
The Weak Call-By-Value λ-Calculus
is Reasonable for Both Time and Space

Yannick Forster, Fabian Kunze, Marc Roth

POPL 2020
January 22

computer science

saarland
university

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 1

http://www.cs.uni-saarland.de/

The strong invariance thesis

Slot and Van Emde Boas (1984):

Reasonable machines
can simulate each other with a polynomial overhead in time and a

constant-factor overhead in space

with respect to the natural measures,
i.e. β-steps and size of largest term in the computation

Standard complexity classes like P, NP, PSPACE, EXP
can be defined in terms of the λ-calculus1

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 2

The strong invariance thesis

Slot and Van Emde Boas (1984):

Turing machines and RAM machines
can simulate each other with a polynomial overhead in time and a

constant-factor overhead in space

with respect to the natural measures,
i.e. β-steps and size of largest term in the computation

Standard complexity classes like P, NP, PSPACE, EXP
can be defined in terms of the λ-calculus1

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 2

The strong invariance thesis

This paper:

Turing machines and the weak call-by-value λ-calculus
can simulate each other with a polynomial overhead in time and a

constant-factor overhead in space

with respect to the natural measures,
i.e. β-steps and size of largest term in the computation

Standard complexity classes like P, NP, PSPACE, EXP
can be defined in terms of the λ-calculus1

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 2

The strong invariance thesis

This paper:

Turing machines and the weak call-by-value λ-calculus
can simulate each other with a polynomial overhead in time and a

constant-factor overhead in space
with respect to the natural measures,

i.e. β-steps and size of largest term in the computation

Standard complexity classes like P, NP, PSPACE, EXP
can be defined in terms of the λ-calculus1

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 2

The strong invariance thesis

This paper:

Turing machines and the weak call-by-value λ-calculus
can simulate each other with a polynomial overhead in time and a

constant-factor overhead in space
with respect to the natural measures,

i.e. β-steps and size of largest term in the computation

Standard complexity classes like P, NP, PSPACE, EXP
can be defined in terms of the λ-calculus1

1our result does not cover sublinear space or time
Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 2

The Weak Call-by-Value λ-calculus L (Forster & Smolka, 2017)

s, t, u, v : Ter ::= n | st | λs where n : N.

Weak evaluation: don’t reduce below abstractions

Call-by-value evaluation: reduce arguments first

Deterministic

Define (tree-)size of terms:

‖n‖ := 1 + n ‖λs‖ := 1 + ‖s‖ ‖st‖ := 1 + ‖s‖+ ‖t‖

For s = s0 � s1 � · · · � sk = λx .u define

Time measure of s: k

Space measure of s: maxki=0 ‖si‖

Measures are mapping terms to numbers!

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 3

The Weak Call-by-Value λ-calculus L (Forster & Smolka, 2017)

s, t, u, v : Ter ::= n | st | λs where n : N.

Weak evaluation: don’t reduce below abstractions

Call-by-value evaluation: reduce arguments first

Deterministic

Define (tree-)size of terms:

‖n‖ := 1 + n ‖λs‖ := 1 + ‖s‖ ‖st‖ := 1 + ‖s‖+ ‖t‖

For s = s0 � s1 � · · · � sk = λx .u define

Time measure of s: k

Space measure of s: maxki=0 ‖si‖

Measures are mapping terms to numbers!

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 3

The easy direction

Theorem

The weak call-by-value λ-calculus can simulate Turing machines
with a polynomial overhead in time
and a constant-factor overhead in space.

Follows by Accattoli / Dal Lago ’17,
result for time mechanised in Forster / Kunze ’19.

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 4

What’s known for the harder direction?

1996: Lawall and Mairson: “total ink used” and “maximum ink used” are reasonable measures
for the full λ-calculus

2008: Dal Lago and Martini: β-steps and accounting for the size of β-redexes are a reasonable
time measure for the weak call-by-value λ-calculus

2016: Accattoli and Dal Lago: (leftmost-outermost) β-steps are a reasonable time measure for
the full λ-calculus

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 5

Why isn’t that enough?

