R}, (\lambda \triangleright) \langle 0 \rangle)]$ $H = [\bot, (\lambda \triangleright) \langle 0 \rangle) # 0]$

COMPUTER SCIENCE

THE HEAP-BASED INTERPRETER (2)

Each step of the interpreter depends on the current call $CC = s\langle E \rangle$:

- if $s = s_L s_R$: push (@_L, $s_R[E]$) on *CS* and set *CC* to $s_R \langle E \rangle$
- if s = x: get new CC by lookup of x in E
- if $s = \lambda s'$:
 - ▶ if *CS* is empty: the term is fully evaluated
 - ► if $CS = (@_L, c_R) :: CS'$: set $CC := c_R$ and put $(@_R, CC)$ on stack instead.
 - if $CS = (@_R, \lambda t \langle E' \rangle) :: CS'$: store $s_R \langle E \rangle \# E'$ on heap as \hat{E} and set $CC := t \langle \hat{E} \rangle$

THE HEAP-BASED INTERPRETER (2)

Each step of the interpreter depends on the current call $CC = s\langle E \rangle$:

- if $s = s_L s_R$: push (@_L, $s_R[E]$) on *CS* and set *CC* to $s_R \langle E \rangle$
- if s = x: get new CC by lookup of x in E
- if $s = \lambda s'$:
 - if *CS* is empty: the term is fully evaluated
 - ► if $CS = (@_L, c_R) :: CS'$: set $CC := c_R$ and put $(@_R, CC)$ on stack instead.
 - if $CS = (@_R, \lambda t \langle E' \rangle) :: CS'$: store $s_R \langle E \rangle \# E'$ on heap as \hat{E} and set $CC := t \langle \hat{E} \rangle$

Observations for evaluation $s_0 \succ s_1 \succ \cdots \succ s_k$:

- ▶ all calls contain subterms of *s*
- ► Heap contains #H = k + 1 elements, each of size $\leq |s| + 2 \cdot \log(\#$ H)
- CS & CC representing s_i have size $\mathcal{O}(|s_i|)$
- \Rightarrow space consumption: $\mathcal{O}((\max_i |s_i|) + k \cdot (|s| + \log(k)))$

THE HEAP-BASED INTERPRETER (2)

Each step of the interpreter depends on the current call $CC = s\langle E \rangle$:

- if $s = s_L s_R$: push (@_L, $s_R[E]$) on *CS* and set *CC* to $s_R \langle E \rangle$
- if s = x: get new CC by lookup of x in E
- if $s = \lambda s'$:
 - if *CS* is empty: the term is fully evaluated
 - if $CS = (@_L, c_R) :: CS'$: set $CC := c_R$ and put $(@_R, CC)$ on stack instead.
 - if $CS = (@_R, \lambda t \langle E' \rangle) :: CS'$: store $s_R \langle E \rangle \# E'$ on heap as \hat{E} and set $CC := t \langle \hat{E} \rangle$

Observations for evaluation $s_0 \succ s_1 \succ \cdots \succ s_k$:

- ▶ all calls contain subterms of *s*
- ► Heap contains #H = k + 1 elements, each of size $\leq |s| + 2 \cdot \log(\#$ H)
- CS & CC representing s_i have size $\mathcal{O}(|s_i|)$

 \Rightarrow space consumption: $\mathcal{O}((\max_i |s_i|) + k \cdot (|s| + \log(k)))$

- time per interpreter step: $\mathcal{O}(|s_i| \cdot \#H + CC + CS)$
- amortized, $poly(|s_0|)$ interpreter-steps per β -reduction.
- \Rightarrow time consumption: $\mathcal{O}(\text{poly}(k, |s_0|))$

LC: L WITH CLOSURES

$$\begin{array}{rcl} p,q,r & ::= & s[\sigma] & \mid & p \cdot q & (s \in \mathcal{L}, \sigma \in \operatorname{list} \mathcal{LC}) \\ & & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \end{array} \end{array} \\ \hline \\ \hline & &$$

