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Hilbert’s Tenth Problem H10

Diophantine equation = polynomial eq. over N (or Z)

x2 + 3z = yz + 2

H10 posed by David Hilbert in 1900:

“Man soll ein Verfahren angeben, nach welchem sich mittels einer
endlichen Anzahl von Operationen entscheiden läßt, ob die Gleichung

in ganzen Zahlen lösbar ist.”

Essentially asked for a decision procedure for solvability of
Diophantine equations

Typical decision problems with a negative answer:
I does a given Turing machine halt? (Halt)
I does a given register/Minsky machine halt? (MM)
I the Post correspondence problem (PCP)
I is there a proof/term for this formula/type (FOL, syst. F)?
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What is so intriguing about H10?

H10 simple to explain to mathematicians with no CS background

Hilbert’s challenge was hard to solve because of a negative answer:
I required inventing a formal concept of “decision procedure”
I algorithms characterized by computability theory (CT, 30-40’s)
I a general notion of computable, and thus non-computable
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A short history of H10

1900 Posed by David Hilbert

1944 Emil Post “this begs for an unsolvability proof”

1950s Martin Davis’ conjecture: “Every r.e. set is Diophantine”

1953 Davis: “Every r.e. set is Diophantine up to one bounded ∀”

1959 Davis and Putnam: “Every r.e. set is exponentially Diophantine”

1961 Julia Robinson: “Every r.e. set is Diophantine if there is at least one
Diophantine relation with exponential growth”

1970 Yuri Matiyasevich: “The Fibonacci sequence exhibits exponential
growth and is Diophantine.”

Resulting in the Davis-Putnam-Robinson-Matiyasevich theorem
proving Davis’ conjecture.
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A library for synthetic undecidability in Coq

https://github.com/uds-psl/coq-library-undecidability

Definition (Synthetic undecidability)

P undecidable := Halting problem reduces to P

a decision problem (X ,P) : Σ(X : Type),X → P
Many-one reduction from (X ,P) to (Y ,Q)

I computable function f : X → Y s.t. ∀x , P x ↔ Q(f x)
I “computable” requirement replaced by “defined in CTT”
I We write P � Q when such reduction exists

Coq terms are computable (axiom-free)

Undecidability in Coq by many-one reductions
I from a seed of undecidability Halt (single tape TM)
I but also PCP (Forster&Heiter&Smolka, ITP 18)
I BSM, MM, ILL (Forster&LW, CPP 19)
I FOL (Forster&Kirst&Smolka, CPP 19) . . .
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Why add H10 to our library?

MM halting already in our library (CPP 19)

Stand-alone reduction from MM (Jones&Matijaseviĉ 84)
I assuming only Matiyasevich theorem (z = xy Diophantine)
I (Matiyasevich 2000) is a very detailed pen&paper proof

H10 reduces to:
I system F inhabitation (Dudenhefner&Rehof, TYPES 18)
I second-order unification (Goldfarb 81)

H10 allows for easy inter-reducibility proofs
I enumerating Diophantine solutions is trivial to program
I an easy way to strengthen Church’s thesis

The DPRM theorem:
I Diophantine equations can encode any RE-predicate

Another illustration of capabilities of modern proof assistants
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Contribution

First complete mechanisation of H10 and the DPRM theorem

Refactorisation of the proof via FRACTRAN,
easing both explanation and mechanisation
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Today

1 Overview of the reduction from Halt to H10, via FRACTRAN

2 Basics of FRACTRAN vs. MM (Conway 87)

3 Details on Diophantine encoding of FRACTRAN

4 H10 and the DPRM theorem

5 Mechanized Diophantine relations

6 Some remarks on the Coq code

7 Related works

8 Overview over the library and future work
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Overview of the reduction
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From Halt to H10

Halt � MM � FRACTRAN � DIO * � H10

Halt � MM via PCP
I Halt � PCP via SRS (ITP 18)
I PCP � MM via Binary Stack Machines (CPP 19)

MM � FRACTRAN
I following Conway (87)
I removing self-loops from MM

FRACTRAN � DIO *
I Diophantine admissibility of RT-closure
I two results as black-boxes (implemented):

F Matiyasevich proof (2000) (z = xy )
F Admissibility of ∀fin (Matiyasevich 1997)