To allow for e.g. mechanised complexity theoretic results we want

compositional measures

“total ink used” for time by Lawall/Mairson is not enough

for a compositional model

Turing machines are not enough

for both time and space

time complexity results by Accattoli/Dal Lago/Martini are not enough

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 6

Why isn’t that enough?

To allow for e.g. mechanised complexity theoretic results we want

compositional measures
“total ink used” for time by Lawall/Mairson is not enough

for a compositional model

Turing machines are not enough

for both time and space

time complexity results by Accattoli/Dal Lago/Martini are not enough

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 6

Why isn’t that enough?

To allow for e.g. mechanised complexity theoretic results we want

compositional measures
“total ink used” for time by Lawall/Mairson is not enough

for a compositional model
Turing machines are not enough

for both time and space

time complexity results by Accattoli/Dal Lago/Martini are not enough

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 6

Why isn’t that enough?

To allow for e.g. mechanised complexity theoretic results we want

compositional measures
“total ink used” for time by Lawall/Mairson is not enough

for a compositional model
Turing machines are not enough

for both time and space
time complexity results by Accattoli/Dal Lago/Martini are not enough

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 6

Wait a moment!

There’s a λ-term sE with

∀n : N. sE n �∗ λxy .x

in O(n) steps but with O(2n) space.

But P ⊆ PSPACE?!

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 7

Wait a moment!

There’s a λ-term sE with

∀n : N. sE n �∗ λxy .x

in O(n) steps but with O(2n) space.

But P ⊆ PSPACE?!

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 7

P ⊆ PSPACE
Let M be a machine computing a function N→ B and x : N

Theorem (for TMs, free)

S(M, x) ≤ T (M, x)

Theorem (for RAM machines, Slot & van Emde Boas, hard)

S(M, x) ≤ p(T (M, x)) for a polynomial p

Theorem (for L, follows from our result)

∃M ′. M ′ is ext. equiv. to M and
S(M ′, x) ≤ p1(T (M ′, x)) ≤ p2(T (M, x))

for polynomials p1, p2

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 8

P ⊆ PSPACE
Let M be a machine computing a function N→ B and x : N

Theorem (for TMs, free)

S(M, x) ≤ T (M, x)

Theorem (for RAM machines, Slot & van Emde Boas, hard)

S(M, x) ≤ p(T (M, x)) for a polynomial p

Theorem (for L, follows from our result)

∃M ′. M ′ is ext. equiv. to M and
S(M ′, x) ≤ p1(T (M ′, x)) ≤ p2(T (M, x))

for polynomials p1, p2

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 8

P ⊆ PSPACE
Let M be a machine computing a function N→ B and x : N

Theorem (for TMs, free)

S(M, x) ≤ T (M, x)

Theorem (for RAM machines, Slot & van Emde Boas, hard)

S(M, x) ≤ p(T (M, x)) for a polynomial p

Theorem (for L, follows from our result)

∃M ′. M ′ is ext. equiv. to M and
S(M ′, x) ≤ p1(T (M ′, x)) ≤ p2(T (M, x))

for polynomials p1, p2

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 8

Terms can exhibit size explosion,
but decision functions can be optimised

to not explode.

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 9

Theorem (Accattoli & Dal Lago, 2016)

There is an algorithm which takes as
input a λ-term t and which,
in time polynomial in the number of
left-most outermost β-steps of t
and the size of t

outputs an LSC term u
such that the unfolding of u is
the normal form of t.

Theorem (This paper, 2020)

There is an algorithm which takes as
input a closed L-term t and which,

in time polynomial in the number of
β-steps of t
and the size of t
and space linear in the size of the largest
term in the reduction
outputs a heap containing a term u such
that the unfolding of u is
the normal form of t.

