
THE STRONG INVARIANCE THESIS

FOR A λ-CALCULUS
LOLA WORKSHOP 2017

Yannick Forster 1 Fabian Kunze 1,2 Marc Roth 1,3

1SAARLAND UNIVERSITY

2MAX PLANCK INSTITUTE FOR INFORMATICS

3CLUSTER OF EXCELLENCE (MMCI)

computer science

saarland
university

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TURING MACHINES

computer science

saarland
university

2

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TURING MACHINES (PROS)

computer science

saarland
university

I easy to imagine
I easy to explain
I de-facto the standard model of computation for

computation theory and complexity theory

3

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TURING MACHINES (CONS)

computer science

saarland
university

Notoriously hard to reason about (in a formally precise way):
I not compositional
I tedious encodings
I no nice abstractions for verification (e.g. no separation

logic)
I Formalisation of Computability Theory is out of reach
I Formalisation of Complexity Theory is even further away

4

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXEMPLARY RELATED WORK

computer science

saarland
university

Ugo Dal Lago and Simone Martini
The Weak Lambda Calculus as a Reasonable Machine
Theoretical Computer Science, 2008

Beniamino Accattoli and Ugo Dal Lago
(Leftmost-Outermost) Beta Reduction is Invariant, Indeed
Logical Methods in Computer Science, 2016

Andrea Asperti and Wilmer Ricciotti
A formalization of multi-tape Turing machines
Theoretical Computer Science, 2015

5

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXEMPLARY RELATED WORK

computer science

saarland
university

Ugo Dal Lago and Simone Martini
The Weak Lambda Calculus as a Reasonable Machine
Theoretical Computer Science, 2008

Beniamino Accattoli and Ugo Dal Lago
(Leftmost-Outermost) Beta Reduction is Invariant, Indeed
Logical Methods in Computer Science, 2016

Andrea Asperti and Wilmer Ricciotti
A formalization of multi-tape Turing machines
Theoretical Computer Science, 2015

5

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

ANOTHER MODEL OF COMPUTATION

computer science

saarland
university

A certain flavour of λ-calculus called L
I compositional
I straightforward encodings of data types
I equational reasoning for verification
I Formalisation for Computability theory

Yannick Forster and Gert Smolka
Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq
ITP 2017

I Reasonable with respect to time [Dal Lago, Martini (2008)]
I Reasonable with respect to space?

6

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

THE INVARIANCE THESIS

computer science

saarland
university

(Strong) Invariance Thesis
‘Reasonable’ machines can simulate each other within a polynomially
bounded overhead in time and a constant-factor overhead in space.

Ensures consistency w.r.t classes closed under
poly-time/constant-space reductions.

7
[Slot, van Emde Boas (1998)]

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

THE INVARIANCE THESIS

computer science

saarland
university

(Strong) Invariance Thesis
‘Reasonable’ machines can simulate each other within a polynomially
bounded overhead in time and a constant-factor overhead in space.

Ensures consistency w.r.t classes closed under
poly-time/constant-space reductions.

7
[Slot, van Emde Boas (1998)]

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

CONTRIBUTION

computer science

saarland
university

I Simple time and space measures for L
I substitution-based interpreter with constant-factor

overhead in space
I heap-based interpreter with polynomially bounded

overhead in time
I hybrid interpreter fulfilling the strong invariance thesis

8

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

CONTRIBUTION

computer science

saarland
university

Theorem (Strong Invariance Thesis for L)
L and Turing Machines can simulate each other within a
polynomially bounded overhead in time and a constant-factor
overhead in space for decision functions with non-sublinear
running time.

9

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

L: WEAK CALL-BY-VALUE λ-CALCULUS

computer science

saarland
university

s, t ::= x | λx.s | s t

(λx.s)(λy.t) � s[x := λy.t]
s � s′

st � s′t
t � t′

st � st′

I uniformly confluent (reductions to normal forms have the
same length)

I data represented by abstractions (Scott encoding)
I recursion using fixed-point combinator

10
[Dal Lago, Martini (2008)]

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TIME MEASURE

computer science

saarland
university

If
s = s0 � s1 � · · · � sk

then
Time(s) := k

i.e. the number of β-reduction steps

11

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SPACE MEASURE

computer science

saarland
university

Space(s) := max
{si|s�∗si}

|si|

i.e. size of the largest intermediate term of the reduction for

|x| = de Bruijn index of x
|st| = 1 + |s|+ |t|

|λx.s| = 1 + |s|

12

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

DEFINITION OF TURING MACHINE

computer science

saarland
university

I a finite type of states Q
I a transition function δ : Q× Σn+1 → Q× Σn+1 × {L,N,R}
I a start state s : Q
I a halting function Q→ B

Semantics: Loop δ until a halting state is reached.