Nice factorization of the quite monolithic proof of J&M84
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Minsky machines and FRACTRAN
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Minsky Machines (N valued register machines)

Example (transfers α to β in 3 instructions, γ0 spare register)

q : DEC α (3 + q) q + 1 : INC β q + 2 : DEC γ0 q

n registers of value in N for a fixed n

state: (PC, ~v) ∈ N× Nn

instructions: ι ::= INC α | DEC α p

programs: (q, [ι0; . . . ; ιk ]) ! q : ι0; . . . ; q + k : ιk

Step semantics for INC and DEC (pseudo code)

INC α : α← α+ 1; PC← PC+ 1

DEC α p : if α = 0 then PC← p
if α > 0 then α← α− 1; PC← PC+ 1

MM(n,M, ~v) := (1,M) //M (1, ~v) ↓ (termination in any state)
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FRACTRAN (computing with fractions in Q+)

Example (FRACTRAN program: list of fractions)

(
455

33
,

11

13
,

1

11
,

3

7
,

11

2
,

1

3

)

Program: list of N× N; State: a single x ∈ N
Step relation is simple to describe

I pick the first p/q s.t. x · p/q ∈ N, and this is the new state
I inductively, characterized by two rules:

q · y = p · x
(p/q :: Q) //F x � y

q - p · x Q //F x � y

(p/q :: Q) //F x � y

Termination predicate

Q //F s ↓ := ∃x , Q //F s �∗ x ∧ ∀y , ¬(Q //F x � y)

Decision problem: FRACTRAN(Q, s) := Q //F s ↓
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Conway’s reduction from MM to FRACTRAN
Distinct primes: p0, p1, . . . and q0, q1, . . .

Gödel coding of MM-states
(
i , (x0, . . . , xn−1)

)
:= piq

x0
0 . . . qxn−1

n−1

Fractional encoding of MM-instructions:

i : INC α := [pi+1qα/pi ] i : DEC α j := [pi+1/piqα; pj/pi ]

and of MM: (i , [ι0; . . . ; ιk ]) := i : ι0 ++ · · ·++ i + k : ιk

fails for i : DEC α i (self loops) because pi/pi = 1

So first remove self-loops using an extra 0-valued spare variable
I every MM has an equivalent self-loop free MM
I self-loops  unconditional jump to a length-2 cycle

Simulate self-loop free MM with FRACTRAN

Theorem (Simulating MM with FRACTRAN)

For any n registers Minsky machine P, one can compute a FRACTRAN
program Q s.t. (1,P) //M (1, [x1; . . . ; xn]) ↓ ↔ Q //F p1q

x1
1 . . . qxnn ↓
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Example of MM/FRACTRAN simulation

A small nullifying MM program
I two DEC instructions starting at 0 :
I x0 is nullified, x1 zero-valued spare register

(p0, p1, p2, . . .) = (2, 3, 5, . . .) (q0, q1, . . .) = (7, 11, . . .)

0 : DEC x0 2

1 : DEC x1 0

2 :

0 : DEC x0 2

3
2 · 7

5
2

,
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Example of MM/FRACTRAN simulation

A small nullifying MM program
I two DEC instructions starting at 0 :
I x0 is nullified, x1 zero-valued spare register

(p0, p1, p2, . . .) = (2, 3, 5, . . .) (q0, q1, . . .) = (7, 11, . . .)

0 : DEC x0 2

1 : DEC x1 0

2 :

1 : DEC x1 0

5
3 · 11

2
3

,
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Example of MM/FRACTRAN simulation

A small nullifying MM program
I two DEC instructions starting at 0 :
I x0 is nullified, x1 zero-valued spare register

(p0, p1, p2, . . .) = (2, 3, 5, . . .) (q0, q1, . . .) = (7, 11, . . .)

0 : DEC x0 2

1 : DEC x1 0

2 :

0 : DEC x0 2
x0 =3

x1 =0
PC=0

3
2 · 7

5
2

5
3 · 11

2
3

3
2 · 7

, , , s = 213050 73110
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Example of MM/FRACTRAN simulation

A small nullifying MM program
I two DEC instructions starting at 0 :
I x0 is nullified, x1 zero-valued spare register

(p0, p1, p2, . . .) = (2, 3, 5, . . .) (q0, q1, . . .) = (7, 11, . . .)

