ON THE EXPRESSIVE POWER OF EFFECT HANDLERS AND MONADIC REFLECTION

Yannick Forster Master's thesis supvervised by Ohad Kammar and Marcelo Fiore

	Introduction	Approach	Expressiveness	Conclusion
000 0000000000 00000 000	●000	00000000000	00000	000

How to incorporate effects?

- ► global store (i.e. references),
- ► exceptions,
- ► I/O,
- ▶ random,
- nondeterminism,
- or concurrency

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000
			1

AN EXAMPLE

```
exception Error
val r = ref 0
fun error () = raise Error
fun test () = (r := 5; error() handle Error => !r)
```

test() evaluates to?

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

AN EXAMPLE

```
exception Error
val r = ref 0
fun error () = raise Error
fun test () = (r := 5; error() handle Error => !r)
```

test() evaluates to?

Why not to 0?

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000
			í.

WOULD BE COOL:

User definable effects on top of a functional language

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

Would be cool:

User definable effects on top of a functional language

- ► Monads
- Algebraic effects
- Delimited control

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

GOAL

Compare two existing approaches in their expressiveness Fine-grained notion needed, because most practical languages are Turing-complete

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

GOAL

Compare two existing approaches in their expressiveness Fine-grained notion needed, because most practical languages are Turing-complete

More like "Compare expressiveness of recursion and while-loops" than like "Compare expressiveness of Coq and Javascript"

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

Approach

- take a base language (functional, typed, strongly normalising)
- add each concept to the language
- define denotational semantics to each resulting calculus
- prove denotational semantics to be adequate
- use this to compare expressiveness

Introduction	
0000	

Approach 000000000000 Expressiveness 00000 Conclusion 000

TAKE A BASE LANGUAGE

Call-by-push-value lambda-calculus from Levy

Distinguishes between values and computations

Levy (1999), Levy (2004)

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

TAKE A BASE LANGUAGE

(values)
$$V, W ::= x \mid () \mid (V_1, V_2) \mid inj_i V \mid \{M\}$$

(computations)
 $M, N ::= split(V, x_1.x_2.M) \mid case_0(V)$
 $\mid case(V, x_1.M_1, x_2.M_2) \mid V!$
 $\mid return V \mid let x \leftarrow M in N$
 $\mid \lambda x.M \mid M V$
 $\mid \langle M_1, M_2 \rangle \mid prj_i M$

Figure 2.1: CBPV syntax

Distinguishes between values and computations

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

TAKE A BASE LANGUAGE

Levy (1999), Levy (2004)

Introduction	
0000	

Approach

Expressiveness 00000 Conclusion 000

TAKE A BASE LANGUAGE

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

ADD EACH CONCEPT

- Effects and handler calculus $\lambda_{\rm eff}$
- Monadic reflection calculus λ_{mon}

Kammar, Lindley, and Oury (2013), Filinski (2010)

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000
			í.

EFFECT HANDLERS

Exception handlers:

(... (**raise** e n : B) ...) : C **handle** e (n : A) => (exp : C)

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

EFFECT HANDLERS

Exception handlers:

(... (**raise** e n : B) ...) : C **handle** e (n : A) => (exp : C)

Effect handlers:

```
(... (e n : B) ...) : A
    handle e (name : string, k : B -> A) =>
    (exp2 : A)
```


Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000
THE ($\begin{array}{c c} \textbf{CALCULUS} \begin{array}{c} \lambda_{eff} \\ \hline \textbf{S} \ \textbf{kinding} & \left[\begin{array}{c} \left[\begin{array}{c} \left[h_{k} \Lambda : \textbf{Val} \right] \\ \hline h_{k} \Lambda : \textbf{Val} \\ \hline h_{k} (\textbf{op} : \Lambda \rightarrow \textbf{B}) \\ \hline \textbf{W} \\ \textbf{Uet} \\ \textbf{K} \\ \textbf{Vet} \\ \textbf{Vet}$	$\{M\}$ $\mathbf{z}_{0}(\mathbf{V})$ $ \mathbf{V} $ $\mathbf{in N}$ $\frac{\mathbf{Eff} / \mathbf{Comp}_{\mathbb{E}} \mathbf{Ctxt} \mathbf{HndIr}$ $\times A_{2} 0 A_{1} + A_{2} U_{\mathbb{E}} \mathbf{C}$ $\Rightarrow B \forall \mathbb{E} \emptyset$ C $\cdots, x_{n} : A_{n}$ $\mathbf{and types}$	

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

$\begin{array}{l} \texttt{raise}:\texttt{string} \rightarrow \textit{FA} \\ \texttt{try}: U_{\{\texttt{exc:string} \rightarrow 0\}}\textit{FA} \rightarrow U_{\textit{E}}(\texttt{string} \rightarrow \textit{FA}) \rightarrow \textit{FA} \end{array}$

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

 $\begin{array}{l} \texttt{raise}:\texttt{string} \rightarrow \textit{FA} \\ \texttt{try}: U_{\{\texttt{exc:string} \rightarrow 0\}}\textit{FA} \rightarrow U_{\textit{E}}(\texttt{string} \rightarrow \textit{FA}) \rightarrow \textit{FA} \end{array}$