Encode δ and halting function using Scott encodings (linear
size, polynomial operations) and loop.

In Coq:
Generation and verification of L-code from functional
specification is automatic with our framework.
Time-complexity of the extract is semi-automatic.
Space-complexity has to be done by hand.

13
[Asperti, Ricciotti (2015)], [Dal Lago, Martini (2008)]

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

DEFINITION OF TURING MACHINE

computer science

saarland
university

I a finite type of states Q
I a transition function δ : Q× Σn+1 → Q× Σn+1 × {L,N,R}
I a start state s : Q
I a halting function Q→ B

Semantics: Loop δ until a halting state is reached.
Encode δ and halting function using Scott encodings (linear
size, polynomial operations) and loop.

In Coq:
Generation and verification of L-code from functional
specification is automatic with our framework.
Time-complexity of the extract is semi-automatic.
Space-complexity has to be done by hand.

13
[Asperti, Ricciotti (2015)], [Dal Lago, Martini (2008)]

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

DEFINITION OF TURING MACHINE

computer science

saarland
university

I a finite type of states Q
I a transition function δ : Q× Σn+1 → Q× Σn+1 × {L,N,R}
I a start state s : Q
I a halting function Q→ B

Semantics: Loop δ until a halting state is reached.
Encode δ and halting function using Scott encodings (linear
size, polynomial operations) and loop.

In Coq:
Generation and verification of L-code from functional
specification is automatic with our framework.
Time-complexity of the extract is semi-automatic.
Space-complexity has to be done by hand.

13
[Asperti, Ricciotti (2015)], [Dal Lago, Martini (2008)]

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

computer science

saarland
university

Theorem (Invariance thesis part I)
L can simulate Turing machines with a polynomially bounded
overhead in time and a constant-factor overhead in space.

14

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING BY SUBSTITUTION

computer science

saarland
university

Let I := λx.x:

(λxy.x x) I ((λxy.x x)II)

15

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING BY SUBSTITUTION

computer science

saarland
university

Let I := λx.x:

(λxy.x x) I ((λxy.x x)II)� (λy.I I) ((λxy.x x)II)

15

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING BY SUBSTITUTION

computer science

saarland
university

Let I := λx.x:

(λxy.x x) I ((λxy.x x)II)� (λy.I I) ((λxy.x x)II)
� (λy.I I) ((λy.II)I)

15

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING BY SUBSTITUTION

computer science

saarland
university

Let I := λx.x:

(λxy.x x) I ((λxy.x x)II)� (λy.I I) ((λxy.x x)II)
� (λy.I I) ((λy.II)I)
� (λy.I I) (I I)

15

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING BY SUBSTITUTION

computer science

saarland
university

Let I := λx.x:

(λxy.x x) I ((λxy.x x)II)� (λy.I I) ((λxy.x x)II)
� (λy.I I) ((λy.II)I)
� (λy.I I) (I I)
� (λy.I I)I

15

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING BY SUBSTITUTION

computer science

saarland
university

Let I := λx.x:

(λxy.x x) I ((λxy.x x)II)� (λy.I I) ((λxy.x x)II)
� (λy.I I) ((λy.II)I)
� (λy.I I) (I I)
� (λy.I I)I
� I I

15

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING BY SUBSTITUTION

computer science

saarland
university

Let I := λx.x:

(λxy.x x) I ((λxy.x x)II)� (λy.I I) ((λxy.x x)II)
� (λy.I I) ((λy.II)I)
� (λy.I I) (I I)
� (λy.I I)I
� I I
� I