Unfolding takes time polynomial in number of β-steps and size of result.

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 10

Theorem (Accattoli & Dal Lago, 2016)

There is an algorithm which takes as
input a λ-term t and which,
in time polynomial in the number of
left-most outermost β-steps of t
and the size of t

outputs an LSC term u
such that the unfolding of u is
the normal form of t.

Theorem (This paper, 2020)

There is an algorithm which takes as
input a closed L-term t and which,
in time polynomial in the number of
β-steps of t
and the size of t

and space linear in the size of the largest
term in the reduction
outputs a heap containing a term u such
that the unfolding of u is
the normal form of t.

Unfolding takes time polynomial in number of β-steps and size of result.

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 10

Theorem (Accattoli & Dal Lago, 2016)

There is an algorithm which takes as
input a λ-term t and which,
in time polynomial in the number of
left-most outermost β-steps of t
and the size of t

outputs an LSC term u
such that the unfolding of u is
the normal form of t.

Theorem (This paper, 2020)

There is an algorithm which takes as
input a closed L-term t and which,
in time polynomial in the number of
β-steps of t
and the size of t
and space linear in the size of the largest
term in the reduction

outputs a heap containing a term u such
that the unfolding of u is
the normal form of t.

Unfolding takes time polynomial in number of β-steps and size of result.

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 10

Theorem (Accattoli & Dal Lago, 2016)

There is an algorithm which takes as
input a λ-term t and which,
in time polynomial in the number of
left-most outermost β-steps of t
and the size of t

outputs an LSC term u
such that the unfolding of u is
the normal form of t.

Theorem (This paper, 2020)

There is an algorithm which takes as
input a closed L-term t and which,
in time polynomial in the number of
β-steps of t
and the size of t
and space linear in the size of the largest
term in the reduction
outputs a heap containing a term u such
that the unfolding of u is
the normal form of t.

Unfolding takes time polynomial in number of β-steps and size of result.

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 10

Theorem (Accattoli & Dal Lago, 2016)

There is an algorithm which takes as
input a λ-term t and which,
in time polynomial in the number of
left-most outermost β-steps of t
and the size of t

outputs an LSC term u
such that the unfolding of u is
the normal form of t.

Theorem (This paper, 2020)

There is an algorithm which takes as
input a closed L-term t and which,
in time polynomial in the number of
β-steps of t
and the size of t
and space linear in the size of the largest
term in the reduction
outputs a heap containing a term u such
that the unfolding of u is
the normal form of t.

Unfolding takes time polynomial in number of β-steps and size of result.

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 10

For decision functions, evaluation is
polynomial and
P, NP, PSPACE, EXP can be defined in terms
of L . . .

... but sublinear time or space is not covered

Theorem (This paper, 2020)

There is an algorithm which takes as
input a closed L-term t and which,
in time polynomial in the number of
β-steps of t
and the size of t
and space linear in the size of the largest term
in the reduction
outputs a heap containing a term u such that
the unfolding of u is
the normal form of t.

Unfolding takes time polynomial in number of β-steps and size of result.

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 10

For decision functions, evaluation is
polynomial and
P, NP, PSPACE, EXP can be defined in terms
of L . . .

... but sublinear time or space is not covered

Theorem (This paper, 2020)

There is an algorithm which takes as
input a closed L-term t and which,
in time polynomial in the number of
β-steps of t
and the size of t
and space linear in the size of the largest term
in the reduction
outputs a heap containing a term u such that
the unfolding of u is
the normal form of t.

Unfolding takes time polynomial in number of β-steps and size of result.

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 9

Size explosion

Church numerals: n := λfx .(f (f (f · · · (f︸ ︷︷ ︸
n times

x) · · ·))

Exponentiation: n m �∗ mn

Church booleans: true := λxy .x

Define: sE := λx .true true (x2(λx .x))

sE n̄ �4 (λy .true) (2(2 . . . (2︸ ︷︷ ︸
n times

(λx .x)))) � . . . �︸ ︷︷ ︸
O(n) times

(λy .true) tn � true

with ‖tn‖ ∈ Ω(2n).

