THE STRONG INVARIANCE THESIS
FOR A A\-CALCULUS
LOLA WORKSHOP 2017

Yannick Forster ! Fabian Kunze 12 Marc Roth 13

1SAARLAND UNIVERSITY
2MAX PLANCK INSTITUTE FOR INFORMATICS

3CLUSTER OF EXCELLENCE (MMCI)

SAARLAND gfEq
UNIVERSITY U

I —
COMPUTER SCIENCE

ulus L

Ici

The ca

oduction

Intr

Simulating L with a heap Hybrid Interpreter
00000 00000000

Simulating TMs ~ Simulating L with substitutions
00 00

TURING MACHINES

SAARLAND pffi
UNIVERSITY BG4
I
COMPUTER SCIENCE

2

Introduction The calculus L Simulating TMs = Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 0O@000000 000 00 000000 00000 00000000
:

TURING MACHINES (PROS)

» easy to imagine
> easy to explain

» de-facto the standard model of computation for
computation theory and complexity theory

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

Introduction The calculus L Simulating TMs = Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00®@00000 000 00 000000 00000 00000000
:

TURING MACHINES (CONS))

Notoriously hard to reason about (in a formally precise way):

» not compositional

v

tedious encodings

v

no nice abstractions for verification (e.g. no separation
logic)

v

Formalisation of Computability Theory is out of reach

v

Formalisation of Complexity Theory is even further away

SAARLAND
UNIVERSITY

I —
COMPUTER SCIENCE

Introduction The calculus L Simulating TMs = Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter
O 000®0000

000 00 000000 00000

00000000

EXEMPLARY RELATED WORK

E

E

Ugo Dal Lago and Simone Martini
The Weak Lambda Calculus as a Reasonable Machine
Theoretical Computer Science, 2008

Beniamino Accattoli and Ugo Dal Lago
(Leftmost-Outermost) Beta Reduction is Invariant, Indeed
Logical Methods in Computer Science, 2016

SAARLAND
UNIVERSITY

I —
COMPUTER SCIENCE

5

Introduction The calculus L Simulating TMs = Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter
O 000®0000

000 00 000000 00000

00000000

EXEMPLARY RELATED WORK

E

E

Ugo Dal Lago and Simone Martini
The Weak Lambda Calculus as a Reasonable Machine
Theoretical Computer Science, 2008

Beniamino Accattoli and Ugo Dal Lago
(Leftmost-Outermost) Beta Reduction is Invariant, Indeed
Logical Methods in Computer Science, 2016

Andrea Asperti and Wilmer Ricciotti
A formalization of multi-tape Turing machines
Theoretical Computer Science, 2015

SAARLAND
UNIVERSITY

I —
COMPUTER SCIENCE

5

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

O 0000e000 000 00 000000 00000 00000000
:

ANOTHER MODEL OF COMPUTATION

A certain flavour of A-calculus called L
» compositional
» straightforward encodings of data types
» equational reasoning for verification
» Formalisation for Computability theory

@ Yannick Forster and Gert Smolka
Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq
ITP 2017

» Reasonable with respect to time [Dal Lago, Martini (2008)]

» Reasonable with respect to space?

SAARLAND pfilq
UNIVERSITY U
I —
COMPUTER SCIENCE

6

Introduction The calculus L Simulating TMs = Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter
O 00000®00 00O 00 000000 00000 00000000
:

THE INVARIANCE THESIS

(Strong) Invariance Thesis

‘Reasonable’ machines can simulate each other within a polynomially
bounded overhead in time and a constant-factor overhead in space.

SAARLAND
UNIVERSITY
— —

[Slot, van Emde Boas (1998)] COMPUTER SCIENCE

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter
O O00000e00 [e]e]e] 00 000000 00000 00000000

THE INVARIANCE THESIS

(Strong) Invariance Thesis

‘Reasonable’ machines can simulate each other within a polynomially
bounded overhead in time and a constant-factor overhead in space.

Ensures consistency w.r.t classes closed under
poly-time/constant-space reductions.