 $try{1 + raise "number"}{\lambda s. if s = "number" then 0 else 1}$

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

$\begin{array}{l} \texttt{raise}:\texttt{string} \rightarrow \textit{FA} \\ \texttt{try}: U_{\{\texttt{exc:string} \rightarrow 0\}}\textit{FA} \rightarrow U_{\textit{E}}(\texttt{string} \rightarrow \textit{FA}) \rightarrow \textit{FA} \end{array}$

try{1 + raise "number"}{ $\lambda s.if s =$ "number" then 0 else 1} $\longrightarrow^* 0$

Introduction	Approach	Expressiveness	Conclusion
0000	000000000000	00000	000

raise := λs .let $x \leftarrow exc s (\lambda x.return x)$ in case₀(x)

$try := \lambda c h$.handle c! with H

where $H^{\text{return}} \coloneqq \lambda x.\text{return } x$ and $H^{\text{exc}} \coloneqq \lambda s \ k.h! \ s.$

Introduction	Approach	Expressiveness	Conclusion
0000	000000000000	00000	000

MONADIC REFLECTION

Error monad: $TA \coloneqq A + 1$

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

MONADIC REFLECTION

Error monad: $TA \coloneqq A + 1$ Reflection for computations with errors:

$$\frac{M:1 \xrightarrow{\operatorname{err}} A}{\operatorname{reify}_{\operatorname{err}}(M):A+1} \qquad \frac{N:A+1}{\operatorname{reflect}_{\operatorname{err}}(N):1 \xrightarrow{\operatorname{err}} A}$$

Effects are ordered with the trivial effect \perp .

Figure 4.5: λ_{mon} -calculus operational semantics

Introduction	Approach	Expressiveness	Conclusion
0000	0000000000000	00000	000

PROGRAMMING WITH MONADIC REFLECTION

$$\begin{split} C^{\text{ex}} &\coloneqq \alpha + \text{string} \\ N^{\text{ex}}_u &\coloneqq \lambda x. \text{return inj}_1 x \\ N^{\text{ex}}_b &\coloneqq \lambda x f. \text{let } y \leftarrow x \text{ in } \text{case}(y, x.fx, s. \text{return } (\text{inj}_2 s))) \\ \text{ex} &\succ \bot \sim (\alpha. C^{\text{ex}}, N^{\text{ex}}_u, N^{\text{ex}}_b) \end{split}$$

raise := $\lambda s.\hat{\mu}^{ex}(\text{return } (\text{inj}_2 s))$ try := $\lambda c h.\text{let } s \leftarrow [c]^{ex} \text{ in } \text{case}(s, a.\text{return } a, x.hx)$

Introduction	Approach	Expressiveness	Conclusion
0000	000000000000	00000	000

DENOTATIONAL SEMANTICS

- Denotational semantics for CBPV by Levy
- Denotational semantics for λ_{eff} by Kammar et al.
- Denotational semantics for λ_{mon} contributed

Introduction Approach Value terms $\begin{bmatrix} x \end{bmatrix}(\gamma) \coloneqq \pi_x(\gamma) & \begin{bmatrix} O \end{bmatrix}(\gamma) \coloneqq \star \\ \begin{bmatrix} \mathbf{inj}_i \ V \end{bmatrix}(\gamma) \coloneqq \langle i, \llbracket V \rrbracket(\gamma) \rangle$ Denot $\llbracket (V_1, V_2) \rrbracket (\gamma) := \langle \llbracket V_1 \rrbracket (\gamma), \llbracket V_2 \rrbracket (\gamma) \rangle$ Computation terms The $\llbracket \{M\} \rrbracket (\gamma) := \llbracket M \rrbracket (\gamma)$ $\llbracket split(V, x_1. x_2. M) \rrbracket(Y) := \llbracket M \rrbracket(Y[x_1 \mapsto a_1, x_2 \mapsto a_2]), \text{ where } \llbracket V \rrbracket(Y)$ $\begin{array}{l} & \left[\operatorname{case}_{n}(V) \right] & (r) \leftarrow \left[v_{1} \right] (\gamma(x_{1} \mapsto a_{1}, x_{2} \mapsto a_{2}) \right], \text{ where } \left[V \right] (\nu) \\ \bullet \text{ value type}_{l_{k}, k} : \text{ val a set}_{[A]} \\ \bullet \text{ effect}_{l_{k}, E} : \text{ Eff a (narrowster)} \\ \bullet \text{ and } \left[v_{k} \right] (\nu) \\ \end{array}$ $\begin{array}{c} \operatorname{rameters} \\ \operatorname{H}_{\mathbb{Z}}^{\operatorname{rameters}} \left[\mathsf{M}_{\mathbb{Z}}^{\mathbb{Z}}(\gamma) \right] \\ \operatorname{H}_{\mathbb{$ [handle M with H] $(\gamma) := [M](\gamma) \gg f$ $\begin{bmatrix} [na... \\ [[\lambda x, M]](\gamma) := & \\ [[\lambda x, M]](\gamma) :=$ Figure 2.6: CBPV denotational semantics for terms $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{$ Contexts $\llbracket \Gamma \rrbracket := \prod_{x \in Dom(\Gamma)} \sqcup$ Figure 2.5: CBPV den