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 10

Easy theorem I

Theorem

Turing machines can simulate L with a constant-factor overhead in space using a naive
substitution-based strategy.

For time, this strategy is exponentially wrong.

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 11

Easy theorem I

Theorem

Turing machines can simulate L with a constant-factor overhead in space using a naive
substitution-based strategy.

For time, this strategy is exponentially wrong.

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 11

Easy theorem II

Theorem

Turing machines can simulate L with a polynomial overhead in time
using a heap-based strategy.

For space, this strategy has a logarithmic factor overhead
because pointers can become too large

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 12

Easy theorem II

Theorem

Turing machines can simulate L with a polynomial overhead in time
using a heap-based strategy.

For space, this strategy has a logarithmic factor overhead
because pointers can become too large

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 12

Pointer explosion

N := (λxy .xx)true.

sP := N(· · · (N︸ ︷︷ ︸
n times

true) . . .)

�n (λy .true true)(· · · ((λy .true true)︸ ︷︷ ︸
n times

true) . . .)

�2n true

3n beta reductions 3n entries on the heap

Heap pointers are of size log n, space consumption is Ω(n log n)

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 13

Pointer explosion

N := (λxy .xx)true.

sP := N(· · · (N︸ ︷︷ ︸
n times

true) . . .)

�n (λy .true true)(· · · ((λy .true true)︸ ︷︷ ︸
n times

true) . . .)

�2n true

3n beta reductions 3n entries on the heap

Heap pointers are of size log n, space consumption is Ω(n log n)

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 13

Pointer explosion

N := (λxy .xx)true.

sP := N(· · · (N︸ ︷︷ ︸
n times

true) . . .)

�n (λy .true true)(· · · ((λy .true true)︸ ︷︷ ︸
n times

true) . . .)

�2n true

3n beta reductions 3n entries on the heap

Heap pointers are of size log n, space consumption is Ω(n log n)

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 13

Substitution-based strategy is ok for space, wrong for time
on size-exploding terms

Heap-based strategy is ok for time, wrong for space
due to pointer explosion

(There’s always enough space for the pointers)

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 14

Substitution-based strategy is ok for space, wrong for time
on size-exploding terms

Heap-based strategy is ok for time, wrong for space
due to pointer explosion

Size-exploding terms do not exhibit pointer
explosion!

(There’s always enough space for the pointers)

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 14

Substitution-based strategy is ok for space, wrong for time
on size-exploding terms

Heap-based strategy is ok for time, wrong for space
due to pointer explosion

Size-exploding terms do not exhibit pointer
explosion!

(There’s always enough space for the pointers)

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 14

Substitution-based strategy is ok for space, wrong for time
on size-exploding terms

Heap-based strategy is ok for time, wrong for space
due to pointer explosion

Solution:
Interleave both strategies.

For each k , run substitution-based strategy for k steps,
if size explodes run the heap-based strategy instead

(There’s always enough space for the pointers)

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 14

In the paper

Substitution-based stack machine verified in Coq w.r.t. time and space

Heap-based stack machine verified in Coq w.r.t. time and space

Sketch of a Turing machine simulating heap-based stack machine

Sketch of a Turing machine simulating substitution-based stack machine while checking
space consumption

Detailed proof of interleaving strategy

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 15

Conclusion

The natural measures for the weak call-by-value λ-calculus

are compositional

for a compositional model of computation

cover both time and space

can be used to define standard complexity classes

are feasible to use in mechanisations

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 16

Conclusion

The natural measures for the weak call-by-value λ-calculus

are compositional

for a compositional model of computation

cover both time and space

can be used to define standard complexity classes

are feasible to use in mechanisations

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 16

Future Work

mechanise basic complexity theory in Coq based on extraction

extension to the full λ-calculus

extension to sublinear time and space

prove P ⊆ PSPACE without reference to sequential models

space measure without size explosion

Questions?

