Towards a Formal Proof of the Cook-Levin Theorem

Lennard Gäher Advisor: Fabian Kunze Supervisor: Prof. Smolka

Saarland University

15 April 2020 Final Bachelor Talk

The Cook-Levin Theorem

SAT is NP-complete [Cook, 1971, Levin, 1973].

SAT

Given a Boolean formula in conjunctive normal form, does there exist a satisfying assignment?

[Karp, 1972]: 21 more combinatorial NP-complete problems

The Cook-Levin Theorem

SAT is NP-complete [Cook, 1971, Levin, 1973].

SAT

Given a Boolean formula in conjunctive normal form, does there exist a satisfying assignment?

[Karp, 1972]: 21 more combinatorial NP-complete problems

Mechanisation [Gamboa and Cowles, 2004]: verified construction without connection to computational model (ACL2)

Our Computational Model

Prevalent computational model: Turing machines

Turing machines as model of computation are inherently infeasible for the formalisation of any computability- or complexity-theoretic result

[Forster et al., 2020]

Here: use λ -calculus L Supported by:

■ reasonability of L [Forster et al., 2019]

■ extraction mechanism in Coq [Forster and Kunze, 2019] size explosion: "time bounds space" does not hold

Basic Complexity Theory

Problems $P, Q : X \rightarrow \mathbb{P}$ NP: verifier characterisation

$$P \preceq_p Q := \exists f : X \to Y, \quad (\forall x, P \ x \leftrightarrow Q(f \ x))$$

 \land polynomial-time computable f
 $\land f$ increases the size polynomially

NP-hard
$$P \coloneqq \forall Q, Q \in NP \rightarrow Q \preceq_p P$$

NP-complete $P \coloneqq P \in NP \land NP$ -hard P

Proving the Cook-Levin Theorem

SAT is NP-complete.

SAT

Given a Boolean formula in conjunctive normal form, does there exist a satisfying assignment?

Idea: encode computation as Boolean formula

L: non-local computations, too high-level $\ensuremath{\textcircled{}{\odot}}$

Proving the Cook-Levin Theorem

SAT is NP-complete.

SAT

Given a Boolean formula in conjunctive normal form, does there exist a satisfying assignment?

Idea: encode computation as Boolean formula

L: non-local computations, too high-level $\ensuremath{\textcircled{}}$

$$\begin{array}{c} \mathsf{L} \\ \downarrow \\ \mathsf{TM} \\ \downarrow \\ \mathsf{SAT} \end{array} \Big\} \text{ this thesis }$$

Generic Problem for Turing Machines

- formalisation by [Asperti and Ricciotti, 2015] and mechanisation from [Forster et al., 2020]
- two-sided infinite tapes
- no explicit blanks

Generic Problem for Turing Machines

- formalisation by [Asperti and Ricciotti, 2015] and mechanisation from [Forster et al., 2020]
- two-sided infinite tapes
- no explicit blanks

TMGenNP

TMGenNP (M, inp, t) := M is a *nondet*. 1-tape TM $\land M$ accepts on *inp* in $\leq t$ steps

Generic Problem for Turing Machines

- formalisation by [Asperti and Ricciotti, 2015] and mechanisation from [Forster et al., 2020]
- two-sided infinite tapes
- no explicit blanks

TMGenNP

TMGenNP (M, inp, k', t) := M is a *det.* 1-tape TM $\land \exists \ cert, |cert| \le k'$ $\land M$ accepts on inp # cert in < t steps

Bounded Size

SAT formula has a fixed size, but:

- TM may have different space usage depending on input
- TM may take a different number of steps until it halts

Tableau of Configurations¹

¹based on [Sipser, 1997], similar to [Cook, 1971]

Introduction	Tableau Construction	Encoding as CNF	Conclusion
00000	000000	00000	00

Configuration String

$$\Sigma_{\mathsf{TM}} = \{a, b, c\}$$

left tape half

right tape half

special blanks ... for unused regions of the string

Introduction 00000	Tableau C 00●000	Construct	ion			Encoc 0000	ling as (O	CNF		Conclusion 00
Configurat	ion String									
$\Sigma_{TM} = \{$	$a, b, c\}$					δ	$\delta(q_1,$	a) =	$(q_2, ^{\circ}b, L)$)
<i>(</i>	Z	-2	\longrightarrow -1	0	\leftarrow 1	2	3	z —		
			C	aa	2	h				