0 : DEC x0 2

1 : DEC x1 0

2 :

1 : DEC x1 0

x0 =2
x1 =0
PC=1

3
2 · 7

5
2

5
3 · 11

2
3
2
3

, , , s = 203150 72110
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Example of MM/FRACTRAN simulation

A small nullifying MM program
I two DEC instructions starting at 0 :
I x0 is nullified, x1 zero-valued spare register

(p0, p1, p2, . . .) = (2, 3, 5, . . .) (q0, q1, . . .) = (7, 11, . . .)

0 : DEC x0 2

1 : DEC x1 0

2 :

0 : DEC x0 2
x0 =2

x1 =0
PC=0

3
2 · 7

5
2

5
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2
3

3
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Example of MM/FRACTRAN simulation

A small nullifying MM program
I two DEC instructions starting at 0 :
I x0 is nullified, x1 zero-valued spare register

(p0, p1, p2, . . .) = (2, 3, 5, . . .) (q0, q1, . . .) = (7, 11, . . .)

0 : DEC x0 2

1 : DEC x1 0

2 :

1 : DEC x1 0

x0 =1
x1 =0
PC=1

3
2 · 7

5
2

5
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2
3
2
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Example of MM/FRACTRAN simulation

A small nullifying MM program
I two DEC instructions starting at 0 :
I x0 is nullified, x1 zero-valued spare register

(p0, p1, p2, . . .) = (2, 3, 5, . . .) (q0, q1, . . .) = (7, 11, . . .)

0 : DEC x0 2

1 : DEC x1 0

2 :

0 : DEC x0 2
x0 =1

x1 =0
PC=0

3
2 · 7

5
2

5
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3
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Example of MM/FRACTRAN simulation

A small nullifying MM program
I two DEC instructions starting at 0 :
I x0 is nullified, x1 zero-valued spare register

(p0, p1, p2, . . .) = (2, 3, 5, . . .) (q0, q1, . . .) = (7, 11, . . .)

0 : DEC x0 2

1 : DEC x1 0

2 :

1 : DEC x1 0

x0 =0
x1 =0
PC=1

3
2 · 7

5
2

5
3 · 11

2
3
2
3

, , , s = 203150 70110
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Example of MM/FRACTRAN simulation

A small nullifying MM program
I two DEC instructions starting at 0 :
I x0 is nullified, x1 zero-valued spare register

(p0, p1, p2, . . .) = (2, 3, 5, . . .) (q0, q1, . . .) = (7, 11, . . .)

0 : DEC x0 2

1 : DEC x1 0

2 :

0 : DEC x0 2
x0 =0

x1 =0
PC=0

3
2 · 7

5
2

5
3 · 11

2
3

5
2

, , , s = 213050 70110
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Example of MM/FRACTRAN simulation

A small nullifying MM program
I two DEC instructions starting at 0 :
I x0 is nullified, x1 zero-valued spare register

(p0, p1, p2, . . .) = (2, 3, 5, . . .) (q0, q1, . . .) = (7, 11, . . .)

0 : DEC x0 2

1 : DEC x1 0

2 :2 :

x0 =0
x1 =0
PC=2

3
2 · 7

5
2

5
3 · 11

2
3

, , , s = 203051 70110
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FRACTRAN termination is Diophantine
FRACTRAN step relation is Diophantine:

I [ ] //F x � y ↔ False

I p/q :: Q //F x � y ↔ q · y = p · x ∨
(
q - p · x ∧ Q //F x � y

)
FRACTRAN halted at predicate is Diophantine:

I ∀y , ¬([ ] //F x � y) ↔ True

I ∀y , ¬(p/q :: Q //F x � y) ↔ q - p · x ∧ ∀y , ¬(Q //F x � y)

FRACTRAN halting is Diophantine

Q //F s ↓ ↔ ∃x ,
(
Q //F s �∗ x

)
∧ ∀y , ¬(Q //F x � y)

What closure properties do we need?
I under polynomial equations (!)
I under “does not divide” (Euclidean division)
I under finitary conjunctions and disjunctions, existential quantification
I under RT-closure (this one is hard!)
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Hilbert’s Tenth Problem

Theorem (H10)