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

[Slot, van Emde Boas (1998)]

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

CONTRIBUTION
» Simple time and space measures for L

v

substitution-based interpreter with constant-factor
overhead in space

» heap-based interpreter with polynomially bounded
overhead in time

v

hybrid interpreter fulfilling the strong invariance thesis

SAARLAND
UNIVERSITY U=l
I —

COMPUTER SCIENCE

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

O 0000000e 000 00 000000 00000 00000000
:

CONTRIBUTION

Theorem (Strong Invariance Thesis for L)

L and Turing Machines can simulate each other within a
polynomially bounded overhead in time and a constant-factor
overhead in space for decision functions with non-sublinear
running time.

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

Introduction The calculus L Simulating TMs Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 @00 00 000000 00000 00000000
:

L: WEAK CALL-BY-VALUE M\-CALCULUS

st u= x| \x.s | st
s=¢ t=t
(Ax.s)(Ay.t) = s[x := Ay.t] st = 't st = st’

» uniformly confluent (reductions to normal forms have the
same length)

» data represented by abstractions (Scott encoding)

SAARLAND pfEq
UNIVERSITY U=l
— —

[Dal Lago, Martini (2008)] COMPUTER SCIENCE "

» recursion using fixed-point combinator

Introduction The calculus L Simulating TMs ~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 (o] e} 00 000000 00000 00000000
:

TIME MEASURE

It
S=859) >8> "> 5

then
Time(s) :=k

i.e. the number of S-reduction steps

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
11

Introduction The calculus L Simulating TMs ~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 ooe 00 000000 00000 00000000
:

SPACE MEASURE

Space(s) := max _|[s|
{sils>=*si}

i.e. size of the largest intermediate term of the reduction for

|x| = de Bruijn index of x
st| =14 [s| + |t|
|IAx.s| =1+ |s]

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
12

Introduction The calculus .~ Simulating TMs ~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 00000000
:

DEFINITION OF TURING MACHINE

v

a finite type of states Q
a transition function 6 : Q x ! — Q x ¥"*! x {L,N, R}

a start states : Q

v

v

v

a halting function Q — B

Semantics: Loop ¢ until a halting state is reached.

SAARLAND

UNIVERSITY

I
[Asperti, Ricciotti (2015)], [Dal Lago, Martini (2008)] COMPUTER SCIENCE i,

Introduction The calculus .~ Simulating TMs ~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 [1] 000000 00000 00000000
:

DEFINITION OF TURING MACHINE

v

a finite type of states Q
a transition function § : Q x ¥ — Q x ¥"*! x {L,N,R}

a start states: Q

v

v

v

a halting function Q — B

Semantics: Loop ¢ until a halting state is reached.
Encode § and halting function using Scott encodings (linear
size, polynomial operations) and loop.

SAARLAND
UNIVERSITY
— —

[Asperti, Ricciotti (2015)], [Dal Lago, Martini (2008)] COMPUTER SCIENCE i

Introduction The calculus .~ Simulating TMs ~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 [1] 000000 00000 00000000
:

DEFINITION OF TURING MACHINE

v

a finite type of states Q
a transition function § : Q x ¥ — Q x ¥"*! x {L,N,R}

a start states: Q

v

v

v

a halting function Q — B

Semantics: Loop ¢ until a halting state is reached.
Encode § and halting function using Scott encodings (linear
size, polynomial operations) and loop.

In Coq:

Generation and verification of L-code from functional
specification is automatic with our framework.

ime- i i i- i SAARLAND

Time complex@y of the extract is semi-automatic. ~ pUNEAD
Space-complexity has to be done by hand. ——
[Asperti, Ricciotti (2015)], [Dal Lago, Martini (2008)] COMPUTER SCIENCE

13

Introduction The calculus .~ Simulating TMs ~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 oe 000000 00000 00000000
:

Theorem (Invariance thesis part I)

L can simulate Turing machines with a polynomially bounded
overhead in time and a constant-factor overhead in space.