Introduction Approach Value terms $\begin{bmatrix} x \end{bmatrix}(\gamma) \coloneqq \pi_x(\gamma) & \llbracket O \end{bmatrix}(\gamma) \coloneqq \star \\ \begin{bmatrix} \operatorname{inj}_i V \end{bmatrix}(\gamma) \coloneqq \langle i, \llbracket V \rrbracket(\gamma) \rangle$ Denot $\llbracket (V_1, V_2) \rrbracket (\gamma) := \langle \llbracket V_1 \rrbracket (\gamma), \llbracket V_2 \rrbracket (\gamma) \rangle$ Computation terms The $\llbracket \{M\} \rrbracket (\gamma) := \llbracket M \rrbracket (\gamma)$ $\llbracket split(V, x_1.x_2.M) \rrbracket(Y) := \llbracket M \rrbracket(Y[x_1 \mapsto a_1, x_2 \mapsto a_2]), \text{ where } \llbracket V \rrbracket(Y)$ $\begin{bmatrix} c_{ase_{n}}(V) & \| i_{s} \text{ is the empty} & \| v_{l} \| (Y|x_{1} \mapsto a_{1}, x_{2} \mapsto a_{2})), \text{ where } \| V \| (v) \\ a_{l} \downarrow_{k} A : \forall a_{l} a_{set} \| A \|_{2}; \text{ the empty} & \text{map, as } \| V \| : \| \Gamma \| \to \emptyset \text{ necess}; \\ \text{: Eff a } (parameters) & \| (v) \gg \emptyset \\ \end{bmatrix} := \{ \emptyset, i \} \quad a_{2} \}$ value type ⊢_k A : Val a set [A]; value type ⊢_k A: Val a set [A];
effect ⊢_k E: Eff a (parameter: The semantics assigns to each θ ∈ [Θ] and well kinded value type Θ | Σ ⊢_k A : Val a set [A] (θ); $[A \stackrel{E}{\Rightarrow} \stackrel{E'}{\subset}] := [A], [B])$ effect Σ ⊢_k e : Eff a monad [[e]]; $[\varepsilon] := (T_e, return_e, \gg e)$ e-based computation type Θ | Σ ⊢_k C : Comp_e a [e]-algebra • context $\Theta \mid \Sigma \vdash_k \Gamma$: Ctxt a set of tuples $\llbracket \Gamma \rrbracket(\theta)$ induced by Γ $\sum_{\substack{\alpha \in \mathcal{X}^{2} \\ \forall \beta \in \mathcal{K}^{n}}} \sum_{i=1}^{n} | \{ \theta | \alpha_{i} \mapsto X, \alpha_{2} \mapsto Y \} \} : T_{i}X \to (X \to T_{i}Y) \to T_{i}Y.$ $return_{\varepsilon}^{X}\coloneqq \llbracket N_{u} \rrbracket (\theta[\alpha\mapsto X]): X \to T_{\varepsilon}X$ where [{op : ~ and define $[\bot]$ to be the identity monad. Figure 2.6: CBPV denotational semantics for terms $\llbracket \langle \rangle \rrbracket (\gamma) := \star$ $\overset{obe the ideal}{\quad \quad } (\gamma) \coloneqq \pi_i(\llbracket M \rrbracket(\gamma))$ Contexts $\llbracket \Gamma \rrbracket := \prod_{x \in Dom(\Gamma)} \sqcup$ Figure 2.5: CBPV dem