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 17

Future Work

mechanise basic complexity theory in Coq based on extraction

extension to the full λ-calculus

extension to sublinear time and space

prove P ⊆ PSPACE without reference to sequential models

space measure without size explosion

Questions?

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 17

Future Work

mechanise basic complexity theory in Coq based on extraction

extension to the full λ-calculus

extension to sublinear time and space

prove P ⊆ PSPACE without reference to sequential models

space measure without size explosion

Questions?

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 17

Careful naive substitution

There is a Turing machine Msubst that, given

a term s

a binary number k indicating the number of β-steps

a binary number m indicating the maximum space to use

halts in time O(k · poly(min (m, ‖s‖S)))
and space O(min (m, ‖s‖S) + logm + log k)
s.t. one of the following holds:

The machine outputs a term t, then s has normal form t and m ≥ ‖s‖S and k ≥ ‖s‖T.

The machine halts in a state named space bound reached and m ≤ ‖s‖S.

The machine halts in a state named space bound not reached and k < ‖s‖T.

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 18

Hybrid strategy

1 Initialise k := 0 (in binary)

2 Compute m := ‖s‖ · p(k)

3 Run Msubst on s for k β-steps with space bound m:
I If Msubst computes a normal form, output it and halt.
I If Msubst halts in space bound not reached, set k := k + 1 and go to (2).
I If Msubst halts in space bound reached, continue at (4).

4 Run Mheap on s for k β-steps.
I If this computes a normal form, output it and halt.
I Otherwise, set k := k + 1 and go to (2).

Lemma

log ‖s‖T ∈ O(‖s‖S) – there’s always enough space to count steps in binary

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 19

Hybrid strategy

1 Initialise k := 0 (in binary)

2 Compute m := ‖s‖ · p(k)

3 Run Msubst on s for k β-steps with space bound m:
I If Msubst computes a normal form, output it and halt.
I If Msubst halts in space bound not reached, set k := k + 1 and go to (2).
I If Msubst halts in space bound reached, continue at (4).

4 Run Mheap on s for k β-steps.
I If this computes a normal form, output it and halt.
I Otherwise, set k := k + 1 and go to (2).

Lemma

log ‖s‖T ∈ O(‖s‖S) – there’s always enough space to count steps in binary

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 19

Turing machines as
mechanised model of computation

Turing machines are

the de-facto standard model for computational complexity theory

simple to define

easy to understand

“Turing machines as model of computation are inherently infeasible for
the formalisation of any computability or complexity theoretic result.”

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 20

Turing machines as
mechanised model of computation

Turing machines are

the de-facto standard model for computational complexity theory

simple to define

easy to understand

“Turing machines as model of computation are inherently infeasible for
the formalisation of any computability or complexity theoretic result.”

Yannick Forster, Fabian Kunze, Marc Roth The Weak CBV λ-Calculus is Reasonable POPL 2020 – January 22 20

Verified Programming of Turing Machines in Coq
Yannick Forster
Saarland University

Saarbrücken, Germany
forster@ps.uni-saarland.de

Fabian Kunze
Saarland University

Saarbrücken, Germany
kunze@ps.uni-saarland.de

Maximilian Wuttke
Saarland University

Saarbrücken, Germany
s8mawutt@stud.uni-saarland.de

Abstract
We present a framework for the verified programming of
multi-tape Turing machines in Coq. Improving on prior work
by Asperti and Ricciotti in Matita, we implement multiple
layers of abstraction. The highest layer allows a user to im-
plement nontrivial algorithms as Turing machines and verify
their correctness, as well as time and space complexity com-
positionally. The user can do so without ever mentioning
states, symbols on tapes or transition functions: They write
programs in an imperative language with registers contain-
ing values of encodable data types, and our framework con-
structs corresponding Turing machines.

