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Synthetic Decidability

A problem P : X → P is decidable if there is
f : X → B s.t. ∀x . Px ↔ fx = true.

Q.: Why is this definition okay?

A.: Because Coq is a programming language
and every definable function f : X → B is
computable in a model of computation, pro-
vided X is a datatype like N, N × B, or
list (N)× list (optionB).
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Synthetic Undecidability

A problem P : X → P is undecidable if
dec P → ⊥

does not work, because you can consistently assume a decider for every P

Axiom halting dec : dec Halt.

where Halt is the halting problem of Turing machines is

1 consistent (because the set model validates it)

2 not provable (because all definable functions are computable)
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Synthetic Turing and many-one reductions

A problem P : X → P is undecidable if
decP → decHalt.

Q �T P := decP → decQ

Lemma

If Q �T P and Q is undecidable, then P is undecidable.

Q � P := ∃f .∀x . Qx ↔ P(fx)

Lemma

If Q � P then Q �T P.
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Traditional Models of Computation

Q: How to prove
“There is no Turing machineλ-term computing P”?

A: Show that the many-one reductions
are computable.

Coq function f : N→ listN 

λ-term t with t n . fn.

as a Coq plugin based on MetaCoq

⇒ Many-one reductions can be automatically translated to
a “real” model of computation

yielding a proof of 6∃t : term. t computes P
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A Certifying Extraction with Time Bounds from
Coq to Call-By-Value λ-Calculus
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Fabian Kunze
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Abstract
We provide a plugin extracting Coq functions of simple polymorphic types to the (untyped) call-by-
value λ-calculus L. The plugin is implemented in the MetaCoq framework and entirely written in
Coq. We provide Ltac tactics to automatically verify the extracted terms w.r.t a logical relation
connecting Coq functions with correct extractions and time bounds, essentially performing a certifying
translation and running time validation. We provide three case studies: A universal L-term obtained
as extraction from the Coq definition of a step-indexed self-interpreter for L, a many-reduction from
solvability of Diophantine equations to the halting problem of L, and a polynomial-time simulation
of Turing machines in L.

2012 ACM Subject Classification Theory of computation→ Type theory; Mathematics of computing
→ Lambda calculus

Keywords and phrases call-by-value, λ-calculus, Coq, constructive type theory, extraction, comput-
ability

Digital Object Identifier 10.4230/LIPIcs.ITP.2019.17

Supplement Material The Coq development is accessible at
https://github.com/uds-psl/certifying-extraction-with-time-bounds.

1 Introduction

Every function definable in constructive type theory is computable in a model of computation.
This also enables many proof assistants based on constructive type theory to implement
extraction into a “real” programming language. On the more foundational side, various
realisability models for fragments of constructive type theory increase the trust in this
meta-theorem, because realisers for types are the codes of computable functions.

The computability of all definable functions also enables the study of synthetic comput-
ability theory in constructive type theory [7, 4]. For instance, one can define decidability by
dec P := ∃ f, ∀ x, P x ↔ f x = true and no reference to a concrete model of computa-
tion is needed. The undecidability of a predicate p can be shown by defining a many-one
reduction from the halting problem of Turing machines to p in Coq, again without referring
to a concrete model. The computability of all definable functions can, however, not be proved
inside the type theory itself, similar to other true statements like parametricity. At the same
time, for every concrete defined function of the type theory, one can always prove comput-
ability as theorem in the type theory. Given for instance any concrete function f : N→ N
definable in constructive type theory, one can construct a term of the λ-calculus tf s.t. for
all n : N, there is a proof in the type theory that tf n reduces to fn (where · is a suitable
encoding of natural numbers). The construction of tf from f is relatively simple, since it is
syntax-directed and the terms of type theory are just (possibly type-decorated) terms of an
expressive untyped λ-calculus. Another way to see this construction is as extraction from
the type theory into the λ-calculus.