Approach Value terms $\begin{bmatrix} x \end{bmatrix}(\gamma) \coloneqq \pi_x(\gamma) & \begin{bmatrix} O \end{bmatrix}(\gamma) \coloneqq \star \\ \begin{bmatrix} \mathbf{inj}_i \ V \end{bmatrix}(\gamma) \coloneqq \langle i, \llbracket V \rrbracket(\gamma) \rangle$ Denot
$$\begin{split} \llbracket (V_1, V_2) \rrbracket (\gamma) &\coloneqq \langle \llbracket V_1 \rrbracket (\gamma), \llbracket V_2 \rrbracket (\gamma) \rangle \\ \llbracket \{M\} \rrbracket (\gamma) &\coloneqq \llbracket M \rrbracket (\gamma) \end{split}$$
Computation terms The $\llbracket split(V, x_1.x_2.M) \rrbracket(Y) := \llbracket M \rrbracket(Y[x_1 \mapsto a_1, x_2 \mapsto a_2]), \text{ where } \llbracket V \rrbracket(Y)$ value type ⊢_k A : Val a set [A]; value type ⊢_k A: Val a set [A];
effect ⊢_k E: Eff a (parameter: f (A) := [M] (Y) >= f The semantics assigns to each θ ∈ [Θ] and well kinded $\begin{bmatrix} A & \text{where } F_{i,\epsilon} \text{ is the free algebra for the monad } [\epsilon]. \text{ Note that this means at level } \epsilon \text{ that } \\ \stackrel{\|FA}{=} (\theta) = T_{\epsilon}([A](\theta)) = |[C(A/\alpha]](\theta)|.$ value type Θ | Σ ⊢_k A : Val a set [A] (θ); effect Σ ⊢_k e : Eff a monad [[e]]; e-based computation type Θ | Σ ⊢_k C : Comp_e a [e]-algebra • context $\Theta \mid \Sigma \vdash_k \Gamma$: Ctxt a set of tuples $\llbracket \Gamma \rrbracket(\theta)$ induced by Γ $\mathsf{T}_{\varepsilon}\mathsf{X}:=|[\![\mathsf{C}]\!]\,(\theta[\alpha\mapsto\mathsf{X}])|$ $return_{\varepsilon}^{X}\coloneqq \llbracket N_{u} \rrbracket (\theta[\alpha\mapsto X]): X \to T_{\varepsilon}X$ $\gg_{\epsilon}^{X,Y} = [N_b] \left(\theta(\alpha_1 \mapsto X, \alpha_2 \mapsto Y) \right) : T_\epsilon X \to (X \to T_\epsilon Y) \to$ where [{op : ~ and define $[\bot]$ to be the identity monad. Figure 2.6: CBPV denotational semantics for terms $\llbracket\langle\rangle\rrbracket(\gamma):=\star$ $\overset{obe the ideal}{\quad \quad } (\gamma) \coloneqq \pi_i(\llbracket M \rrbracket(\gamma))$ Contexts $\llbracket \Gamma \rrbracket := \prod_{x \in Dom(\Gamma)} \sqcup$ Figure 2.5: CBPV dem

Introduction	Approach	Expressiveness	Conclusion
0000	000000000000	00000	000

ADEQUACY AND SOUNDNESS

Theorem 2.18 (adequacy). Denotational equivalence implies contextural equivalence. Explicitly: Given a monad satisfying the mono requirement, then for all $\Gamma \vdash P, Q : X$, if $[\![P]\!] = [\![Q]\!]$ then $P \simeq Q$.

Introduction	Approach	Expressiveness	Conclusion
0000	000000000000	00000	000

ADEQUACY AND SOUNDNESS

Theorem 2.18 (adequacy). Denotational equivalence implies contextural equivalence. Explicitly: Given a monad satisfying the mono requirement, then for all $\Gamma \vdash P, Q : X$, if $[\![P]\!] = [\![Q]\!]$ then $P \simeq Q$.

Corollary 2.19 (soundness). All well-typed closed ground returners reduce to a normal form. Explicitly: for all \vdash M : FG there exists some \vdash V : G such that:

 $\mathsf{M} \longrightarrow^{\star} \mathbf{return} \; \mathsf{V}$

ntroduction	Approach	Expressiveness	Conclusion
2000	00000000000	00000	000

ADEQUACY PROOFS

Using logical relations

- ► By Levy for CBPV
- Contributed for λ_{eff} (Hermida's lifting)
- Contributed for λ_{mon} ($\top \top$ -lifting)

Introduction A	Approach	Expressiveness	Conclusion
0000 0	00000000000	00000	000

TYPED MACRO EXPRESSABILITY

One concept can express another if there is a *local* translation function _ that:

- ► is homomorphic on the base calculus,
- replaces new syntactic constructs without rearranging the whole program,
- ► translates terms $\emptyset \vdash M : FG$ such that $M \longrightarrow^* \mathbf{return} V \iff M$ ***return** V,
- translates terms $\emptyset \vdash M : X$ to terms $\emptyset \vdash \underline{M} : \underline{X}$.

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	0000	000

λ_{eff} can macro express λ_{mon}

$$\begin{aligned} \underline{\hat{\mu}^{\varepsilon}(N)}_{E} &= \operatorname{op}^{\varepsilon} \left\{ \underline{N}_{E} \right\} (\lambda x. \operatorname{return} x) \\ \underline{[N]^{\varepsilon}}_{E} &= \operatorname{handle} \underline{N}_{E} \operatorname{with} H_{\varepsilon}^{E} \\ & \text{for} \left(\varepsilon \sim (N_{u}, N_{b}) \right) \in E \text{ and} \\ H_{\varepsilon}^{E} &\coloneqq \left\{ \operatorname{return} V \mapsto \underline{N}_{u_{E}} V, \operatorname{op}^{\varepsilon} p f \mapsto \underline{N}_{b_{E}} p f \right\} \\ & \cup \left\{ \operatorname{op}^{\varepsilon'} p f \mapsto \operatorname{op}^{\varepsilon'} p f \middle| \varepsilon \neq \varepsilon' \in E \right\} \end{aligned}$$

 $\underline{\text{leteffect } \varepsilon \succ e \text{ be } (\alpha.C, N_u, N_b) \text{ in } N_E} = \underline{N}_{E, \varepsilon \sim (N_u, N_b)}$

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

Focus in this thesis

Produce negative results: Prove that *no* translation exists with the help of denotational semantics