15

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

ENCODING TERMS

computer science

saarland
university

I terms: prefix notation with tokens @, λ, . and |.
I Positions: strings with tokens @L,@R, λ

Example
(λxy.x y) (λx.x) ≈ (λλ10) (λ0) is encoded by string @λλ@. |.λ..
In this term, ’1’ occurs at position @Lλλ@L

16

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SUBSTITUTION-BASED INTERPRETER

computer science

saarland
university

To compute s � s′ , use tapes pre, funct, arg, post, position:

· · ·︸︷︷︸
pre

@λ · · ·︸︷︷︸
funct

λ · · ·︸︷︷︸
arg

· · ·︸︷︷︸
post

1. Find the first β-redex,
I copy to pre until @λ is read
I copy next complete term to funct (and remember its position

on the position tape)
I if the next token is λ, copy the next term to arg and

remaining tokens to post
I otherwise, move funct onto pre and start from beginning

2. copy funct to pre, replacing variable with arg
3. copy post to pre

17
[Dal Lago, Martini (2008)]

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

COMPLEXITY ANALYSIS

computer science

saarland
university

Per step for s � s′:
O(|s|2) time O(|s|+ |s′|) space

In total for s = s0 � s1 � · · · � sk:
O(

∑
i |si|2) time O(maxi |si|) = O(Space(s)) space

18

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

COMPLEXITY ANALYSIS

computer science

saarland
university

Per step for s � s′:
O(|s|2) time O(|s|+ |s′|) space

In total for s = s0 � s1 � · · · � sk:
O(

∑
i |si|2) time O(maxi |si|) = O(Space(s)) space

18

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

computer science

saarland
university

Theorem (Invariance thesis part II for space)
Turing machines can simulate L with a constant-factor overhead in
space.

19

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXPLOSIVE TERMS

computer science

saarland
university

2 := λxy.x (x y) can double the size of a term in one step:

2 t � λy.t (t y)

So, with I := λx.x:
2 (2 (· · · (2︸ ︷︷ ︸

k times

I) . . .)

normalizes in k L-steps, but needs Ω(2k) interpretation time

20

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING WITH A HEAP

computer science

saarland
university

2 := λxy.x (x y)

2(2I)I

21

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING WITH A HEAP

computer science

saarland
university

2 := λxy.x (x y)

2(2I)I� 2(λy.h1(h1y))I h1 := I

21

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING WITH A HEAP

computer science

saarland
university

2 := λxy.x (x y)

2(2I)I� 2(λy.h1(h1y))I h1 := I
� (λy.h2(h2y))I h1 := I, h2 := (λy.h1(h1y))

21

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING WITH A HEAP

computer science

saarland
university

2 := λxy.x (x y)

2(2I)I� 2(λy.h1(h1y))I h1 := I
� (λy.h2(h2y))I h1 := I, h2 := (λy.h1(h1y))

� h2(h2h3) h1 := I, h2 := λy.h1(h1y), h3 := I

21

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING WITH A HEAP

computer science

saarland
university

2 := λxy.x (x y)

2(2I)I� 2(λy.h1(h1y))I h1 := I
� (λy.h2(h2y))I h1 := I, h2 := (λy.h1(h1y))

� h2(h2h3) h1 := I, h2 := λy.h1(h1y), h3 := I

�2 h2((λy.h1(h1y))I)

21

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING WITH A HEAP

computer science

saarland
university

2 := λxy.x (x y)

2(2I)I� 2(λy.h1(h1y))I h1 := I
� (λy.h2(h2y))I h1 := I, h2 := (λy.h1(h1y))

� h2(h2h3) h1 := I, h2 := λy.h1(h1y), h3 := I

�2 h2((λy.h1(h1y))I)
� h2(h1(h1h4)) . . . , h4 := I

21

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING WITH A HEAP

computer science

saarland
university

2 := λxy.x (x y)

2(2I)I� 2(λy.h1(h1y))I h1 := I
� (λy.h2(h2y))I h1 := I, h2 := (λy.h1(h1y))

� h2(h2h3) h1 := I, h2 := λy.h1(h1y), h3 := I

�2 h2((λy.h1(h1y))I)
� h2(h1(h1h4)) . . . , h4 := I

�2 h2(h1(II))