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
14

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 900000 00000 00000000
:

EXAMPLE: EVALUATING BY SUBSTITUTION

LetI := \x.x:

(Axy.x x) I ((Axy.x x)II)

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
15

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 900000 00000 00000000
:

EXAMPLE: EVALUATING BY SUBSTITUTION

LetI := \x.x:

(Axy.x x) I (Axy.x x)IT) = (Ay.IT) ((Axy.x x)II)

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
15

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 900000 00000 00000000
:

EXAMPLE: EVALUATING BY SUBSTITUTION

LetI := \x.x:

(Axy.x x) I ((Axy.x x)IT)— (A1) ((Axy.x x)II)
= (AyIT) (A IDI)

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
15

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 900000 00000 00000000
:

EXAMPLE: EVALUATING BY SUBSTITUTION

LetI := \x.x:

(Axy.x x) I ((Axy.x x)IT)— (A1) ((Axy.x x)II)
> (\y.IT) (A IDD)
= (Ay.IT) (IT)

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
15

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 900000 00000 00000000
:

EXAMPLE: EVALUATING BY SUBSTITUTION

LetI := \x.x:
(Axy.x x) I ((Axy.x x)IT)— (A1) ((Axy.x x)II)
= Ay 1) (- IDT)
= Ay 1T) (1)
= (Ay.I DI
SAARLAND
UNIVERSITY

COMPUTER SCIENCE
15

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 900000 00000 00000000
:

EXAMPLE: EVALUATING BY SUBSTITUTION

LetI := \x.x:
(Axy.x x) I ((Axy.x x)IT)— (A1) ((Axy.x x)II)
= Ay 1) (- IDT)
= Ay 1T) (1)
= (\yID)I

=11
SAARLAND
UNIVERSITY

COMPUTER SCIENCE
15

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 900000 00000 00000000
:

EXAMPLE: EVALUATING BY SUBSTITUTION

LetI := \x.x:
(Axy.x x) I ((Axy.x x)IT)— (A1) ((Axy.x x)II)
= Ay 1) (- IDT)
= Ay 1T) (1)
= (\yID)I

=11

.|
SAARLAND
UNIVERSITY

COMPUTER SCIENCE
15

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions Simulating L with a heap Hybrid Interpreter
O 00000000 000 00 0®0000 00000 00000000
:

ENCODING TERMS

» terms: prefix notation with tokens @, \, > and |.

» Positions: strings with tokens @ , @y, A

Example

(Axy.xy) (Ax.x) = (AA10) (AO) is encoded by string @ \A@1> | > >
In this term, "1” occurs at position @ A\@,

SAARLAND pfq
UNIVERSITY U=l
I —
COMPUTER SCIENCE
16

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 [e]e] lele]e] 00000 00000000
:

SUBSTITUTION-BASED INTERPRETER

To compute s - s’ , use tapes pre, funct, arg, post, position:

) NS U
~— —~
pre funct arg post

1. Find the first 5-redex,

» copy to pre until @) is read

» copy next complete term to funct (and remember its position
on the position tape)

» if the next token is A, copy the next term to arg and
remaining tokens to post

» otherwise, move funct onto pre and start from beginning

2. copy funct to pre, replacing variable with arg

SAARLAND pfq

3. copy post to pre UNIVERSITY U

[Dal Lago, Martini (2008)] COMPUTER SCIENCI 1

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000e00 00000 00000000
:

COMPLEXITY ANALYSIS

Per step for s - s’
O(|s|*) time O(Js| + |s'|) space

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
18

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000e00 00000 00000000
:

COMPLEXITY ANALYSIS

Per step for s - s’
O(|s|*) time O(Js| + |s'|) space

In total fors = sy =51 = --- > Sk
O(Y; |si|*) time O(max; |si|) = O(Space(s)) space

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
18

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000080 00000 00000000
:

Theorem (Invariance thesis part II for space)

Turing machines can simulate L with a constant-factor overhead in
space.

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
19

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 00000e 00000 00000000
:

EXPLOSIVE TERMS

2 := A\xy.x (xy) can double the size of a term in one step:
2t = Ay.t(ty)
So, with I := A\x.x:

k times

normalizes in k L-steps, but needs Q(2) interpretation time

SAARLAND pf
UNIVERSITY U
I —
COMPUTER SCIENCE
20

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter

O 00000000 000 00 000000 90000 00000000
:

EXAMPLE: EVALUATING WITH A HEAP

2= Axy.x (xy)

20201

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
21

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter

O 00000000 000 00 000000 90000 00000000
:

EXAMPLE: EVALUATING WITH A HEAP

2= \xy.x (xy)

22D = 2(Ay.hy (hy))I hy =1

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
21

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter

O 00000000 000 00 000000 90000 00000000
:

EXAMPLE: EVALUATING WITH A HEAP

2= \xy.x (xy)

22D1= 2(Ay.Jiy (hyy))1 hy =1
= (Ay.ha(hay))1 hy =1L hy := (\y.hi(hy))

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
21

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter

O 00000000 000 00 000000 90000 00000000
:

EXAMPLE: EVALUATING WITH A HEAP

2= \xy.x (xy)

22D1= 2(Ay.Jiy (hyy))1 hy =1

- (/\yhz(hzy))l]’11 = I,hz = (/\yh1 (h1y))

-]’lz(hzhg,) hi = Lh:=)\yhl(hly),hg =1
SAARLAND
UNIVERSITY

COMPUTER SCIENCE
21

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter

O 00000000 000 00 000000 90000 00000000
:

EXAMPLE: EVALUATING WITH A HEAP

2= \xy.x (xy)

22D1= 2(Ay.Jiy (hyy))1 hy =1

- (/\yhz(hzy))l]’11 = I,hz = ()\yhl (l’l1y))
- hz(hzhg,) h1 = I,hz =)\yh1(l’11}/)]’13 =1
= ha((Ay-n (lay))1)
SAARLAND
UNIVERSITY

COMPUTER SCIENCE
21

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter

O 00000000 000 00 000000 90000 00000000
:

EXAMPLE: EVALUATING WITH A HEAP

2= \xy.x (xy)

22D1= 2(Ay.Jiy (hyy))1 hy =1
- (/\yhz(hzy))l]’11 = I,]/Zz = ()\yhl (h1y))

- h2<h2h3) h1 = I,hz =)\yh1(l’11y)]’l3 =1
=2 ha(Ay.h1 (hy))T)
- hz(h1(h1h4)) ce ,h4 =1
SAARLAND
UNIVERSITY

COMPUTER SCIENCE
21

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter

O 00000000 000 00 000000 90000 00000000
:

EXAMPLE: EVALUATING WITH A HEAP

2= \xy.x (xy)

22D1= 2(Ay.Jiy (hyy))1 hy =1
- (/\yhz(hzy))l]’11 = I,hz = ()\y]’ll (h1y))

> hy(hahs) hy :=1hy == \y.hy(hy), bz :=1
=2 ho((A\y.hy (yy))T)
> Ny (hy(hyhg)) oy =1
=2 hy(hy (I1))
SAARLAND

COMPUTER SCIENCE
21

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter

O 00000000 000 00 000000 90000 00000000
:

EXAMPLE: EVALUATING WITH A HEAP

2= \xy.x (xy)

22D1= 2(Ay.Jiy (hyy))1 hy =1
- (/\yhz(hzy))l]’11 = I,hz = ()\y]’ll (h1y))

> hy(hahs) hy :=1hy == \y.hy(hy), bz :=1
=2 ho((A\y.hy (yy))T)
> Ny (hy(hyhg)) oy =1
=2 ha(hy (10))
=5 ol oo hs =L hg =1
SAARLAND

COMPUTER SCIENCE
21

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter

O 00000000 000 00 000000 90000 00000000
:

EXAMPLE: EVALUATING WITH A HEAP

2= \xy.x (xy)

22D1= 2(Ay.Jiy (hyy))1 hy =1
= (Ay.hp(hoy))I hy =1, hy := (A\y.h1(y))

> hy(hahs) hy :=1hy == \y.hy(hy), bz :=1
=2 ho(\y.hy (hiy))T)

> Ny (hy(hyhg)) oy =1

=2 ha(hy (10))

=2 Il coohs =L hg =1

> hy(hihy)

COMPUTER SCIENCE
21

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter

O 00000000 000 00 000000 90000 00000000
:

EXAMPLE: EVALUATING WITH A HEAP

2= \xy.x (xy)

22D1= 2(Ay.Jiy (hyy))1 hy =1
= (Ay.hp(hoy))I hy =1, hy := (A\y.h1(y))

> hy(hahs) hy :=1hy == \y.hy(hy), bz :=1
=% ha(Ay-h (lay))T)

> Ny (hy(hyhg)) oy =1

=2 ha(hy (10))

=5 ol o hs =L hg =1

> hy(hihy)

=1

COMPUTER SCIENCE
21

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter

O 00000000 000 00 000000 00000 00000000
:

HEAP-BASED INTERPRETER

S:SO>_...SZ.>_...>_Sk

Tapes: main (contains s;), heap, hc (heap counter)
Invariant: size of heap is always polynomial in k and |s|.