•••		C	q_1	d	D]	
	J	J	q_2^c	b	а	b]	

left tape half

right tape half

special blanks _ for unused regions of the string

Introduction 00000	Tableau Construction	Encoding as CNF 00000	Conclusion
Rewrite Windo	ows: Force Valio	d Configuration Chan	iges
$\Sigma_{TM} = \{a, b, b\}$	c}	$\delta(q_1, a) = (q_2, \circ)$	<i>b</i> , L)

← <i>z</i>		\rightarrow		<i>(</i>			<u>z</u> —	\longrightarrow
	-2	-1	0	1	2	3		
	l	с	q_1^a	а	Ь	J	J	
	l]	q_2^c	b	а	b]	

Introduction 00000	Tableau Construction	Encoding as CNF 00000	Conclusion
Rewrite Win	dows: Force Valid	Configuration Cha	inges

$$\Sigma_{\mathsf{TM}} = \{\mathsf{a}, \mathsf{b}, \mathsf{c}\}$$
 $\delta(q_1, \mathsf{a}) = (q_2, {}^\circ\mathsf{b}, \mathsf{L})$

$$\begin{array}{c|c} c & q_1^a & a \\ \hline - & q_2^c & b \end{array}$$

Introduction	Tableau Constructio	n Encoding as CNF	Conclusion
00000		00000	00
Rewrite	Windows: Force	Valid Configuration	Changes

$$\Sigma_{\mathsf{TM}} = \{a, b, c\}$$
 $\delta(q_1, a) = (q_2, {}^\circ b, \mathsf{L})$

$$\begin{array}{c|c} c & q_1^a & a \\ \hline & & \\ \hline & & \\ \hline & & \\ \end{array} \begin{array}{c|c} c & q_1^a & a \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \end{array} \begin{array}{c|c} c & q_1^c & a \\ \hline & & \\ \end{array} \begin{array}{c|c} c & q_1^a & a \\ \hline & & \\ \hline \end{array} \begin{array}{c|c} c & q_1^a & a \\ \hline & & \\ \hline \end{array} \begin{array}{c|c} c & q_1^a & a \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c|c} c & q_1^a & a \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c|c} c & q_1^a & a \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c|c} c & q_1^a & a \\ \hline & & \\ \hline \end{array} \end{array}$$

Introduction 00000	Tablea 00000	u Construction	Encoding as CNF 00000		Conclusion
Rewrite	Windows:	Force Vali	d Configuration	Changes	

$$\Sigma_{\mathsf{TM}} = \{a, b, c\}$$
 $\delta(q_1, a) = (q_2, {}^{\circ}b, \mathsf{L})$

Parallel Rewriting (**PR**)

Given:

- an initial string $x_0 \in \Sigma^I$ over an alphabet Σ representation of initial config
- a set of rewrite windows R of width w possible local behaviours of the Turing machine
- a step count t number of TM steps
- a set of final substring constraints R_{final} symbols of accepting states

Determine: $\exists x_1, \ldots, x_t \in \Sigma'$ s.t.

- $x_i \rightsquigarrow x_{i+1}$: "for all offsets there exists a rewrite window"
- there exists an element $x \in R_{final}$ which is a substring of x_t

Nondeterministic Certificate

- "guess" certificate of length $\leq k'$ with a single rewrite step
- add symbols $\{\underline{\#}, \underline{=}, \underline{*}, \underline{q}, \underline{\sigma}\}$ for initial state q and $\sigma : \Sigma_{\mathsf{TM}}$

Initial string:

ntroduction	Tableau Construction	Encoding as CNF	Conclusion
00000	000000	•0000	00

Chain of Reductions

Generic Problem on Turing Machines (TMGenNP)			
	explicit representation		
Parallel Rewriting (\mathbf{PR}) on arbitrary Σ			

Tableau C	LICOU	ing as CIVE CO	inclusion
00000 00000	0000	0	þ

Chain of Reductions

Generic Problem on Turing Machines (TMGenNP)		
	explicit representation	
Parallel Rewriting (\mathbf{PR}) on arbitrary Σ		
	string homomorphism	
Binary Parallel Rewriting on $\{0,1\}$		

To a Binary Alphabet

- arbitrary alphabet $\Sigma = \{\sigma_0, \dots, \sigma_{|\Sigma|-1}\}$
- string homomorphism $h: \Sigma^* \to \{0,1\}^*$

 $\sigma_i \mapsto 0^i 10^{|\Sigma|-i-1}$

in general: injective *uniform* homomorphisms
→ scale length up by constant factor
Example (Σ = {a, b}):