21

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING WITH A HEAP

computer science

saarland
university

2 := λxy.x (x y)

2(2I)I� 2(λy.h1(h1y))I h1 := I
� (λy.h2(h2y))I h1 := I, h2 := (λy.h1(h1y))

� h2(h2h3) h1 := I, h2 := λy.h1(h1y), h3 := I

�2 h2((λy.h1(h1y))I)
� h2(h1(h1h4)) . . . , h4 := I

�2 h2(h1(II))

�5 h2I . . . , h5 := I, h6 := I

21

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING WITH A HEAP

computer science

saarland
university

2 := λxy.x (x y)

2(2I)I� 2(λy.h1(h1y))I h1 := I
� (λy.h2(h2y))I h1 := I, h2 := (λy.h1(h1y))

� h2(h2h3) h1 := I, h2 := λy.h1(h1y), h3 := I

�2 h2((λy.h1(h1y))I)
� h2(h1(h1h4)) . . . , h4 := I

�2 h2(h1(II))

�5 h2I . . . , h5 := I, h6 := I
� h1(h1h7)

21

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

EXAMPLE: EVALUATING WITH A HEAP

computer science

saarland
university

2 := λxy.x (x y)

2(2I)I� 2(λy.h1(h1y))I h1 := I
� (λy.h2(h2y))I h1 := I, h2 := (λy.h1(h1y))

� h2(h2h3) h1 := I, h2 := λy.h1(h1y), h3 := I

�2 h2((λy.h1(h1y))I)
� h2(h1(h1h4)) . . . , h4 := I

�2 h2(h1(II))

�5 h2I . . . , h5 := I, h6 := I
� h1(h1h7)

�∗ I

21

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

HEAP-BASED INTERPRETER

computer science

saarland
university

s = s0 � · · · si � · · · � sk

Tapes: main (contains si), heap, hc (heap counter)
Invariant: size of heap is always polynomial in k and |s|.

I For beta-reduction of (λx.t1)t2: Copy t2 to heap, replace x
in t1 with address (linear in the heap, O(|t1|) many copies
of an address linear in the heap)

I For variable-unfolding of x: Find the element associated to
x in the heap (linear in the heap)

A bit more complicated for de-Bruijn, but doable.

22

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

HEAP-BASED INTERPRETER

computer science

saarland
university

s = s0 � · · · si � · · · � sk

Tapes: main (contains si), heap, hc (heap counter)
Invariant: size of heap is always polynomial in k and |s|.

I For beta-reduction of (λx.t1)t2: Copy t2 to heap, replace x
in t1 with address

(linear in the heap, O(|t1|) many copies
of an address linear in the heap)

I For variable-unfolding of x: Find the element associated to
x in the heap (linear in the heap)

A bit more complicated for de-Bruijn, but doable.

22

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

HEAP-BASED INTERPRETER

computer science

saarland
university

s = s0 � · · · si � · · · � sk

Tapes: main (contains si), heap, hc (heap counter)
Invariant: size of heap is always polynomial in k and |s|.

I For beta-reduction of (λx.t1)t2: Copy t2 to heap, replace x
in t1 with address (linear in the heap, O(|t1|) many copies
of an address linear in the heap)

I For variable-unfolding of x: Find the element associated to
x in the heap (linear in the heap)

A bit more complicated for de-Bruijn, but doable.

22

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

HEAP-BASED INTERPRETER

computer science

saarland
university

s = s0 � · · · si � · · · � sk

Tapes: main (contains si), heap, hc (heap counter)
Invariant: size of heap is always polynomial in k and |s|.

I For beta-reduction of (λx.t1)t2: Copy t2 to heap, replace x
in t1 with address (linear in the heap, O(|t1|) many copies
of an address linear in the heap)

I For variable-unfolding of x: Find the element associated to
x in the heap

(linear in the heap)

A bit more complicated for de-Bruijn, but doable.

22

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

HEAP-BASED INTERPRETER

computer science

saarland
university

s = s0 � · · · si � · · · � sk

Tapes: main (contains si), heap, hc (heap counter)
Invariant: size of heap is always polynomial in k and |s|.