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
22

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter
O 00000000 [e]e]e] 00 000000 00000 00000000
:

HEAP-BASED INTERPRETER

S:SO>_-..Si>_...>_Sk

Tapes: main (contains s;), heap, hc (heap counter)
Invariant: size of heap is always polynomial in k and |s|.

» For beta-reduction of (Ax.t;)t: Copy t, to heap, replace x
in t; with address

SAARLAND pfq
UNIVERSITY U=l
I —
COMPUTER SCIENCE
22

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter
O 00000000 [e]e]e] 00 000000 00000 00000000
:

HEAP-BASED INTERPRETER

S:SO>_-..Si>_...>_Sk

Tapes: main (contains s;), heap, hc (heap counter)
Invariant: size of heap is always polynomial in k and |s|.

» For beta-reduction of (Ax.t;)t: Copy t, to heap, replace x
in t; with address (linear in the heap, O(|t;|) many copies
of an address linear in the heap)

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
22

Introduction The calculus .~ Simulating TMs = Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 [e] le]e]e} 00000000
:

HEAP-BASED INTERPRETER

S:SO>_-..Si>_...>_Sk

Tapes: main (contains s;), heap, hc (heap counter)
Invariant: size of heap is always polynomial in k and |s|.

» For beta-reduction of (Ax.t1)ty: Copy t; to heap, replace x
in t; with address (linear in the heap, O(|t;|) many copies
of an address linear in the heap)

» For variable-unfolding of x: Find the element associated to
x in the heap

SAARLAND pfiEq
UNIVERSITY G4
I
COMPUTER SCIENCE
22

Introduction The calculus .~ Simulating TMs = Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 [e] le]e]e} 00000000
:

HEAP-BASED INTERPRETER

S:SO>_-..Si>_...>_Sk

Tapes: main (contains s;), heap, hc (heap counter)
Invariant: size of heap is always polynomial in k and |s|.

» For beta-reduction of (Ax.t1)ty: Copy t; to heap, replace x
in t; with address (linear in the heap, O(|t;|) many copies
of an address linear in the heap)

» For variable-unfolding of x: Find the element associated to
x in the heap (linear in the heap)

SAARLAND pfq
UNIVERSITY U
I —
COMPUTER SCIENCE
22

Introduction The calculus .~ Simulating TMs = Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter
O 00000000 [e]e]e] 00 000000 00000 00000000

HEAP-BASED INTERPRETER

S:SO>_-.SZ>_..>_Sk

Tapes: main (contains s;), heap, hc (heap counter)
Invariant: size of heap is always polynomial in k and |s|.

» For beta-reduction of (Ax.t1)ty: Copy t; to heap, replace x
in t; with address (linear in the heap, O(|t;|) many copies
of an address linear in the heap)

» For variable-unfolding of x: Find the element associated to
x in the heap (linear in the heap)

A bit more complicated for de-Bruijn, but doable. ~ AARLAND ¢

I —
COMPUTER SCIENCE
22

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter

O 00000000 000 00 000000 00e00 00000000
:

COMPLEXITY ANALYSIS

Theorem

There is a constant ¢ such that any reduction s = sy > -+ > spin L
can be simulated by the heap-based Turing machine in time and space
O(ls| - k).

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
23

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter

O 00000000 000 00 000000 000e0 00000000
:

Theorem (Invariance thesis part II for time)

Turing machines can simulate L with a polynomially bounded
overhead in time.