As case studies, we verify a translation from multi-tape to
single-tape machines as well as a universal Turing machine,
both with polynomial time overhead and constant factor
space overhead.

1 Introduction
Turing machines are, at least on paper, the foundation of
modern computability and complexity theory, in part due
to the conceptual simplicity of their definition. However,
this simplicity leads to a lack of structure, which is also one
of their biggest disadvantages: When it comes to detailed
or formal reasoning, Turing machines soon become very
hard to treat. This is maybe best reflected by the fact that
while many basic areas of computer science, like logic, gram-
mars, automata, or programming languages theory have
been formalised in proof assistants, formalisations of even
basic complexity-theoretic results1 are not available. While
constructing Turing machines on paper might be possible,
verifying a non-trivial machine defined in terms of states and
transition functions in a proof assistant is entirely infeasible.
There were several attempts of formalising Turing ma-

chines in proof assistants. Asperti and Ricciotti [2015] and
Xu, Zhang, and Urban [2013] verify universal Turing ma-
chines inMatita and Isabelle/HOL, respectively, and Ciaffagli-
one [2016] formalises the undecidability of Turing machine
halting in Coq. However, none of these results analyse time
or space complexity of their machines.
The main difficulty for detailed reasoning about Turing

machines is their lack of compositionality. For example, it is
1For example the time and space hierarchy theorems, Savitch’s theorem or
the inclusions P ⊆ NP ⊆ PSPACE ⊆ EXP.

submitted for review, Saabrücken, 2020
2020.

not clear at all how to compose a two-tape Turing machine
with a three-tape Turing machine that works on a different
alphabet. Therefore, it is common to rely on pseudo code or
prose describing the intended behaviour. The exact imple-
mentation as well as its correctness or resource analysis is
left as an exercise to the reader. In a mechanised proof, those
details cannot be left out. Luckily, it is possible to hide those
details behind suitable abstractions.
We present a framework that aims to have the cake and

eat it too when it comes to mechanising computation in
terms of Turing machines: Algorithms are stated in the style
of a register based while-language; a corresponding Turing
machine is automatically constructed behind the scene. Our
framework furthermore characterises the semantics by de-
riving two relations for each machine, one witnessing partial
correctness, which can subsume a space-consumption ana-
lysis, and one witnessing termination, which can subsume
a running time analysis. These relations are similar to re-
lations a Hoare-like logic would derive for the algorithm,
especially in that they follow the internal structure of the
program. The only task left for the user is to simplify those
synthesised relations into a more high-level, hand-written
description of the semantics.

Our imperative abstractions for Turing machines are shal-
lowly embedded into Coq’s type theory: Primitive operations
are predefined Turing machines performing primitive tasks.
Control-flow operators like If or While are Coq-functions
constructing new Turing machines from existing ones.

To make reasoning and programming of Turing machines
feasible, we introduce three layers of abstractions, L1 - L3.
The lower layers are heavily inspired by the definitions As-
perti and Ricciotti [2015] use to formalise multi-tape Turing
machines in the proof assistant Matita.
On the lowest layer L0 (which is actually not an abstrac-

tion), we define n-tape Turing machinesM : TMn
Σ over finite

alphabets Σ and their semantics in Coq, based on the defini-
tions by Asperti and Ricciotti.

Layer L1 introduces labelled machinesM : TMn
Σ(L), which

additionally contain an arbitrary finite type L together with
a function labelling every state of the machine with an ele-
ment of this type. Based on this notion we define two veri-
fication primitives: realisation (partial correctness) and ter-
mination. A labelled machineM : TMn

Σ(L) realises a relation
R ⊆ TapenΣ × (L × TapenΣ), writtenM ⊨ R, if for every termin-
ating computation, the input tapes are in relation with the
label of the terminating state and the output tapes. Dually, a

1

CP
P2

0