I For beta-reduction of (λx.t1)t2: Copy t2 to heap, replace x
in t1 with address (linear in the heap, O(|t1|) many copies
of an address linear in the heap)

I For variable-unfolding of x: Find the element associated to
x in the heap (linear in the heap)

A bit more complicated for de-Bruijn, but doable.

22

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

HEAP-BASED INTERPRETER

computer science

saarland
university

s = s0 � · · · si � · · · � sk

Tapes: main (contains si), heap, hc (heap counter)
Invariant: size of heap is always polynomial in k and |s|.

I For beta-reduction of (λx.t1)t2: Copy t2 to heap, replace x
in t1 with address (linear in the heap, O(|t1|) many copies
of an address linear in the heap)

I For variable-unfolding of x: Find the element associated to
x in the heap (linear in the heap)

A bit more complicated for de-Bruijn, but doable.

22

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

COMPLEXITY ANALYSIS

computer science

saarland
university

Theorem
There is a constant c such that any reduction s = s0 � · · · � sk in L
can be simulated by the heap-based Turing machine in time and space
O(|s| · kc).

23

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

computer science

saarland
university

Theorem (Invariance thesis part II for time)
Turing machines can simulate L with a polynomially bounded
overhead in time.

24

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SUB-LINEAR-LOGARITHMICLY SMALL TERMS

computer science

saarland
university

Let N := (λxy.x x) I, then

N (· · · (N︸ ︷︷ ︸
k times

I) . . .)

�k (λy.I I) (· · · ((λy.I I)︸ ︷︷ ︸
k times

I) . . .)

�2k I

Needs 3k entries (with addresses of size O(k)) on heap, but
definition permits only O(k) space

25

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

COMPLEXITY OVERVIEW

computer science

saarland
university

s = s0 � s1 � · · · � sk

for sk with constant size:

substitution-based heap-based
time O(

∑
i |si|2) O(poly(Time(s)))

space O(Space(s)) O(|s| · kc)

26

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

PROBLEM ANALYSIS

computer science

saarland
university

s = s0 � · · · � sk

Heap-based interpreter needs O(|s| · kc) space on
sublinar-logarithmically reducing terms (in k steps).

Substitution-based interpreter needs more than polynomial
time on explosive terms where |si| is asymptotically

non-polynomial.

But: Heap-based interpreter works on explosive terms!

27

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

PROBLEM ANALYSIS

computer science

saarland
university

s = s0 � · · · � sk

Heap-based interpreter needs O(|s| · kc) space on
sublinar-logarithmically reducing terms (in k steps).

Substitution-based interpreter needs more than polynomial
time on explosive terms where |si| is asymptotically

non-polynomial.

But: Heap-based interpreter works on explosive terms!

27

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

PROBLEM ANALYSIS

computer science

saarland
university

s = s0 � · · · � sk

Heap-based interpreter needs O(|s| · kc) space on
sublinar-logarithmically reducing terms (in k steps).

Substitution-based interpreter needs more than polynomial
time on explosive terms where |si| is asymptotically

non-polynomial.

But: Heap-based interpreter works on explosive terms!

27

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

HYBRID INTERPRETER

computer science

saarland
university

Input: A term s. Set k = 0.
Execute the substitution-based interpreter on s for k steps:

I If a normal form is reached, output it.
I If the space consumption is larger than |s| · kc, abort and

use the heap-based interpreter for k steps.
I If no normal form is reached, delete everything except s,

set k := k + 1 and repeat.

28

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TIME ANALYSIS

computer science

saarland
university

Running time for fixed s and k:

In total:

O()

⊆ O(poly(|s| ,Time(s)) + Time(s)2c+2 · |s|2)

29

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TIME ANALYSIS

computer science

saarland
university

Running time for fixed s and k:

heap-based interpreter: |s| · kc

In total:

O()

⊆ O(poly(|s| ,Time(s)) + Time(s)2c+2 · |s|2)

29

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TIME ANALYSIS

computer science

saarland
university

Running time for fixed s and k:

heap-based interpreter: |s| · kc

In total:

O(

Time(s)∑
k=0

|s| · kc︸ ︷︷ ︸
heap-based

)

⊆ O(poly(|s| ,Time(s)) + Time(s)2c+2 · |s|2)