© Yannick Forster and Fabian Kunze;
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Vision

Undecidability proofs should be
mechanisable

We need a library of potential starting
points for proofs by reduction
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Seed 1: PCP

Base type: list (listB× listB)
Definition: PCP(L) := ∃x : listB. L . (x , x)

(u, v) ∈ L

L . (u, v)

L . (x , y) (u, v) ∈ L

L . (x ++ u, y ++ v)

Good seed for target problems that can express
string concatenation and simple inductive predicates.
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Verification of PCP-Related
Computational Reductions in Coq

Yannick Forster(B), Edith Heiter, and Gert Smolka

Saarland University, Saarbrücken, Germany
{forster,heiter,smolka}@ps.uni-saarland.de

Abstract. We formally verify several computational reductions con-
cerning the Post correspondence problem (PCP) using the proof assistant
Coq. Our verification includes a reduction of the halting problem for Tur-
ing machines to string rewriting, a reduction of string rewriting to PCP,
and reductions of PCP to the intersection problem and the palindrome
problem for context-free grammars.

Keywords: Post correspondence problem · String rewriting
Context-free grammars · Computational reductions · Undecidability
Coq

1 Introduction

A problem P can be shown undecidable by giving an undecidable problem Q and
a computable function reducing Q to P . There are well known reductions of the
halting problem for Turing machines (TM) to the Post correspondence problem
(PCP), and of PCP to the intersection problem for context-free grammars (CFI).
We study these reductions in the formal setting of Coq’s type theory [16] with
the goal of providing elegant correctness proofs.

Given that the reduction of TM to PCP appears in textbooks [3,9,15] and in
the standard curriculum for theoretical computer science, one would expect that
rigorous correctness proofs can be found in the literature. To our surprise, this
is not the case. Missing is the formulation of the inductive invariants enabling
the necessary inductive proofs to go through. Speaking with the analogue of
imperative programs, the correctness arguments in the literature argue about the
correctness of programs with loops without stating and verifying loop invariants.

By inductive invariants we mean statements that are shown inductively and
that generalise the obvious correctness statements one starts with. Every sub-
stantial formal correctness proof will involve the construction of suitable induc-
tive invariants. Often it takes ingenuity to generalise a given correctness claim
to one or several inductive invariants that can be shown inductively.

It took some effort to come up with the missing inductive invariants for the
reductions leading from TM to PCP. Once we had the inductive invariants, we had
rigorous and transparent proofs explaining the correctness of the reductions in a
more satisfactory way than the correctness arguments we found in the literature.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 253–269, 2018.
https://doi.org/10.1007/978-3-319-94821-8_15
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Seed 2: Diophantine constraints

Base type: listC where C ::= x+̇y=̇z | x×̇y=̇z | x=̇1.
Definition: H10(C ) := ∃δ : var→ N. δ � C where

δ � x+̇y=̇z := δx + δy = δz

δ � x×̇y=̇z := δx · δy = δz

δ � x=̇n := δx = 1

δ � C := ∀c ∈ C . δ � c

Good seed for target problems that can express
addition and multiplication.
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Hilbert’s Tenth Problem in Coq
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Yannick Forster
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forster@ps.uni-saarland.de

Abstract
We formalise the undecidability of solvability of Diophantine equations, i.e. polynomial equations
over natural numbers, in Coq’s constructive type theory. To do so, we give the first full mechanisation
of the Davis-Putnam-Robinson-Matiyasevich theorem, stating that every recursively enumerable
problem – in our case by a Minsky machine – is Diophantine. We obtain an elegant and comprehensible
proof by using a synthetic approach to computability and by introducing Conway’s FRACTRAN
language as intermediate layer.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Type theory

Keywords and phrases Hilbert’s tenth problem, Diophantine equations, undecidability, computability
theory, reduction, Minsky machines, Fractran, Coq, type theory

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.27

Supplement Material Coq formalisation of all results: https://uds-psl.github.io/H10,
Coq library of undecidable problems: https://github.com/uds-psl/coq-library-undecidability

Funding Dominique Larchey-Wendling: partially supported by the TICAMORE project (ANR grant
16-CE91-0002).

Acknowledgements We would like to thank Gert Smolka, Dominik Kirst and Simon Spies for helpful
discussion regarding the presentation.