 $a \mapsto 01$ $b \mapsto 10$

To a Binary Alphabet

- arbitrary alphabet $\Sigma = \{\sigma_0, \dots, \sigma_{|\Sigma|-1}\}$
- string homomorphism $h: \Sigma^* \to \{0,1\}^*$

$$\sigma_i \mapsto 0^i 10^{|\Sigma|-i-1}$$

• in general: injective *uniform* homomorphisms \rightarrow scale length up by constant factor Example ($\Sigma = \{a, b\}$):

ntroduction	Tableau Construction	Encoding as CNF	Conclusion
0000	000000	00000	00

Chain of Reductions

Generic Problem on Turing Machines (TMGenNP)		
	explicit representation	
Parallel Rewriting (PR) on arbitrary Σ		
string homomorphism		
Binary Parallel Rewriting on $\{0,1\}$		
encode bits using APs		
Formula SAT (FSAT)		

roduction	Tableau Construction 000000	Encoding as CNF 00000

Encoding as a Boolean Formula

00000 000000 00000 00000 00000 00000 0000	ntroduction	Tableau Construction	Encoding as CNF	Conclusion
	0000	000000	00000	00

Chain of Reductions

Generic Problem on Turing Machines (TMGenNP)			
	explicit representation		
Parallel Rewriting (\mathbf{PR}) on arbitrary Σ			
string homomorphism			
Binary Parallel Rewriting on $\{0,1\}$			
encode bits using APs			
Formula SAT (FSAT)			
	Tseytin transformation		
SAT of CNFs (SAT)			

Contributions

Main result

If **TMGenNP** is NP-hard, then **SAT** is NP-complete.

- factorisation of the textbook proof [Sipser, 1997] to make mechanisation feasible: new PR problem
- full running-time analysis in L

Moreover:

- **TMGenNP** \in NP
- reduction k-SAT \leq_p Clique
- conditional NP-completeness of Clique
- formalisation of #P

Future Work

- missing reduction from L to TMGenNP
- space-related results, e.g. Savitch
- binary encodings

Introduction 00000	Tableau Construction	1 I	Encoding as CNF 00000	-	Conclusio 00
LOC					
	Compone	ent	Spec	Proof	
	complexity definition	ons by Fabian	290	506	
	prelimina	ries	281	634	
	flat finite t	types	83	223	
	problem definitions	+ NP proofs	1093	1860	
		correctness	1843	2481	
		time analysis	s 838	1706	
	3-PR to	PR	37	174	
	PR to Bina	aryPR	222	719	
	BinaryPR to	FSAT	312	1078	
	FSAT to	SAT	213	605	
	<i>k</i> - SAT to C	Clique	386	773	
	total		5230	10038	
	without extr	raction	3594	6857	
	without comp	utability	2339	4524	:

Comparison with [Gamboa and Cowles, 2004]

- existing formalisation in ACL2
- differences in setting:
 - single-sided infinite tapes
 - explicit nondeterminism instead of verifiers
 - reduction only to FSAT
- direct reduction, no factorisation → only seems to be feasible because of restricted setting
- no running time analysis with respect to reasonable model

Introduction	Tableau Construction	Encoding as CNF	Conclusion
00000	000000	00000	00

Rewrite Rules

Add one symbol to the right half of the tape:

а	b	IJ	IJ	
Ь	а	b]	

Introduction	Tableau Construction	Encoding as CNF	Conclusion
00000	000000	00000	00

Rewrite Rules

Add one symbol to the right half of the tape:

σ_1	σ_2	L]	
σ_3	σ_1	σ_2	J	

 $\sigma_i \in \Sigma_{\mathsf{TM}}$

σ_1	σ_2	
σ_3	σ_1	σ_2

Introduction	Tableau Construction	Encoding as CNF	Conclusion
00000	000000	00000	00

Rewrite Rules

Add one symbol to the right half of the tape:

σ_1	σ_2	IJ]	
σ_3	σ_1	σ_2	J	

 $\sigma_i \in \Sigma_{\mathsf{TM}}$

σ_1	σ_2	-	σ_2		IJ			
σ_3	σ_1	σ_2	σ_1	σ_2	J	σ_2	J	

• • •

Introduction	Tableau Construction	Encoding as CNF	Conclusion
00000		00000	00

Tape Shifts

Add one symbol to the right half of the tape:

σ_1	σ_2]	•••	σ_1	σ_2	—
σ_3	σ_1	σ_2	J		σ_3	σ_1	σ_2

Introduction 00000	Tableau Construction	Encoding as CNF 00000	Conclusion
- 0			

Tape Shifts

Add one symbol to the right half of the tape:

σ_1	σ_2	-	-	•••	σ_1	σ_2		$\sigma \in \Sigma_{TM}$
σ_3	σ_1	σ_2	IJ		σ_3	σ_1	σ_2	07 C Z 1M
Introduction	Tableau Construction 000000	Encoding as CNF	Conclusion					
--------------	---------------------------------------	-----------------	------------					
00000		00000	00					

Add one symbol to the right half of the tape:

σ_1	σ_2	L	J	•••
σ_3	σ_1	σ_2	J	

σ_1	σ_2	J]	
σ_1	σ_2]	J	

σ_1	σ_2	J
σ_1	σ_2	J

Introduction 00000	Tableau Construction	Encoding as CNF 00000	Conclusion

Add one symbol to the right half of the tape:

σ_1	σ_2	J]	•••	σ_1
σ_3	σ_1	σ_2	J		σ_3

σ	1	σ_2	L]		σ_1	σ_2	
σ	1	σ_2	L]		σ_1	σ_2	

•••	-	с	q_1^a	b	b	J]	
	J	J	q_2^c	b	b	b	J	

Introduction 00000	Tableau Construction	Encoding as CNF	Conclusion 00	

Add one symbol to the right half of the tape:

σ_1	σ_2	IJ	1	• • •	σ_1	σ_2		
σ_3	σ_1	σ_2	J		σ_3	σ_1	σ_2	

 $\sigma_i \in \Sigma_{\mathsf{TM}}$

σ_1	σ_2	J]	•••	σ
σ_1	σ_2]	J		σ

σ_1	σ_2	1
σ_1	σ_2	1

•••	L	с	q_1^a	b	b	J]	
	IJ	IJ	q_2^c	b	b	1	J	

Introduction 00000	Tableau Construction	Encoding as CNF	Conclusion	

Add one symbol to the right half of the tape:

σ_1	σ_2	J]	•••	σ
σ_3	σ_1	σ_2	J		σ

1

σ_1	σ_2	L	L	•••	σ_1	σ_2	IJ
σ_1	σ_2	L	L		σ_1	σ_2	IJ

•••	L	с	q_1^a	b	b	J]	•••
	J	J	q ^c ₂	b	b	J	J	

Introduction	Tableau Construction	Encoding as CNF	Conclusion
00000		00000	00
Polarities $\{ \stackrel{\leftarrow}{\cdot}, \stackrel{-}{\cdot}$	$,\stackrel{ ightarrow}{\cdot}\}$		

Add one symbol to the right half of the tape:

σ_1	σ_2	L	L	•••		σ_1	σ_2]
$\overrightarrow{\sigma_3}$	$\left \begin{array}{c} \rightarrow \\ \sigma_1 \end{array} \right $	$\overrightarrow{\sigma_2}$	L		-	$\stackrel{\rightarrow}{\sigma_3}$	$\overrightarrow{\sigma_1}$	$\overrightarrow{\sigma_2}$

σ_1	σ_2	IJ	J	
$\overline{\sigma_1}$	$\overline{\sigma_2}$]]	

σ_1	σ_2]
$\overline{\sigma_1}$	$\overline{\sigma_2}$]

Introduction	Tableau Construction	Encoding as CNF	Conclusion
00000		00000	00
Polarities $\{ \stackrel{\leftarrow}{\cdot}, \stackrel{-}{\cdot}$	$,\stackrel{ ightarrow}{\cdot}\}$		

Add one symbol to the right half of the tape:

σ_1	σ_2	L	L	• • •	_	σ_1	σ_2]
$\overrightarrow{\sigma_3}$	$\left \begin{array}{c} \rightarrow \\ \sigma_1 \end{array} \right $	$\overrightarrow{\sigma_2}$	L		_	$\stackrel{\rightarrow}{\sigma_3}$	$\overrightarrow{\sigma_1}$	$\overrightarrow{\sigma_2}$

Leave the tape unchanged:

σ_1	σ_2	J	J		σ_1	σ_2
$\overline{\sigma_1}$	$\overline{\sigma_2}$]		$\overline{\sigma_1}$	$\overline{\sigma_2}$

•••	IJ	с	q_1^a	b	b	J]	
	J		q ^c ₂	\overrightarrow{b}	\overrightarrow{b}	\overrightarrow{b}	J	