$\lambda_{ m mon}$ can not typed macro express $\lambda_{ m eff}$

- There are only finitely many terms for every type in λ_{mon}
- ► Some types in λ_{eff} have countably many observationally distinguishable terms
- Given a translation $\lambda_{\text{eff}} \rightarrow \lambda_{\text{mon}}$, take the type <u>F1</u>
- ▶ <u>*F*1</u> has *k* terms
- ► *F*1 has more than *k* observationally distinguishable terms
- Derive a contradiction

IntroductionApproachExpressivenessConclusion0000000000000000000000

The big picture

CONTRIBUTION

- ► Adequacy proof for the set theoretic model for calculus of effect handlers \u03c6_{eff}
- ► Adequate denotational semantics for calculus of monadic reflection λ_{mon}
- ► Definition of (typed) macro expressability
- Proof that λ_{mon} is macro expressible in λ_{eff}
- Proof that λ_{eff} is not macro typed expressible in λ_{mon}

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000
			(

FUTURE WORK

- Show that λ_{mon} is not typed macro expressible in λ_{eff} ;
- extend the type system of λ_{eff} to typed macro express λ_{mon} ;
- do similar comparison for calculus of delimited control (partially solved).

Introduction	Approach	Expressiveness	Conclusion
0000	00000000000	00000	000

FUTURE WORK

- Show that λ_{mon} is not typed macro expressible in λ_{eff} ;
- extend the type system of λ_{eff} to typed macro express λ_{mon} ;
- do similar comparison for calculus of delimited control (partially solved).

► Formalise this in Coq?

Introduction	Approach	Expressiveness	Conclusion
0000	000000000000	00000	00●

Related work / Bibliography

- Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis, volume 2 of Semantics Structures in Computation. Springer, 2004.
- ► Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. SIGPLAN Not. 48(9):145–158, September 2013.
- Andrzej Filinski. Monads in action. SIGPLAN Not., 45(1):483–494, January 2010.
- Matthias Felleisen. On the expressive power of programming languages. In Science of Computer Programming, pages 134–151. Springer-Verlag, 1990.

Value relations $R_{,} \subseteq [A] \times \lambda_{eff,h}$ $\mathbf{R}_{\mathbf{x}} := \{ \langle \star, \mathbf{V} \rangle | \mathbf{V} \simeq \mathbf{O} \}$ $R_{A_1 \times A_2} \coloneqq \left\{ \langle \langle a_1, a_2 \rangle, V \rangle \Big| \exists V_1, V_2 \forall i. V_i : A_i. \langle a_i, V_i \rangle \in R_{A_i}, V \simeq (V_1, V_2) \right\}$ $R_{\circ} := \emptyset$ $\mathsf{R}_{\mathsf{A}_1 + \mathsf{A}_2} = \bigcup_{\iota \in (\mathsf{I},\mathsf{V})} \left\{ \langle \iota_\iota \mathfrak{a}, \mathsf{V} \rangle \Big| \exists \mathsf{V}' : \mathsf{A}_{\mathfrak{t}}, \langle \mathfrak{a}, \mathsf{V}' \rangle \in \mathsf{R}_{\mathsf{A}_{\mathfrak{t}}}, \mathsf{V} \simeq \textit{inj}_{\mathfrak{t}} \, \mathsf{V}' \right\}$ $\mathbf{R}_{u,c} := \{ \langle \mathbf{a}, \mathbf{V} \rangle | \exists \mathbf{M} : \mathbf{C}, \langle \mathbf{a}, \mathbf{M} \rangle \in \mathbf{R}_{v,c}, \mathbf{V} \simeq \{\mathbf{M}\} \}$ Computation relations $R_{L,C} \subseteq |[C]| \times \lambda_{eff \in C}$ $\begin{array}{l} R_{_{E,FA}} \coloneqq R'_{_{E,FA}} \cup \{ \langle \textbf{return } \alpha, M \rangle | \exists V : A, \langle \alpha, V \rangle \in R_{_{A}}, M \simeq \textbf{return } V \} \\ R_{_{E,A \rightarrow C}} \coloneqq R'_{_{E,A \rightarrow C}} \cup \{ \langle f, M \rangle | \forall \langle \alpha, V \rangle \in R_{_{E,A}}, \langle f(\alpha), M | V \rangle \in R_{_{E,C}} \} \\ R_{_{E,T}} \coloneqq R'_{_{E,T}} \coloneqq R'_{_{E,T}} \cup \{ \langle \star, M \rangle | M \simeq \langle \rangle \} \end{array}$
$$\begin{split} \mathbf{R}_{\mathbf{E},\top} &:= \mathbf{R}_{\mathbf{E},\top}' \cup \{\langle \mathbf{x}, \mathbf{M} \rangle | \mathbf{M} \simeq \langle \rangle \} \\ \mathbf{R}_{\mathbf{E},\mathsf{C}_{1}\mathsf{d}\mathsf{C}_{2}} &:= \mathbf{R}_{\mathbf{E},\mathsf{C}_{1}\mathsf{d}\mathsf{C}_{2}} \cup \{\langle \mathsf{C}_{1}, \mathsf{C}_{2} \rangle, \mathsf{M} \rangle | \exists \mathsf{M}_{1} : \mathsf{C}_{1}, \mathsf{M}_{2} : \mathsf{C}_{2}.\mathsf{M} \simeq \langle \mathsf{M}_{1}, \mathsf{M}_{2} \rangle, \forall i. \langle \mathsf{c}_{1}, \mathsf{M}_{i} \rangle \in \mathsf{R}_{t,\mathsf{C}_{1}} \} \end{split}$$
where $R'_{r,c} := \{$ $\langle op_a(\lambda b.c), N \rangle \mid \exists VM.$ $\langle \mathfrak{a}, V \rangle \in R_{_{E,A}} \quad (op: A \to B) \in E$ $\langle \lambda b.c, \lambda x.M \rangle \in R_{F, B \to C}$ $N \simeq op V (\lambda x.M)$ Handler relations $R_{A^E \rightarrow E'C} \subseteq [A^E \Rightarrow^{E'}C] \times handlers(A^E \Rightarrow^{E'}C)$ $R_{A^{E} \Rightarrow E'C} := \{$ $\langle \langle D_{\gamma}, f_{\gamma} \rangle, H \rangle \mid$ $(op_i : A \rightarrow B) \in E, \quad D_{\gamma} = \langle | \llbracket C \rrbracket |, \llbracket - \rrbracket (\gamma) \rangle,$ $\forall i. \exists MN_i. \langle f_{\gamma}, \lambda x. M \rangle \in R_{s', h \to c} \land$ $\forall \langle a, V \rangle \in \mathbb{R}, ..., \langle k, \lambda x, M' \rangle \in \mathbb{R}B \to \mathbb{C}.$ $\langle [op_i] (\gamma) (\lambda x.kx \gg f) a, N_i [V/p, (\lambda x.handle M' with H)/k] \rangle$