1 Introduction

Hilbert’s tenth problem (H10) was posed by David Hilbert in 1900 as part of his famous
23 problems [15] and asked for the “determination of the solvability of a Diophantine
equation.” A Diophantine equation1 is a polynomial equation over natural numbers (or,
equivalently, integers) with constant exponents, e.g. x2 + 3z = yz + 2. When Hilbert asked
for “determination,” he meant, in modern terms, a decision procedure, but computability
theory was yet several decades short of being developed.

The first undecidable problems found by Church, Post and Turing were either native to
mathematical logic or dependent on a fixed model of computation. H10, to the contrary,
can be stated to every mathematician and its formulation is independent from a model of
computation. Emil Post stated in 1944 that H10 “begs for an unsolvability proof” [26]. From
a computational perspective, it is clear that H10 is recursively enumerable (or recognisable),
meaning there is an algorithm that halts on a Diophantine equation iff it is solvable.

1 Named after the Greek mathematician Diophantus of Alexandria, who started the study of polynomial
equations in the third century.

© Dominique Larchey-Wendling and Yannick Forster;
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Seed 3: FRACTRAN

Base type: N× list (N× N)
Definition: FRACTRAN(x ,P) := x is terminating under P ` �

q · y = p · x
(p, q) :: P ` x � y

q 6 | p · x P ` x � y

(p, q) :: P ` x � y

Good seed for target problems that can express
multiplication and reflexive transitive closure.
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Abstract
We formalise the undecidability of solvability of Diophantine equations, i.e. polynomial equations
over natural numbers, in Coq’s constructive type theory. To do so, we give the first full mechanisation
of the Davis-Putnam-Robinson-Matiyasevich theorem, stating that every recursively enumerable
problem – in our case by a Minsky machine – is Diophantine. We obtain an elegant and comprehensible
proof by using a synthetic approach to computability and by introducing Conway’s FRACTRAN
language as intermediate layer.
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1 Introduction

Hilbert’s tenth problem (H10) was posed by David Hilbert in 1900 as part of his famous
23 problems [15] and asked for the “determination of the solvability of a Diophantine
equation.” A Diophantine equation1 is a polynomial equation over natural numbers (or,
equivalently, integers) with constant exponents, e.g. x2 + 3z = yz + 2. When Hilbert asked
for “determination,” he meant, in modern terms, a decision procedure, but computability
theory was yet several decades short of being developed.

The first undecidable problems found by Church, Post and Turing were either native to
mathematical logic or dependent on a fixed model of computation. H10, to the contrary,
can be stated to every mathematician and its formulation is independent from a model of
computation. Emil Post stated in 1944 that H10 “begs for an unsolvability proof” [26]. From
a computational perspective, it is clear that H10 is recursively enumerable (or recognisable),
meaning there is an algorithm that halts on a Diophantine equation iff it is solvable.

1 Named after the Greek mathematician Diophantus of Alexandria, who started the study of polynomial
equations in the third century.
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First-order logic

To reduce a problem to first-order provability, show that its definition is
expressible as a first-order formula.

P(x)↔ Γ ` ϕx

Usual proof strategy:

→ By induction on the definition of P.

← By defining the standard model for P and soundness.
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with an Application to the Entscheidungsproblem
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Abstract
We formalise the computational undecidability of validity,
satisfiability, and provability of first-order formulas follow-
ing a synthetic approach based on the computation native
to Coq’s constructive type theory. Concretely, we consider
Tarski and Kripke semantics as well as classical and intu-
itionistic natural deduction systems and provide compact
many-one reductions from the Post correspondence prob-
lem (PCP). Moreover, developing a basic framework for syn-
thetic computability theory in Coq, we formalise standard
results concerning decidability, enumerability, and reducibil-
ity without reference to a concrete model of computation.
For instance, we prove the equivalence of Post’s theorem
with Markov’s principle and provide a convenient technique
for establishing the enumerability of inductive predicates
such as the considered proof systems and PCP.