29

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TIME ANALYSIS

computer science

saarland
university

Running time for fixed s and k:

unfolding the normal form: poly(|s| ,Time(s)))

In total:

O(

Time(s)∑
k=0

|s| · kc︸ ︷︷ ︸
heap-based

)

⊆ O(poly(|s| ,Time(s)) + Time(s)2c+2 · |s|2)

29

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TIME ANALYSIS

computer science

saarland
university

Running time for fixed s and k:

unfolding the normal form: poly(|s| ,Time(s)))

In total:

O(poly(|t| ,Time(s))︸ ︷︷ ︸
unfolding the normal form t

+

Time(s)∑
k=0

|s| · kc︸ ︷︷ ︸
heap-based

)

⊆ O(poly(|s| ,Time(s)) + Time(s)2c+2 · |s|2)

29

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TIME ANALYSIS

computer science

saarland
university

Running time for fixed s and k:

substitution-based interpreter: O(
∑k

i=1 |si|2)

In total:

O(poly(|t| ,Time(s))︸ ︷︷ ︸
unfolding the normal form t

+

Time(s)∑
k=0

|s| · kc︸ ︷︷ ︸
heap-based

)

⊆ O(poly(|s| ,Time(s)) + Time(s)2c+2 · |s|2)

29

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TIME ANALYSIS

computer science

saarland
university

Running time for fixed s and k:

substitution-based interpreter: O(
∑k

i=1 |si|2)

In total:

O(poly(|t| ,Time(s))︸ ︷︷ ︸
unfolding the normal form t

+

Time(s)∑
k=0

|s| · kc︸ ︷︷ ︸
heap-based

+

k∑
i=1

|si|2︸ ︷︷ ︸
substitution-based

)

⊆ O(poly(|s| ,Time(s)) + Time(s)2c+2 · |s|2)

29

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TIME ANALYSIS

computer science

saarland
university

Running time for fixed s and k:

because of the space bound: |si| ≤ |s| · kc

In total:

O(poly(|t| ,Time(s))︸ ︷︷ ︸
unfolding the normal form t

+

Time(s)∑
k=0

|s| · kc︸ ︷︷ ︸
heap-based

+

k∑
i=1

|si|2︸ ︷︷ ︸
substitution-based

)

⊆ O(poly(|s| ,Time(s)) + Time(s)2c+2 · |s|2)

29

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TIME ANALYSIS

computer science

saarland
university

Running time for fixed s and k:

because of the space bound: |si| ≤ |s| · kc

thus
∑k

i=1 |si|2 ≤ k · |s|2 · k2c

In total:

O(poly(|t| ,Time(s))︸ ︷︷ ︸
unfolding the normal form t

+

Time(s)∑
k=0

|s| · kc︸ ︷︷ ︸
heap-based

+

k∑
i=1

|si|2︸ ︷︷ ︸
substitution-based

)

⊆ O(poly(|s| ,Time(s)) + Time(s)2c+2 · |s|2)

29

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TIME ANALYSIS

computer science

saarland
university

Running time for fixed s and k:

because of the space bound: |si| ≤ |s| · kc

thus
∑k

i=1 |si|2 ≤ k · |s|2 · k2c

In total:

O(poly(|t| ,Time(s))︸ ︷︷ ︸
unfolding the normal form t

+

Time(s)∑
k=0

|s| · kc︸ ︷︷ ︸
heap-based

+ k · |s| · k2c︸ ︷︷ ︸
substitution-based

)

⊆ O(poly(|s| ,Time(s)) + Time(s)2c+2 · |s|2)

29

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

TIME ANALYSIS

computer science

saarland
university

Simplified:

O(poly(|t| ,Time(s))︸ ︷︷ ︸
unfolding the normal form t

+

Time(s)∑
k=0

|s| · kc︸ ︷︷ ︸
heap-based

+ k · |s| · k2c︸ ︷︷ ︸
substitution-based

)

⊆ O(poly(|s| ,Time(s)) + Time(s)2c+2 · |s|2)

29

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SPACE ANALYSIS

computer science

saarland
university

Space consumption for fixed s and k:

In total:

O(max
k≤Space(s)

)

⊆ O(Space(s))