The solvability of a Diophantine equation is undecidable

MM halting is undecidable
I by reduction from Halt via PCP

FRACTRAN halting is undecidable
I by reduction from MM

FRACTRAN halting has a Diophantine representation
I Given (Q, s) a FRACTRAN program and an initial state
I compute a polynomial equation which has a solution iff Q //F s ↓

a solver for H10 would decide FRACTRAN halting
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The DPRM theorem

Theorem (DPRM)

MM-recognisable predicates are Diophantine

R : Nn → P is recognised by some MM P with (n +m) registers:

R ~v ↔ (1,P) //M (1, ~v ++~0) ↓

P is equivalent to FRACTRAN Q:

(1,P) //M (1, [v1; . . . ; vn] ++~0) ↓ ↔ Q //F p1q
v1
1 . . . qvnn ↓

[s; v1; . . . ; vn] 7→ s = p1q
v1
1 . . . qvnn is Diophantine

I by induction on n, using Matiyasevich thm. (z = xy is Diophantine)

FRACTRAN halting s 7→ Q //F s ↓ is Diophantine
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Mechanized Diophantine relations
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How to deal smoothly with Diophantine relations

Diophantine Logic: an expressive language for Diophantine relations
I not only polynomial equations, but also ∧, ∨, ∃
I automated recognition of Diophantine shapes
I possibility to expand the shapes: x - y , z = xy , ∀fin

I privileged tool for establishing Diophantineness

Elementary Diophantine constraints:
I list of u =̇ n | u =̇ v | u =̇ xi | u =̇ v +̇ w | u =̇ v ×̇ w
I u, v ,w = existential variables, xi . . . = parameters, n : N = constant
I nice intermediate layer, e.g. 2nd-ord. unification or system F

Single Diophantine Equation: p =̇ q
I p and q are polynomials with variables, constants and parameters
I H10 is the special case with no parameter

Conversion from Diophantine Logic  Single Diophantine Equation
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Diophantine Logic, syntax and semantics (DIO FORM)

Example (De Bruijn encoding for bound variables)

∃y , (y = 0 ∧ ∃z , y = z + 1) ! ∃̇(x0 =̇ 0 ∧̇ ∃̇
(
x1 =̇ x0 +̇ 1)

)
De Bruijn syntax with V = {x0, x1, . . .} ' N

Dexpr : p, q ::= xi ∈ V | n ∈ N | p +̇ q | p ×̇ q

Dform : A,B ::= p =̇ q | A ∧̇ B | A ∨̇ B | ∃̇A

Semantics with ν : V→ N

JxiKν := ν xi JnKν := n Jp +̇ qKν := JpKν + JqKν . . .

JA ∧̇ BKν := JAKν ∧ JBKν Jp =̇ qKν := JpKν = JqKν
JA ∨̇ BKν := JAKν ∨ JBKν J∃̇AKν := ∃n : N, JAKn·ν

with n·ν (x0) := n and n·ν (x1+i ) := ν xi (De Bruijn extension)
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Diophantine polynomials and relations

Definition (Sub-types of (V→ N)→ N and (V→ N)→ P)

DP f :=
∑

p : Dexpr,
(
∀ν, JpKν = fν

)
for f : (V→ N)→ N

DR R :=
∑

A : Dform,
(
∀ν, JAKν ↔ R ν

)
for R : (V→ N)→ P

closure properties for DP/DR: provided DP f and DP g we have

DP (λν.ν xi ) DP (λν.n) DP (λν.fν + gν) DP (λν.fν × gν)

DR (λν.True) DR (λν.False) DR (λν.fν = gν)

DR (λν.fν 6 gν) DR (λν.fν < gν) DR (λν.fν 6= gν)

for DR: for R,S : (V→ N)→ P and T : N→ (V→ N)→ P we have

DR R → DR S → DR(λν.R ν∧ S ν)
DR R → DR S → DR(λν.R ν∨ S ν)
(∀ν, S ν↔ R ν)→ DR R → DR S

DR

(
λν.T (ν x0) (λxi .ν x1+i )

)
→ DR

(
λν.∃u,T u ν

)
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Recognizing more Diophantine shapes

Example (Does not divide is a Diophantine shape)

DP f → DP g → DR (λν.fν - gν)

fν - gν ↔ fν = 0 ∧ gν 6= 0 ∨ ∃a b, gν = a · fν + b ∧ 0 < b ∧ b < fν

Apply closure properties recursively

Add the example as hint for the auto tactic

Theorem (Exponential (Matiyasevich 1970), proof from (Mat. 2000))