CCS Concepts • Theory of computation→ Logic;

Keywords synthetic undecidability, Entscheidungsproblem,
Coq, Post’s theorem, Markov’s principle, first-order logic

ACM Reference Format:
Yannick Forster, Dominik Kirst, and Gert Smolka. 2019. On Syn-
thetic Undecidability in Coq, with an Application to the Entschei-
dungsproblem. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP ’19), January 14–
15, 2019, Cascais, Portugal. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3293880.3294091

1 Introduction
Every function definable in constructive type theory is com-
putable. Thus, standard notions from computability theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’19, January 14–15, 2019, Cascais, Portugal
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6222-1/19/01. . . $15.00
https://doi.org/10.1145/3293880.3294091

like decidability, enumerability, and reductions are avail-
able without reference to a concrete model of computation
such as Turing machines, general recursive functions, or
the λ-calculus. For instance, representing a given decision
problem by a predicate p on a type X , a function f : X → B
with ∀x .p x ↔ f x = tt is a decision procedure, a function
д : N → X with ∀x .p x ↔ (∃n.дn = x) is an enumer-
ation, and a function h : X → Y with ∀x .p x ↔ q (h x)
for a predicate q on a type Y is a many-one reduction from
p to q. Working formally with concrete models instead is
cumbersome, given that every defined procedure needs to
be shown representable by a concrete entity of the model.
To avoid this tedium, many presentations resort to informal
arguments regarding the algorithmic properties at the core
of their constructions.

Enabling the outlined synthetic approach to computability
as explored by Richman [36] and Bauer [2, 3], constructive
type thoery is well-suited for formalising positive statements
about decision problems. Turning to negative statements like
undecidability and non-enumerability, however, the situation
becomes more intricate. Typical formulations of construc-
tive type theory such as Martin-Löf type theory (MLTT) or
Coq’s underlying calculus of inductive constructions (CIC)
are consistent with the assumption that every predicate is de-
cidable, so proving a concrete decision problem undecidable
is not outright possible. A potential way out would be to roll
back to a concrete model and establish negative results w.r.t.
the modelled computation – again producing unwelcome
technical overhead. The preferable solution, employed in
this work, is to verify a synthetic reduction from a problem
informally known to be undecidable – establishing negative
results relative to the chosen base in a transparent way.
The base we choose is the Post correspondence problem

(PCP), an easy to formulate combinatorial problem concern-
ing matching sequences of strings. Proven undecidable by
Post in 1946 [34], PCP became a powerful tool in computabil-
ity theory, often admitting elegant reductions. In previous
work [12], we formalised a reduction from the halting prob-
lem of Turing machines to PCP in Coq, hence providing
reliable evidence that the assumption that PCP is undecid-
able in the synthetic sense can be safely added to constructive
type theory. Concretely, (locally) assuming that PCP is not
co-enumerable implies that every problem it reduces to is
not co-enumerable and hence undecidable.
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The cbv λ-calculus L

Definition

A problem P : X → P is L-enumerable if
there is an L-computable function
f : N→ optionX s.t. Px ↔ ∃n. fn = bxc.

Theorem

A problem P : X → P reduces to the L-halting problem if it is
L-enumerable and its base type has an equality decider in L.

Strategy to reduce P to L-halting:

1 Give enumerating function f : N→ optionX (purely in Coq)

2 Give equality decider X → X → B (purely in Coq)

3 Give encoding for X in L (mostly automatic)

4 Use extraction to L from ITP ’19 (fully automatic)
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Weak Call-by-Value Lambda Calculus
as a Model of Computation in Coq

Yannick Forster and Gert Smolka
Saarland University

Saarland University, Saarbrücken, Germany
{forster,smolka}@ps.uni-saarland.de

Abstract. We formalise a weak call-by-value λ-calculus we call L in the
constructive type theory of Coq and study it as a minimal functional
programming language and as a model of computation. We show key
results including (1) semantic properties of procedures are undecidable,
(2) the class of total procedures is not recognisable, (3) a class is decidable
if it is recognisable, corecognisable, and logically decidable, and (4) a
class is recognisable if and only if it is enumerable. Most of the results
require a step-indexed self-interpreter. All results are verified formally
and constructively, which is the challenge of the project. The verification
techniques we use for procedures will apply to call-by-value functional
programming languages formalised in Coq in general.