30

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SPACE ANALYSIS

computer science

saarland
university

Space consumption for fixed s and k:

substitution-based interpreter: maxi∈{0,...,k} |si|

In total:

O(max
k≤Space(s)

)

⊆ O(Space(s))

30

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SPACE ANALYSIS

computer science

saarland
university

Space consumption for fixed s and k:

substitution-based interpreter: maxi∈{0,...,k} |si| = O(Spacek(s))

In total:

O(max
k≤Space(s)

)

⊆ O(Space(s))

30

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SPACE ANALYSIS

computer science

saarland
university

Space consumption for fixed s and k:

substitution-based interpreter: maxi∈{0,...,k} |si| = O(Spacek(s))

In total:

O(max
k≤Space(s)

Spacek(s))

⊆ O(Space(s))

30

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SPACE ANALYSIS

computer science

saarland
university

Space consumption for fixed s and k:

heap-based interpreter: O(|s| · kc)

In total:

O(max
k≤Space(s)

Spacek(s))

⊆ O(Space(s))

30

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SPACE ANALYSIS

computer science

saarland
university

Space consumption for fixed s and k:

heap-based interpreter: O(|s| · kc)

In total:

O(max
k≤Space(s)

Spacek(s)+ |s| · kc)

⊆ O(Space(s))

30

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SPACE ANALYSIS

computer science

saarland
university

Space consumption for fixed s and k:

because of the space bound: Spacek(s) ≥ |s| · kc

In total:

O(max
k≤Space(s)

Spacek(s)+ |s| · kc)

⊆ O(Space(s))

30

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SPACE ANALYSIS

computer science

saarland
university

Space consumption for fixed s and k:

because of the space bound: Spacek(s) ≥ |s| · kc

In total:

O(max
k≤Space(s)

Spacek(s)+Spacek(s))

⊆ O(Space(s))

30

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SPACE ANALYSIS

computer science

saarland
university

Simplified:

O(max
k≤Space(s)

Spacek(s)+Spacek(s))

⊆ O(Space(s))

30

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

computer science

saarland
university

Theorem (Strong Invariance Thesis for L)
L and Turing Machines can simulate each other within a
polynomially bounded overhead in time and a constant-factor
overhead in space for decision functions with non-sublinear running
time.

31

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

WORK IN PROGRESS: FORMALISATION

computer science

saarland
university

spec proof
Functional correctness of L-interpreters 1192 1390
L-extraction framework 1316 610
TM-interpreter (no verified complexity analysis) 388 335

Missing:
I TM implementation and verification of L-interpreters
I Time and space analysis of L-interpreters
I Time and space analysis of TM-interpreter

32

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

WORK IN PROGRESS: FORMALISATION

computer science

saarland
university

spec proof
Functional correctness of L-interpreters 1192 1390
L-extraction framework 1316 610
TM-interpreter (no verified complexity analysis) 388 335

Missing:
I TM implementation and verification of L-interpreters
I Time and space analysis of L-interpreters
I Time and space analysis of TM-interpreter

32

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SUMMARY

computer science

saarland
university

The weak call-by-value λ-calculus L is as reasonable
for complexity theory as Turing machines.

Future work:
I Formalise the complexity analysis
I Complexity theory using L: NP, many-one-reductions,

hierarchy theorems, . . .

Thanks!

33

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SUMMARY

computer science

saarland
university

The weak call-by-value λ-calculus L is as reasonable
for complexity theory as Turing machines.

Future work:
I Formalise the complexity analysis
I Complexity theory using L: NP, many-one-reductions,

hierarchy theorems, . . .

Thanks!

33

Introduction The calculus L Simulating TMs Simulating L with substitutions Simulating L with a heap Hybrid Interpreter

SUMMARY

computer science

saarland
university

The weak call-by-value λ-calculus L is as reasonable
for complexity theory as Turing machines.

Future work:
I Formalise the complexity analysis
I Complexity theory using L: NP, many-one-reductions,

hierarchy theorems, . . .

Thanks!