Value relations $R_{\Theta,\Sigma,\Lambda}(\rho) \subseteq \llbracket A \rrbracket(\theta) \times \lambda_{mon}^{\Sigma}(A)$ $R_{\alpha,\varepsilon}$, $(\rho) := \{\langle \star, V \rangle | V \simeq ()\}$ $\mathsf{R}_{\boldsymbol{\theta},\boldsymbol{\Sigma},\boldsymbol{A}_{1}\times\boldsymbol{A}_{2}}\left(\boldsymbol{\rho}\right) \coloneqq \left\{ \langle \langle \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2} \rangle, \mathsf{V} \rangle \Big| \exists \mathsf{V}_{1}, \mathsf{V}_{2} \forall i.\mathsf{V}_{i} : \mathsf{A}_{i}. \left\langle \boldsymbol{\alpha}_{i}, \mathsf{V}_{i} \right\rangle \in \mathsf{R}_{\boldsymbol{\Sigma},\mathsf{A}_{i}}\left(\boldsymbol{\rho}\right), \mathsf{V} \simeq \left(\mathsf{V}_{1}, \mathsf{V}_{2}\right) \right\}$ $R_{\alpha,\tau,\alpha}(\rho) := \emptyset$ $R_{_{\Theta,\Sigma,A_{1}+A_{2}}}\left(\rho\right)=\bigcup_{i=1,2,3}\left\{\left\langle\iota_{i}\mathfrak{a},V\right\rangle\middle|\exists V':A_{i},\left\langle\mathfrak{a},V'\right\rangle\in R_{_{\Theta,\Sigma,A_{i}}}\left(\rho\right),V\simeq inj_{i}\,V'\right\}$ $\mathsf{R}_{\boldsymbol{\Theta},\boldsymbol{\nabla},\boldsymbol{\mu},\boldsymbol{C}}\left(\boldsymbol{\rho}\right) \coloneqq \left\{ \langle \boldsymbol{\alpha}, \boldsymbol{V} \rangle | \exists \boldsymbol{M} : \boldsymbol{C}, \langle \boldsymbol{\alpha}, \boldsymbol{M} \rangle \in \mathsf{R}_{\boldsymbol{\Theta},\boldsymbol{\nabla},\boldsymbol{\alpha},\boldsymbol{C}}\left(\boldsymbol{\rho}\right), \boldsymbol{V} \simeq \{\boldsymbol{M}\} \right\} \qquad \mathsf{R}_{\boldsymbol{\Theta},\boldsymbol{\nabla},\boldsymbol{\alpha}}\left(\boldsymbol{\rho}\right) \coloneqq \boldsymbol{\rho}(\boldsymbol{\alpha})$ *Computation relations* $\mathsf{R}^{v}_{\Theta_{T,e,C}}(\rho) \subseteq |[\![C]\!](\theta)\!| \times \lambda^{\Sigma,e}_{mon}(C)$ $\begin{array}{l} R^{v}_{\boldsymbol{\Theta},\boldsymbol{\Sigma},\boldsymbol{L},\mathsf{FA}}(\rho) \coloneqq \{\langle \boldsymbol{\alpha}, \textbf{return } V \rangle | \exists \langle \boldsymbol{\alpha}', V \rangle \in \mathsf{R}_{\boldsymbol{\Sigma},\boldsymbol{A}}(\rho) , \boldsymbol{\alpha} = \textbf{return } \boldsymbol{\alpha}' \} \\ R^{v}_{\boldsymbol{\Theta},\boldsymbol{\Sigma},\boldsymbol{L},\mathsf{FA}}(\rho) \coloneqq \{\langle \boldsymbol{\alpha}, \textbf{return } V \rangle | \exists \langle \boldsymbol{\alpha}', V \rangle \in \mathsf{R}_{\boldsymbol{\Sigma},\boldsymbol{A}}(\rho) , \boldsymbol{\alpha} = \textbf{return } \boldsymbol{\alpha}' \} \cup \end{array}$ $\left\{ \langle a, \widehat{\mu}^{\varepsilon}(N) \rangle \middle| (\varepsilon \sim \alpha. C) \in \Sigma, \langle a, N \rangle \in \mathbb{R}_{\Theta \Sigma \in C[A/\alpha]}(\rho) \right\}$ $R^{v}_{\Theta, \Sigma, \varepsilon, \delta, -C}(\rho) \coloneqq \{ \langle f, \lambda x. M \rangle | \forall \langle a, V \rangle \in