1 Introduction

We study a minimal functional programming language L realising a subsystem of
the λ-calculus [3] known as weak call-by-value λ-calculus [8]. As in most program-
ming languages, β-reduction in weak call-by-value λ-calculus is only applicable if
the redex is not below an abstraction and if the argument is an abstraction. Our
goal is to formally and constructively prove the basic results from computability
theory [9,11] for L. The project involves the formal verification of self-interpreters
and other procedures computing with encodings of procedures. The verification
techniques we use will apply to call-by-value functional programming languages
formalised in Coq in general. We base our work on the constructive type theory
of Coq [15] and provide a development verifying all results.

The results from computability theory we prove for L include (1) seman-
tic properties of procedures are undecidable (Rice’s theorem), (2) the class of
total procedures is not recognisable, (3) a class is decidable if it is recognis-
able, corecognisable, and logically decidable (Post’s theorem), and (4) a class is
recognisable if and only if it is enumerable.

We prove that procedural decidability in L implies functional decidability in
Coq. The converse direction cannot be shown in Coq since Coq is consistent
with the assumption that every class is functionally decidable and procedurally
undecidable classes always exist. The same will be true for any Turing-complete
model of computation formalised in Coq.
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Advanced problems

Verified Programming of Turing Machines in Coq
Yannick Forster
Saarland University

Saarbrücken, Germany
forster@ps.uni-saarland.de

Fabian Kunze
Saarland University

Saarbrücken, Germany
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Saarland University
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Abstract
We present a framework for the verified programming of
multi-tape Turing machines in Coq. Improving on prior work
by Asperti and Ricciotti in Matita, we implement multiple
layers of abstraction. The highest layer allows a user to im-
plement nontrivial algorithms as Turing machines and verify
their correctness, as well as time and space complexity com-
positionally. The user can do so without ever mentioning
states, symbols on tapes or transition functions: They write
programs in an imperative language with registers contain-
ing values of encodable data types, and our framework con-
structs corresponding Turing machines.

As case studies, we verify a translation from multi-tape to
single-tape machines as well as a universal Turing machine,
both with polynomial time overhead and constant factor
space overhead.

1 Introduction
Turing machines are, at least on paper, the foundation of
modern computability and complexity theory, in part due
to the conceptual simplicity of their definition. However,
this simplicity leads to a lack of structure, which is also one
of their biggest disadvantages: When it comes to detailed
or formal reasoning, Turing machines soon become very
hard to treat. This is maybe best reflected by the fact that
while many basic areas of computer science, like logic, gram-
mars, automata, or programming languages theory have
been formalised in proof assistants, formalisations of even
basic complexity-theoretic results1 are not available. While
constructing Turing machines on paper might be possible,
verifying a non-trivial machine defined in terms of states and
transition functions in a proof assistant is entirely infeasible.
There were several attempts of formalising Turing ma-

chines in proof assistants. Asperti and Ricciotti [2015] and
Xu, Zhang, and Urban [2013] verify universal Turing ma-
chines inMatita and Isabelle/HOL, respectively, and Ciaffagli-
one [2016] formalises the undecidability of Turing machine
halting in Coq. However, none of these results analyse time
or space complexity of their machines.
The main difficulty for detailed reasoning about Turing

machines is their lack of compositionality. For example, it is
1For example the time and space hierarchy theorems, Savitch’s theorem or
the inclusions P ⊆ NP ⊆ PSPACE ⊆ EXP.

submitted for review, Saabrücken, 2020
2020.