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
24

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions ~Simulating L with aheap Hybrid Interpreter
O 00000000 [e]e]e] 00 000000 0000e 00000000
:

SUB-LINEAR-LOGARITHMICLY SMALL TERMS

Let N := (Axy.xx) I, then

k times

= O ID) (- (A ID) T)

~~

k times

=2k 1

Needs 3k entries (with addresses of size O(k)) on heap, but
definition permits only O(k) space

o
=

SAARLAND gB
UNIVERSITY UGl

I —
COMPUTER SCIENCE
25

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 90000000
:

COMPLEXITY OVERVIEW

S=8y >8]~ -+ > S

for s; with constant size:

| substitution-based | heap-based

time | O(%, s | O(poly(Time(s)))
space O(Space(s)) O(ls| - k)
SAARLAND
UNIVERSITY

COMPUTER SCIENCE
26

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 0@000000
:

PROBLEM ANALYSIS

S=28) > - = Sk

Heap-based interpreter needs O(|s| - k°) space on
sublinar-logarithmically reducing terms (in k steps).

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
27

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 O®000000
:

PROBLEM ANALYSIS

S=150 > -+ > Sk

Heap-based interpreter needs O(|s| - k°) space on
sublinar-logarithmically reducing terms (in k steps).

Substitution-based interpreter needs more than polynomial
time on explosive terms where |s;| is asymptotically
non-polynomial.

SAARLAND
UNIVERSITY U=l
I —
COMPUTER SCIENCE
27

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 O®000000
:

PROBLEM ANALYSIS

S=150 > -+ > Sk

Heap-based interpreter needs O(|s| - k°) space on
sublinar-logarithmically reducing terms (in k steps).

Substitution-based interpreter needs more than polynomial
time on explosive terms where |s;| is asymptotically
non-polynomial.

But: Heap-based interpreter works on explosive terms!

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
27

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 00@00000
:

HYBRID INTERPRETER

Input: A term s. Setk = 0.
Execute the substitution-based interpreter on s for k steps:

» If a normal form is reached, output it.

» If the space consumption is larger than |s| - k, abort and
use the heap-based interpreter for k steps.

» If no normal form is reached, delete everything excepts,
set k :== k + 1 and repeat.

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
28

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 000@0000
:

TIME ANALYSIS

Running time for fixed s and k:

In total:

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
29

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 000@0000
:

TIME ANALYSIS

Running time for fixed s and k:

heap-based interpreter: |s| - k

In total:

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
29

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 000@0000
:

TIME ANALYSIS

Running time for fixed s and k:

heap-based interpreter: |s| - k

In total:

Time(s)

O(Yo bk)

k=0
~ heap-based

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
29

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 000@0000
:

TIME ANALYSIS

Running time for fixed s and k:

unfolding the normal form: poly(|s|, Time(s)))

In total:

Time(s)

O()ERS)

k=0
~ heap-based

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
29

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 000@0000
:

TIME ANALYSIS

Running time for fixed s and k:

unfolding the normal form: poly(|s|, Time(s)))

In total:
Time(s
O(poly(|t|, Time(s)) + Z)
unfolding the normal form ¢ k=0 htap -based

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
29

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000

000 00 000000 00000

O00@0000

TIME ANALYSIS

Running time for fixed s and k:

substitution-based interpreter: O(Z;‘:l Isi%)

In total:
Time(s)
O(poly(|t|, Time(s)) + Y.
unfolding the normal form ¢ k=0 heap -based

SAARLAND
UNIVERSITY
— —

COMPUTER SCIENCE

29

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000

000 00 000000 00000

O00@0000

TIME ANALYSIS

Running time for fixed s and k:

substitution-based interpreter: O(Z;‘:l Isi%)

In total:

Time(s

O(poly(|t|, Time(s)) + Z

unfolding the normal form ¢ k=0 heap -based

K

0 2

Ko+) il
i—1

)

substitution-based

SAARLAND
UNIVERSITY
— —

COMPUTER SCIENCE

29

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 000@0000
:

TIME ANALYSIS

Running time for fixed s and k:

because of the space bound: |s;| < [s] - k°

In total:
Time(s k
2
O(poly(|t|, Time(s)) -+ Z Slsi*)
unfolding the normal form ¢ k=0 heap -based =l

substitution-based

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
29

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 000@0000
:

TIME ANALYSIS

Running time for fixed s and k:

because of the space bound: [s;| < |s| - k°
thus Y5, [sif* < k- s - K¢

In total:
Time(s k
O(poly(|t|, Time(s)) + Z kC + > s)
unfolding the normal form t =0 heap based =l

substitution-based

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
29

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 000@0000
:

TIME ANALYSIS

Running time for fixed s and k:

because of the space bound: [s;| < |s]| - k°
thus S5, |sif* < k- [s]” - K%

In total:
Time(s
O(poly(|t|, Time(s)) + k‘ + k-ls|-k*
(poly([t], Z Is|)

kOhe

unfolding the normal form ¢ ap-based substitution-based

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
29

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 000@0000
:

TIME ANALYSIS

Simplified:
Time(s
O(poly(|t|, Time(s)) + Z kf + k-ls|-K*)
~——
unfolding the normal form ¢ k=0 heap -based substitution-based

C O(poly([s|, Time(s)) + Time(s)>*2 - |s[?)