R_{\Theta, \Sigma, \varepsilon, \delta}(\rho), \langle f(a), (\lambda x. M) | V \rangle \in R_{\Theta, \Sigma, \varepsilon, C}(\rho) \}$ $R_{\Theta,\Sigma,c,\top}^v(\rho) \coloneqq \{\langle \star, \langle \rangle \rangle\} \qquad R_{\Theta,\Sigma,c,C_1 \& C_2}^v(\rho) \coloneqq \Big\{ \langle \langle c_1, c_2 \rangle, (M_1, M_2) \rangle \Big| \langle c_i, M_i \rangle \in R_{\Theta,\Sigma,c,C_i}(\rho) \Big\}$ $\top - and \quad \top \top - liftings \quad \left| (\mathsf{R}^{v}_{\Theta_{T,e,C}}(\rho))^{\top} \subseteq (|\llbracket C \rrbracket(\theta)| \to |\llbracket \mathsf{FG} \rrbracket(\theta)|) \times \mathfrak{X}^{\Sigma,e}_{mon}(\mathsf{FG}[C]) \right|$ and $(\mathsf{R}^{\boldsymbol{v}}_{\Theta,\boldsymbol{\Sigma},e,C}(\rho))^{\top\top} \subseteq |\llbracket C \rrbracket(\theta)| \times \lambda^{\Theta,\boldsymbol{\Sigma},e}_{\text{mon}}(C)$
$$\begin{split} (\mathsf{R}^{\mathsf{v}}_{\scriptscriptstyle\Theta,\mathfrak{L},\mathsf{e},\mathsf{C}}(\rho))^\top &\coloneqq \big\{ \langle \mathsf{f}, \mathfrak{X} \rangle \big| \emptyset[\Theta] \mid \emptyset[\emptyset] \vdash_{\Sigma[\Sigma], \bot[\mathfrak{e}]} \mathfrak{X}[\] : \mathsf{FG}[\mathsf{C}]. \forall \langle \mathsf{a}, \mathsf{M} \rangle \in \mathsf{R}^{\mathsf{v}}_{\scriptscriptstyle\Theta,\mathfrak{L},\mathfrak{e},\mathsf{C}}(\rho) \ . \\ &\exists \mathsf{V}. \mathfrak{X}[\mathsf{M}] \simeq \mathbf{return} \ \mathsf{V} \land \langle \mathsf{fa}, \mathbf{return} \ \mathsf{V} \rangle \in \mathsf{R}^{\mathsf{v}}_{\scriptscriptstyle + | \mathsf{rec}}(\rho) \big\} \end{split}$$
 $\left(R^v_{\boldsymbol{\boldsymbol{\mu}},\boldsymbol{\boldsymbol{\boldsymbol{\nu}}},\boldsymbol{\boldsymbol{\boldsymbol{c}}},\boldsymbol{\boldsymbol{c}}}\left(\boldsymbol{\boldsymbol{\rho}}\right)\right)^{\top\top}\coloneqq \left\{\langle \boldsymbol{\boldsymbol{c}},\boldsymbol{\boldsymbol{M}}\rangle \Big| \forall \langle \boldsymbol{\boldsymbol{f}},\boldsymbol{\boldsymbol{\mathcal{X}}}\rangle \in (R^v_{\boldsymbol{\boldsymbol{\boldsymbol{\mu}}},\boldsymbol{\boldsymbol{\boldsymbol{\nu}}},\boldsymbol{\boldsymbol{c}},\boldsymbol{\boldsymbol{c}}}(\boldsymbol{\boldsymbol{\rho}}))^\top. \exists \boldsymbol{\boldsymbol{V}}.\boldsymbol{\boldsymbol{\mathcal{X}}}[\boldsymbol{\boldsymbol{M}}] \simeq return \; \boldsymbol{\boldsymbol{V}} \land \langle \boldsymbol{\boldsymbol{f}}\boldsymbol{\boldsymbol{c}},return \; \boldsymbol{\boldsymbol{V}}\rangle \in R^v_{\boldsymbol{\boldsymbol{\Sigma}},\boldsymbol{\boldsymbol{\boldsymbol{\iota}}},\boldsymbol{\boldsymbol{\Gamma}}\boldsymbol{\boldsymbol{G}}}(\boldsymbol{\boldsymbol{\rho}})\right\}$ $\mathbf{R}_{\boldsymbol{\Theta}_{\boldsymbol{\nabla}} \circ \boldsymbol{\Gamma}}(\boldsymbol{\rho}) := (\mathbf{R}_{\boldsymbol{\Theta}_{\boldsymbol{\nabla}} \circ \boldsymbol{\Gamma}}^{\mathsf{v}}(\boldsymbol{\rho}))^{\top \top}$