not clear at all how to compose a two-tape Turing machine
with a three-tape Turing machine that works on a different
alphabet. Therefore, it is common to rely on pseudo code or
prose describing the intended behaviour. The exact imple-
mentation as well as its correctness or resource analysis is
left as an exercise to the reader. In a mechanised proof, those
details cannot be left out. Luckily, it is possible to hide those
details behind suitable abstractions.
We present a framework that aims to have the cake and

eat it too when it comes to mechanising computation in
terms of Turing machines: Algorithms are stated in the style
of a register based while-language; a corresponding Turing
machine is automatically constructed behind the scene. Our
framework furthermore characterises the semantics by de-
riving two relations for each machine, one witnessing partial
correctness, which can subsume a space-consumption ana-
lysis, and one witnessing termination, which can subsume
a running time analysis. These relations are similar to re-
lations a Hoare-like logic would derive for the algorithm,
especially in that they follow the internal structure of the
program. The only task left for the user is to simplify those
synthesised relations into a more high-level, hand-written
description of the semantics.

Our imperative abstractions for Turing machines are shal-
lowly embedded into Coq’s type theory: Primitive operations
are predefined Turing machines performing primitive tasks.
Control-flow operators like If or While are Coq-functions
constructing new Turing machines from existing ones.

To make reasoning and programming of Turing machines
feasible, we introduce three layers of abstractions, L1 - L3.
The lower layers are heavily inspired by the definitions As-
perti and Ricciotti [2015] use to formalise multi-tape Turing
machines in the proof assistant Matita.
On the lowest layer L0 (which is actually not an abstrac-

tion), we define n-tape Turing machinesM : TMn
Σ over finite

alphabets Σ and their semantics in Coq, based on the defini-
tions by Asperti and Ricciotti.

Layer L1 introduces labelled machinesM : TMn
Σ(L), which

additionally contain an arbitrary finite type L together with
a function labelling every state of the machine with an ele-
ment of this type. Based on this notion we define two veri-
fication primitives: realisation (partial correctness) and ter-
mination. A labelled machineM : TMn

Σ(L) realises a relation
R ⊆ TapenΣ × (L × TapenΣ), writtenM ⊨ R, if for every termin-
ating computation, the input tapes are in relation with the
label of the terminating state and the output tapes. Dually, a
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Abstract
Provability in the intuitionistic second-order propositional logic (resp. inhabitation in the polymorphic
lambda-calculus) was shown by Löb to be undecidable in 1976. Since the original proof is heavily
condensed, Arts in collaboration with Dekkers provided a fully unfolded argument in 1992 spanning
approximately fifty pages. Later in 1997, Urzyczyn developed a different, syntax oriented proof.
Each of the above approaches embeds (an undecidable fragment of) first-order predicate logic into
second-order propositional logic.

In this work, we develop a simpler undecidability proof by reduction from solvability of Diophan-
tine equations (is there an integer solution to P (x1, . . . , xn) = 0 where P is a polynomial with integer
coefficients?). Compared to the previous approaches, the given reduction is more accessible for
formalization and more comprehensible for didactic purposes. Additionally, we formalize soundness
and completeness of the reduction in the Coq proof assistant under the banner of “type theory inside
type theory”.
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1 Introduction

Polymorphic λ-calculus (also known as Girard’s system F [7] or λ2 [2]) is directly related to
intuitionistic second-order propositional logic (IPC2) via the Curry–Howard isomorphism
(for an overview see [11]). In particular, provability in the implicational fragment of IPC2 (is
a given formula an IPC2 theorem?) corresponds to inhabitation in system F (given a type,
is there a term having that type in system F?).

Provability in IPC2 was shown by Löb to be undecidable [8] (see also [5] for an earlier
approach by Gabbay in an extension of IPC2). Löb’s proof is by reduction from provability
in first-order predicate logic via a semantic argument. Since the original proof is heavily con-
densed (14 pages), Arts in collaboration with Dekkers provided a fully unfolded argument [1]
(50 pages) reconstructing the original proof. Later, Urzyczyn developed a different, syntax
oriented proof showing undecidability of inhabitation in system F [13] (6 pages, moderately
condensed). Urzyczyn’s proof is by reduction from two-counter automata to a fragment of
first-order predicate logic to inhabitation in system F. In 2010 Sørensen and Urzyczyn [12]
gave a general translation of intuitionistic first-order predicate logic, covering the full set of
logical connectives, into intuitionistic second-order propositional logic.
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Abstract
We formalise undecidability results concerning higher-order
unification in the simply-typed λ-calculus with β-conversion
in Coq. We prove the undecidability of general higher-order
unification by reduction from Hilbert’s tenth problem, the
solvability of Diophantine equations, following a proof by
Dowek. We sharpen the result by establishing the undecid-
ability of second-order and third-order unification following
proofs by Goldfarb and Huet, respectively.