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
29

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 0000000
:

SPACE ANALYSIS

Space consumption for fixed s and k:

In total:

O(max)
k<Space(s)

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
30

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 0000000
:

SPACE ANALYSIS

Space consumption for fixed s and k:

substitution-based interpreter: max;co, . i} [sil

In total:

O(max)
k<Space(s)

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
30

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 0000000
:

SPACE ANALYSIS

Space consumption for fixed s and k:

substitution-based interpreter: max;cyo, . i} |si| = O(Spacey(s))

In total:

O(max)
k<Space(s)

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
30

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 0000000
:

SPACE ANALYSIS

Space consumption for fixed s and k:

substitution-based interpreter: max;cyo, . i} |si| = O(Spacey(s))

In total:

o Sgggg;(s)Spacek(S))

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
30

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 0000000
:

SPACE ANALYSIS

Space consumption for fixed s and k:

heap-based interpreter: O(]s| - k°)

In total:

o Sg;gg;(s)spacek(S))

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
30

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 0000000
:

SPACE ANALYSIS

Space consumption for fixed s and k:

heap-based interpreter: O(]s| - k°)

In total:

O(kggsgé(s)Spacek(s)Jr Is| - k%)

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
30

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 0000000
:

SPACE ANALYSIS

Space consumption for fixed s and k:

because of the space bound: Space(s) > |s| - k°

In total:

O(kggsgé(s)Spacek(s)Jr Is| - k%)

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
30

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 0000000
:

SPACE ANALYSIS

Space consumption for fixed s and k:

because of the space bound: Space(s) > |s| - k°

In total:

(’)(kS é%?éé (S)Spacek(s)JrSpacek(s))

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
30

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 0000000
:

SPACE ANALYSIS

Simplified:

O(kgég;‘é(S)Spacek(S)+Spacek(s))

C O(Space(s))

SAARLAND
UNIVERSITY G
I —
COMPUTER SCIENCE
30

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 00000800
:

Theorem (Strong Invariance Thesis for L)

L and Turing Machines can simulate each other within a
polynomially bounded overhead in time and a constant-factor
overhead in space for decision functions with non-sublinear running
time.

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
31

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

WORK IN PROGRESS: FORMALISATION
spec | proof
Functional correctness of L-interpreters 1192 | 1390
L-extraction framework 1316 610
TM-interpreter (no verified complexity analysis) | 388 335
SAARLAND
UNIVERSITY

COMPUTER SCIENCE
32

Introduction The calculus . Simulating TMs ~ Simulating L with substitutions =~ Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 00000000
: :

WORK IN PROGRESS: FORMALISATION

spec | proof
Functional correctness of L-interpreters 1192 | 1390
L-extraction framework 1316 610
TM-interpreter (no verified complexity analysis) | 388 335

Missing:
» TM implementation and verification of L-interpreters
» Time and space analysis of L-interpreters

» Time and space analysis of TM-interpreter

SAARLAND pfq
UNIVERSITY U=l
I —
COMPUTER SCIENCE
32

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 O000000e
:

SUMMARY

The weak call-by-value A-calculus L is as reasonable
for complexity theory as Turing machines.

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
33

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 0O000000e
:

SUMMARY

The weak call-by-value A-calculus L is as reasonable
for complexity theory as Turing machines.

Future work:
» Formalise the complexity analysis

» Complexity theory using L: NP, many-one-reductions,
hierarchy theorems, ...

SAARLAND
UNIVERSITY
I —
COMPUTER SCIENCE
33

Introduction The calculus L Simulating TMs =~ Simulating L with substitutions ~Simulating L with a heap Hybrid Interpreter

O 00000000 000 00 000000 00000 0O000000e
:

SUMMARY

The weak call-by-value A-calculus L is as reasonable
for complexity theory as Turing machines.