—

Introduction	Tableau Construction	Encoding as CNF	Conclusion
00000	000000	00000	00

Transition Rules – Example

 $m \in \Sigma_{\mathsf{TM}} \cup \{ \lrcorner \}, \sigma \in \Sigma_{\mathsf{TM}}$

$$\delta(q, a) = (p, {}^{\circ}b, L):$$

$$\frac{-}{-} q^{a} m_{1} + \frac{\sigma_{1}}{m_{2}} q^{a} m_{1}$$

$$\frac{-}{-} p^{-} \overrightarrow{b} + \frac{\sigma_{1}}{m_{2}} p^{\sigma_{1}} \overrightarrow{b}$$

$$\frac{-}{-} q^{a} - \frac{\sigma_{1}}{m_{2}} q^{a} + \frac{\sigma_{1}}{m_{2}} q^{a} \overrightarrow{b}$$

$$\frac{-}{-} q^{a} - \frac{\sigma_{1}}{m_{1}} q^{a} - \frac{\sigma_{1}}{m_{1}} \sigma_{2} q^{a}$$

$$\frac{-}{-} q^{a} - \frac{\sigma_{1}}{m_{1}} \sigma_{1} m_{1} \overrightarrow{b}$$

$$\frac{-}{-} q^{a} \sigma_{1} m_{1} \overrightarrow{b}$$

 Introduction
 Tableau Construction
 Encoding as CNF
 Conclusion

 00000
 00000
 00000
 00

Transition Rules – Example

 $m \in \Sigma_{\mathsf{TM}} \cup \{ \lrcorner \}, \sigma \in \Sigma_{\mathsf{TM}}$

In Coq mechanisation:

$$\delta(q, a) = (p, {}^{\circ}b, L):$$

$$\frac{m_1 | q^a | m_2}{\overrightarrow{m_3} | p^{m_1} | \overrightarrow{b}} \quad \frac{m_1 | m_2 | q^a}{\overrightarrow{m_3} | \overrightarrow{m_1} | p^{m_2}} \quad \frac{q^a | m_1 | m_2}{p^{m_3} | \overrightarrow{b} | \overrightarrow{m_1}}$$

Induces garbage, e.g.

$$\begin{array}{c|c} - & q^a & - \\ \hline \overrightarrow{\sigma} & p^- & \overrightarrow{b} \end{array}$$

Representation Relations

Representation of tape halves:

Representation of configurations:

$$\begin{array}{c|c} q; (ls, \sigma, rs) \sim_c & \hline rev \ left \ q^{\sigma} & right \\ \hline \\ s \sim_t^{z'} \ left \\ \hline \\ rs \sim_t^{z'} \ right \end{array}$$
, where:

Deterministic Simulation

$$\begin{array}{c|c} q; (ls, \sigma, rs) & \sim_c & \hline \text{rev left} & q^{\sigma} & right \\ \uparrow & & \vdots \\ q'; (ls', \sigma', rs') & \sim_c & \hline \text{rev left'} & {q'^{\sigma'}} & right' \end{array}$$

Deterministic Simulation

$$\begin{array}{c|c} q; (ls, \sigma, rs) & \sim_c & \hline \text{rev left} & q^{\sigma} & \textit{right} \\ & & & & \\ \gamma & & & & \\ q'; (ls', \sigma', rs') & \sim_c & \hline \text{rev left'} & q'^{\sigma'} & \textit{right'} \end{array}$$

left	q^{σ}	right
------	--------------	-------

Deterministic Simulation

$$\begin{array}{c|c} q; (ls, \sigma, rs) & \sim_c & \hline \text{rev left} & q^{\sigma} & right \\ & & & \\ & & & \\ \gamma & & & \\ q'; (ls', \sigma', rs') & \sim_c & \hline \text{rev left'} & {q'^{\sigma'}} & right' \\ \end{array}$$

left h_l q^σ h_r right	left	left h _l q	h_r h_r r	right
-----------------------------------	------	-----------------------	-----------------	-------