Goldfarb’s proof for second-order unification is by reduc-
tion from Hilbert’s tenth problem. Huet’s original proof uses
the Post correspondence problem (PCP) to show the undecid-
ability of third-order unification. We simplify and formalise
his proof as a reduction from modified PCP. We also verify a
decision procedure for first-order unification.

All proofs are carried out in the setting of synthetic unde-
cidability and rely on Coq’s built-in notion of computation.

1 Introduction
Higher-order unification in the simply-typed λ-calculus is
the problem of finding a substitutionmaking two given typed
terms convertible. We speak of higher-order unification be-
cause substitution may insert abstractions λx .s for variables.
While first-order unification was conceived as a method

to implement automated resolution in classical logic, higher-
order unification has a variety of applications nowadays.
For instance, it is used as the foundation of programming
languages such as λ-Prolog, in automated deduction, and
in type-inference procedures for dependent-type theory. In
particular, higher-order unification naturally arises when
working in proof assistants based on type theory. Proving
the proposition ∀n. n + 0 = n requires an application of
the induction lemma ∀P . P(0) → (∀n. P(n) → P(n + 1)) →
∀n. P(n). Higher-order unification can be used to infer P :=
λn.n + 0 = n to make ∀n. n + 0 = n convertible to the con-
clusion ∀n. P(n). Similarly, it allows for programming with
implicit arguments and automated proof search.

The decision problem concerning higher-order unification
can be analysed in general or at fixed orders. For instance,
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second-order unification only mentions terms with free vari-
ables of second-order type. In contrast, third-order unifica-
tion is concerned with terms where variables have a type of
at most order three.
In 1965, first-order unification was shown to be decid-

able by Robinson [1965] and even has linear decision al-
gorithms [Martelli and Montanari 1976; Paterson and Weg-
man 1978]. In 1972, Huet [1972, 1973] and Lucchesi [1972]
independently showed that third-order unification is unde-
cidable, thereby establishing the undecidability of higher-
order unification in general. In both cases the proof is by
reduction from Post’s correspondence problem [1946]. In
1981, Goldfarb [1981] proved that even second-order uni-
fication is undecidable by reducing from the solvability of
Diophantine equations, more commonly known as Hilbert’s
tenth problem [Davis 1973; Matijasevivc 1970].
In this paper, we formalise decidability results concern-

ing first- and higher-order unification for the Curry-style
simply-typed λ-calculus with unrestricted β-conversion in
the constructive type theory of Coq. Explicitly, we formal-
ise the undecidability of second- and third-order unification
(and thus higher-order unification in general) by simplifying
the constructions of Goldfarb and Huet. We implement a
verified decider for first-order unification in the λ-calculus
and give enumerability proofs for all considered problems.

On paper, to show the undecidability of a problem P, one
usually gives a computable many-one reduction from an
undecidable problem Q to P. Since formally proving the
computability of functions by encoding them in a concrete
model of computation is tedious, we construct our reductions
in a synthetic setting and rely on Coq’s built-in notion of
computation, following several recent publications on unde-
cidability proofs. The result is incorporated into a library of
formalised undecidable problems in Coq [Forster et al. 2019a].
Definitions, lemmas, and theorems in the PDF-version of this
document are hyperlinked with the accompanying Coq de-
velopment; the linked statements are marked by a -symbol.