DP f → DP g → DP h→ DR

(
λν.fν = ghν

ν

)
Theorem (∀fin, proof from (Matiyasevich 1997))

DP f → DR

(
λν.T (ν x0) (λxi .ν x1+i )

)
→ DR

(
λν.∀u, u < fν → T u ν

)
Add both theorems to the hint database
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RT-closure is a Diophantine shape

Theorem (iterations of a binary Diophantine relation)

With f , g , i : (V→ N)→ N and R : N→ N→ P

DP f → DP g → DP i → DR

(
λν.R (ν x1) (ν x0)

)
→ DR

(
λν.R iν fν gν

)
Encode R-chains of length i in the digits of c in base q
is d c q n d := d < q ∧ ∃a b, c = (a · q + d) qn + b ∧ b < qn

is s R c q i :=
∀n, n < i → ∃u v , is d c q n u ∧ is d c q (1 + n) v ∧ R u v

R i u v ↔ ∃q c , is s R c q i ∧ is d c q 0 u ∧ is d c q i v

Corollary (reflexive and transitive closure is a Diophantine shape)

With f , g : (V→ N)→ N and R : N→ N→ P

DP f → DP g → DR

(
λν.R (ν x1) (ν x0)

)
→ DR

(
λν.R∗ fν gν

)
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Elementary Diophantine constraints (DIO ELEM)

list of Dcstr : u =̇ n | u =̇ v | u =̇ xi | u =̇ v +̇ w | u =̇ v ×̇ w

ϕ : U→ N for variables and ν : V→ N for parameters

. . . Ju =̇ xiKϕν := ϕ u = ν xi . . .

representation of A : Dform into (r,E) : U× LDcstr

I E is always satisfiable (for any ν)
I (r =̇ 0) :: E is satisfiable at ν iff JAKν
I encode ∧̇ with +̇ and ∨̇ with ×̇
I encode ∃̇ with a De Bruijn extension
I encode p =̇ q following the syntax tree

Theorem (Diophantine logic to elementary Diophantine constraints)

For A : Dform one can compute E : LDcstr such that JAKν ↔ ∃ϕ, JEKϕν

length of E linearly bounded by the size of A
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Single Diophantine Equation (DIO SINGLE)

Lemma (Convexity identity)∑n
i=1 2piqi =

∑n
i=1 p

2
i + q2i ↔ p1 = q1 ∧ · · ·∧ pn = qn

list of elementary constraints  single Diophantine equation

the size is linear in the length, the degree is at most 4

Theorem (Diophantine relations as polynomial equations)

For any Diophantine relation one can compute an equivalent single
Diophantine equation.

the size is linearly bounded by the size of the witness in Dform

the degree is at most 4
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Code and related works
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The Coq code

included in the library of undecidable problems:

https://github.com/uds-psl/coq-library-undecidability

also a “frozen” version hyperlinked with the paper:

https://uds-psl.github.io/H10

devel. of significant size but not unreasonnable

12k loc addition to the library
I 3k loc for Matiyasevich’s results (z = xy and ∀fin)
I 5k loc the Diophantine, FRACTRAN, H10 and the DPRM
I 4k loc addition to shared libs

automation in Diophantineness proofs helped a lot
I expanding Diophantine shape hints as they get proved
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Related work

Matiyasevich theorem in Lean (Carneiro 2018)
I no link with computational models

results about Pell’s equation in Mizar (Pak 2017)
I some basic results about Diophantine relations (Pak 2018)

the DPRM in Isabelle (Stock et al. 2018-. . . )
I still unfinished: https://gitlab.com/hilbert-10/dprm
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Features of interactive proof assistants used

1 Interactive construction of (computable) functions in proof scripts

2 Basic automation providing proof search using hints

3 Automation for goals involving numbers over rings
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Conclusion
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Contributions and future work
WCBV H10 H10C

Γ `∩? : A mTM µ rec. DIO SINGLE Γ `F ? : A

SSTS sTM MM DIO ELEM 2oUnif

Tiling SR BSM DIO LOGIC

3oUnif MPCP MM0 FRACTRAN

Tag systems PCP MM2 Sys F sub.

FOL ILL MELL3
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