Lemma 2.17 (basic lemma). *For all* $\Gamma \vdash P : X, \gamma \in \llbracket \Gamma \rrbracket$ *and* $\langle V_x \rangle_{x \in Dom(\Gamma)}$: (*for all* $x \in Dom(\Gamma): \langle \pi_x \gamma, V_x \rangle \in R_{\Gamma(x)} \rangle \implies \langle \llbracket P \rrbracket \gamma, P[V_x/x]_{x \in Dom(\Gamma)} \rangle \in R_X$ **Lemma 4.10** (basic lemma). For all Θ , Σ , derivations $\Theta | \Gamma \vdash_{\Sigma, e} P : X$, $\langle \emptyset | \Sigma \vdash_k A_{\alpha} : \mathbf{Val} \rangle_{\alpha \in \Theta}$, $\theta = \langle \llbracket A_{\alpha} \rrbracket (\star) \rangle_{\alpha \in \Theta}$, $\rho = \langle R_{\emptyset, \Sigma, A_{\alpha}} (\star) \rangle_{\alpha \in \Theta}$, $\gamma \in \llbracket \Gamma \rrbracket (\theta)$, and $\langle V_x \rangle_{x \in \text{Dom}(\Gamma)'}$

$$\begin{split} & \textit{if for all } x \in Dom \ (\Gamma): \ \langle \pi_x \gamma, V_x \rangle \in \mathsf{R}_{\Theta, \Sigma, e, \Gamma(x)} \ (\rho) \textit{ then } \ \langle \llbracket \mathsf{P} \rrbracket \ (\theta) \gamma, \mathsf{P}_{[V_x/x]_{x \in Dom(\Gamma)}} \rangle \in \mathsf{R}_{\Theta, \Sigma, e, x} \ (\rho) \\ & \textit{and for all } \Theta, \ \Sigma, \ \langle \emptyset \mid \Sigma \vdash_k A_\alpha : \mathbf{Val}_{\alpha \in \Theta'} \ \theta = \ \langle \llbracket A_\alpha \rrbracket \ (\star) \rangle_{\alpha \in \Theta'} \ \rho = \ \langle \mathsf{R}_{\theta, \Sigma, A_\alpha} \ (\star) \rangle_{\alpha \in \Theta'} \textit{ and } \\ & \emptyset \mid \Sigma \vdash_k A, B: \mathbf{Val}, \ \forall (\varepsilon \sim (\alpha. C, \mathsf{N}_u, \mathsf{N}_b)) \in \Sigma \\ \end{split}$$

$$\left< [\![\mathsf{N}_{\mathfrak{u}}]\!] (\theta) (\star), \mathsf{N}_{\mathfrak{u}} \right> \in \mathsf{R}_{_{(\alpha, \Theta), \Sigma, e, \alpha \rightarrow C}} \left(\rho \big[\alpha \mapsto \mathsf{R}_{_{\emptyset, \Sigma, A}} (\star) \big] \right)$$

and

$$\langle \llbracket \mathsf{N}_b \rrbracket (\vartheta) (\star), \mathsf{N}_b \rangle \in \mathsf{R}_{_{(\alpha_1, \alpha_2, \Theta), \Sigma, \varepsilon, \mathfrak{u}_c (C\lceil \alpha_1/\alpha \rceil) \to \mathfrak{U}_c (\alpha_1 \to C\lceil \alpha_2/\alpha \rceil) \to C\lceil \alpha_2/\alpha \rceil} \left(\rho \bigl[\alpha_1 \mapsto \mathsf{R}_{_{\emptyset, \Sigma, A}} (\star), \alpha_2 \mapsto \mathsf{R}_{_{\emptyset, \Sigma, B}} (\star) \bigr] \bigr)$$

Monad

Definition 2.1. A monad is a triple $\langle T, return, \gg \rangle$ where T is a class function Set \rightarrow Set and return^X : X \rightarrow TX and \gg ^{X,Y} : TX \times (X \rightarrow TY) \rightarrow TY are families of functions such that for every f : X \rightarrow TY, g : Y \rightarrow TZ the following diagrams commute:

Algebra for a monad T

A *T*-algebra for a monad *T* is a pair $C = \langle |C|, c \rangle$ where |C| is a set and $c : T |C| \rightarrow |C|$ is a function satisfying:

$$c($$
return $x) = x$ $c($ **fmap** $c xs) = c(xs >>= id)$

for all $x \in |C|$ and $xs \in T^2 |C|$. |C| is called the *carrier* and we call *c* the *algebra structure*.