Contribution We contribute the first formalisation of un-
decidability for any unification problem. All our problems
are presented as unification in a simply-typed, Curry-style
λ-calculus allowing β-conversion in any context. We formal-
ise the undecidability of higher-order unification in general
following Dowek [2001], by reduction from Hilberts tenth
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Abstract
We formally prove the undecidability of entailment in intu-
itionistic linear logic in Coq. We reduce the Post correspond-
ence problem (PCP) via binary stack machines and Minsky
machines to intuitionistic linear logic. The reductions rely on
several technically involved formalisations, amongst them a
binary stack machine simulator for PCP, a verified low-level
compiler for instruction-based languages and a soundness
proof for intuitionistic linear logic with respect to trivial
phase semantics. We exploit the computability of all func-
tions definable in constructive type theory and thus do not
have to rely on a concrete model of computation, enabling
the reduction proofs to focus on correctness properties.

CCS Concepts • Theory of computation→Models of
computation; Linear logic; Type theory.

Keywords Undecidability, many-one reduction, binary stack
machines, Minsky machines, intuitionistic linear logic, low-
level compiler, constructive type theory, Coq
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1 Introduction
Undecidability of advanced problems is usually established
using computable (many-one) reductions from a problem
already known to be undecidable. Such reductions rely on
many subtle details and could thus be a prime example for
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the use of interactive theorem provers to assist ongoing re-
search. However, formalisations of undecidability proofs are
not common in the literature. There are two main obstacles
in our eyes: (1) proofs on paper mostly omit the invariants
needed for the verification of the reduction; (2) they omit
the computability proof, which amounts to the formal veri-
fication of a program in the chosen model of computation.
Constructive type theory, as implemented in the proof

assistant Coq [37], provides a particularly convenient set-
ting for decidability and undecidability proofs. Since every
function definable in constructive type theory is computable,
one can use a synthetic approach to computability. This ap-
proach makes an explicit model of computation and explicit
computability proofs unnecessary, enabling the proofs to
focus on the invariants needed for the reduction.
In this paper we contribute a formalised chain of reduc-

tions, starting at the Post correspondence problem (PCP), via
binary PCP (BPCP), BPCPwith indices (iBPCP), binary stack
machines (BSM), Minsky machines (MM) and (elementary)
intuitionistic linear logic (both eILL and ILL):

PCP ⪯ BPCP ⪯ iBPCP ⪯ BSM ⪯ MM ⪯ eILL ⪯ ILL

Combined with the reductionHalt ⪯ PCP of [10], this yields
a fully formalised reduction from the halting problem of
Turing machines to entailment in ILL.

PCP is a problem over a finite set of cards, each having a
string at the top and bottom. Such a PCP instance is solvable
if there is a non-empty finite sequence of those cards with
an equal upper and lower string. We follow [10] in giving a
definition of PCP with countably many symbols. We reduce
PCP to BPCP, where symbols are restricted to Booleans and
to iBPCP, where the sequence of cards is represented by a
sequence of their indices (natural numbers).
We describe a general framework for the semantics of

instruction-based machine models and explain how it can
be used for compositional reasoning. We then define bin-
ary stack machines as an instance of such instruction-based
machines. BSMs have a fixed number of binary stacks and
programs consist of consecutively indexed PUSH and POP
instructions, the latter allowing conditional jumps based
on the obtained Boolean or if the stack is empty. A BSM
program terminates if it jumps to a non-existing index. We
verify an iBPCP simulator —which is a BSM program ter-
minating if and only if a given iBPCP instance is solvable—
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Development Issues

In total: 75.000 LOC

Development on Github, Travis CI helps a lot

Still figuring out best practices to target multiple Coq versions

1 different branches?
2 configure.sh files?
3 only target most up-to-date Coq version?

Some parts of the library depend on Equations or MetaCoq. Should
the whole library depend now? What about Windows users?

Different used standard libraries lead to incompatibility

Different trust in axioms
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Future Work

Include more problems

Typability in λΠ or type inference in System Fω

Intersection problem of two-way automata

Wang tiling problems, Post’s tag systems

Subtyping in F6, typability and type checking in System F

ZF entailment, Trakhtenbrot’s theorem

Semi unification

Work out foundations:

What is a realizability model for Coq?

Which axioms are compatible? Func. ext.? Prop. ext.? PI? EM?
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Join us!
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github.com/uds-psl/coq-library-undecidability/

Questions?
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