33

THE HEAP-BASED INTERPRETER

computer science

saarland
university

Use environments on a heap to delay substitutions:
I call (thunk) c = s〈E〉: pair of encoded L-term s and heap-address E
I heap H: list of entries (⊥ or c#E′), addressed by position.
I call stack CS: list of tuples (@L, c) or (@R, c) (for @R, c fully reduced)
I interpreter state: current call CC, CS and H.
I initial state: CC = s〈0〉, CS = [] and H = [⊥])

Example
The result of (λx.x) ((λxy.x y) (λx.x)) � (λx.x) (λx.x y)y

λx.x is represented by

CC =(λ@ . |.)〈1〉
CS =[(@R, (λ.)〈0〉)]
H =[⊥, (λ.)〈0〉)#0]

34

THE HEAP-BASED INTERPRETER (2)

computer science

saarland
university

Each step of the interpreter depends on the current call CC = s〈E〉:
I if s = sL sR: push (@L, sR[E]) on CS and set CC to sR〈E〉
I if s = x: get new CC by lookup of x in E
I if s = λs′:

I if CS is empty: the term is fully evaluated
I if CS = (@L, cR) :: CS′: set CC := cR and put (@R,CC) on

stack instead.
I if CS = (@R, λt〈E′〉) :: CS′: store sR〈E〉#E′ on heap as Ê and

set CC := t〈Ê〉

Observations for evaluation s0 � s1 � · · · � sk:
I all calls contain subterms of s
I Heap contains #H = k + 1 elements, each of size ≤ |s|+ 2 · log(#H)

I CS & CC representing si have size O(|si|)
⇒ space consumption: O((maxi |si|) + k · (|s|+ log(k)))

I time per interpreter step: O(|si| ·#H + CC + CS)
I amortized, poly(|s0|) interpreter-steps per β-reduction.

⇒ time consumption: O(poly(k, |s0|))

35

THE HEAP-BASED INTERPRETER (2)

computer science

saarland
university

Each step of the interpreter depends on the current call CC = s〈E〉:
I if s = sL sR: push (@L, sR[E]) on CS and set CC to sR〈E〉
I if s = x: get new CC by lookup of x in E
I if s = λs′:

I if CS is empty: the term is fully evaluated
I if CS = (@L, cR) :: CS′: set CC := cR and put (@R,CC) on

stack instead.
I if CS = (@R, λt〈E′〉) :: CS′: store sR〈E〉#E′ on heap as Ê and

set CC := t〈Ê〉
Observations for evaluation s0 � s1 � · · · � sk:

I all calls contain subterms of s
I Heap contains #H = k + 1 elements, each of size ≤ |s|+ 2 · log(#H)

I CS & CC representing si have size O(|si|)
⇒ space consumption: O((maxi |si|) + k · (|s|+ log(k)))

I time per interpreter step: O(|si| ·#H + CC + CS)
I amortized, poly(|s0|) interpreter-steps per β-reduction.

⇒ time consumption: O(poly(k, |s0|))

35

THE HEAP-BASED INTERPRETER (2)

computer science

saarland
university

Each step of the interpreter depends on the current call CC = s〈E〉:
I if s = sL sR: push (@L, sR[E]) on CS and set CC to sR〈E〉
I if s = x: get new CC by lookup of x in E
I if s = λs′:

I if CS is empty: the term is fully evaluated
I if CS = (@L, cR) :: CS′: set CC := cR and put (@R,CC) on

stack instead.
I if CS = (@R, λt〈E′〉) :: CS′: store sR〈E〉#E′ on heap as Ê and

set CC := t〈Ê〉
Observations for evaluation s0 � s1 � · · · � sk:

I all calls contain subterms of s
I Heap contains #H = k + 1 elements, each of size ≤ |s|+ 2 · log(#H)

I CS & CC representing si have size O(|si|)
⇒ space consumption: O((maxi |si|) + k · (|s|+ log(k)))

I time per interpreter step: O(|si| ·#H + CC + CS)
I amortized, poly(|s0|) interpreter-steps per β-reduction.

⇒ time consumption: O(poly(k, |s0|)) 35

LC: L WITH CLOSURES

computer science

saarland
university

36

	Introduction
	

	The calculus L
	

	Simulating TMs
	

	Simulating L, substitution-based
	

	Simulating L, heap-based
	

	Hybrid Interpreter
	
	Summary

	Appendix