Future work:
» Formalise the complexity analysis

» Complexity theory using L: NP, many-one-reductions,
hierarchy theorems, ...

Thanks! SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
33

THE HEAP-BASED INTERPRETER

Use environments on a heap to delay substitutions:
» call (thunk) ¢ = s(E): pair of encoded L-term s and heap-address E
> heap H: list of entries (L or c#E’), addressed by position.
call stack CS: list of tuples (@, c) or (@, ¢) (for @, c fully reduced)
interpreter state: current call CC, CS and H.
initial state: CC = s(0), CS = [and H = [1])

v

v

v

Example
The result of (Ax.x) ((Axy.xy) (Ax.x)) = (Ax.x) (Ax.xy)’, is represented by

CC=(r@> [>)(1)
CS =[(@r, (\>){0))]

H =[1, (A\>)(0))#0] SAARLAND
UNIVERSITY
I
COMPUTER SCIENCE
34

THE HEAP-BASED INTERPRETER (2)

Each step of the interpreter depends on the current call CC = s(E):
» if s = s; sg: push (@, sg[E]) on CS and set CC to sg(E)
» if s = x: get new CC by lookup of x in E
> ifs=\s":
» if CS is empty: the term is fully evaluated
» if CS = (@, cR) :: CS": set CC := cg and put (@, CC) on
stack instead.
» if CS = (@g, M(E)) :: CS': store sg(E)#E’ on heap as E and
set CC := t(E)

SAARLAND

UNIVERSITY

I —

COMPUTER SCIENCE
35

THE HEAP-BASED INTERPRETER (2)

Each step of the interpreter depends on the current call CC = s(E):
» if s = s; sg: push (@, sg[E]) on CS and set CC to sg(E)
» if s = x: get new CC by lookup of x in E
> ifs=\s":
» if CS is empty: the term is fully evaluated
» if CS = (@, cR) :: CS": set CC := cg and put (@, CC) on
stack instead.
» if CS = (@g, M(E)) :: CS': store sg(E)#E’ on heap as E and
set CC := t(E)
Observations for evaluation sg > s1 > - - > sk
» all calls contain subterms of s
» Heap contains #H = k + 1 elements, each of size < |s| + 2 - log(#H)
> CS & CC representing s; have size O(si|)

= space consumption: O((max; |s;|) + k - (|s| + log(k))) SAARLAND g
UNIVERSITY L
I —
COMPUTER SCIENCE

35

THE HEAP-BASED INTERPRETER (2)

Each step of the interpreter depends on the current call CC = s(E):
» if s = s; sg: push (@, sg[E]) on CS and set CC to sg(E)
» if s = x: get new CC by lookup of x in E
> ifs=\s":
» if CS is empty: the term is fully evaluated
» if CS = (@, cR) :: CS": set CC := cg and put (@, CC) on
stack instead.
» if CS = (@g, M(E)) :: CS': store sg(E)#E’ on heap as E and
set CC := t(E)
Observations for evaluation sg > s1 > - - > sk
» all calls contain subterms of s
» Heap contains #H = k + 1 elements, each of size < |s| + 2 - log(#H)
> CS & CC representing s; have size O(si|)

= space consumption: O((max; |s;|) + k - (|s| + log(k))) SAARLAND p
E

> time per interpreter step: O(|s;| - #H + CC + CS) UNIVERSITY B3

» amortized, poly(|so|) interpreter-steps per S-reduction. COMPUTER SCIENCE

= time consumption: @ (polv(k. lsa)) 35

ooe

LC: L WITH CLOSURES

p,q,7 == slo] | pq (s€L,o¢€list LC)
——— VAR
z[o] %o z-thy o As[o]-At[T] > s[At[7]::0] P
o7 o q
———— ApP pL—Cp, AppL Lq, ApPPR
stlo] . slo]tlo] PqgcPq D'q e P
SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE
36

	Introduction
	

	The calculus L
	

	Simulating TMs
	

	Simulating L, substitution-based
	

	Simulating L, heap-based
	

	Hybrid Interpreter
	
	Summary

	Appendix