Deterministic Simulation

$$\begin{array}{c|c} q; (ls, \sigma, rs) & \sim_c & \hline \text{rev left} & q^{\sigma} & \textit{right} \\ & & & & \\ \gamma & & & & \\ q'; (ls', \sigma', rs') & \sim_c & \hline \text{rev left'} & q'^{\sigma'} & \textit{right'} \end{array}$$

left	hı	q^{σ}	h _r	right
	h' _l	$q'^{\sigma'}$	h' _r	

Deterministic Simulation

$$\begin{array}{c|c} q; (ls, \sigma, rs) & \sim_c & \hline \text{rev left} & q^{\sigma} & \textit{right} \\ & & & & \\ \gamma & & & & \\ q'; (ls', \sigma', rs') & \sim_c & \hline \text{rev left'} & q'^{\sigma'} & \textit{right'} \end{array}$$

left	h	q^{σ}	h _r	right
∃! <i>left′</i>	h' _l	$q'^{\sigma'}$	h' _r	∃!right′

Tape Transformations

Add symbol:

$$rs \sim_{t} h \land |rs| < z' \rightarrow \exists ! h', (h \rightsquigarrow \overrightarrow{a} :: h') \land a :: rs \sim_{t}^{+} \overrightarrow{a} :: h'$$
$$ls \sim_{t} h \land |ls| < z' \rightarrow \exists ! h', (revh \rightsquigarrow rev\overleftarrow{a} :: h') \land a :: ls \sim_{t}^{-} \overleftarrow{a} :: h'$$
Remove symbol:

$$\mathsf{a}::\mathsf{b}::\mathsf{rs}\sim_t\mathsf{a}::\mathsf{b}::\mathsf{h}\rightarrow\exists!\mathsf{h}',(\mathsf{a}::\mathsf{b}::\mathsf{h}\rightsquigarrow\overleftarrow{\mathsf{b}}::\mathsf{h}')\land\mathsf{b}::\mathsf{rs}\sim_t^-\overleftarrow{\mathsf{b}}::\mathsf{h}'$$

Leave unchanged:

$$a :: rs \sim_t a :: h \to \exists ! h', (a :: h \rightsquigarrow \overline{a} :: h) \land a :: rs \sim_t^\circ \overline{a} :: h'$$

Main Simulation Results

Completeness

Let (q, tape) be a configuration with $|tape| \le k$. There exists s with $(q, tape) \sim_c s$. If $(q, tape) \triangleright^{\le t} (q', tape')$, then there exists s' with $s \rightsquigarrow^t s'$, $(q', tape') \sim_c s'$ and $s' \models R_{\text{final}}$.

Soundness

Let s be given such that $(q, tape) \sim_c s$ and $|tape| \leq k$ for some q, tape. If $s \rightsquigarrow^t s'$ and $s' \models R_{\text{final}}$, then there exists (q', tape') with $(q', tape') \sim_c s'$ such that $(q, tape) \triangleright^{\leq t} (q', tape')$ and $|tape'| \leq z'$.

Formulas: Representation of Predicates

$$f: \mathcal{F} \coloneqq \mathsf{T} \mid v \mid f_1 \lor f_2 \mid f_1 \land f_2 \mid \neg f \qquad (v: \mathsf{var} \coloneqq \mathbb{N})$$

- explicit assignments $e : \mathcal{L}(\mathbb{B})$ to variables [s, s + |e|)
- encoding of predicates $p : \mathcal{L}(\mathbb{B}) \to \mathbb{P}$:

encodesPredAt start / $f p := \forall a, a \models f \leftrightarrow p (a[\text{start}, \text{start} + l])$

■ encodeBit var bit := if bit then var else ¬var

encodesPredAt v 1 (encodeBit v b)($\lambda e.e = [s]$)

The Tseytin Transformation

Goal: convert formula to CNF Example: $f = f_1 \lor f_2$

Naive approach:

$$f = f_1 \lor f_2 \rightsquigarrow N_1 \lor N_2$$

The Tseytin Transformation

Goal: convert formula to CNF Example: $f = f_1 \lor f_2$

Naive approach:

$$f = f_1 \lor f_2 \leadsto (C_1 \land C_2) \lor (C_3 \land C_4)$$

The Tseytin Transformation

Goal: convert formula to CNF Example: $f = f_1 \lor f_2$

Naive approach:

$$f = f_1 \lor f_2 \rightsquigarrow (C_1 \land C_2) \lor (C_3 \land C_4)$$

$$\leftrightarrow (C_1 \lor C_3) \land (C_1 \lor C_4) \land (C_2 \lor C_3) \land (C_2 \land C_4)$$

The Tseytin Transformation

Goal: convert formula to CNF Example: $f = f_1 \lor f_2$

Naive approach:

$$f = f_1 \lor f_2 \leadsto (C_1 \land C_2) \lor (C_3 \land C_4)$$

$$\leftrightarrow (C_1 \lor C_3) \land (C_1 \lor C_4) \land (C_2 \lor C_3) \land (C_2 \land C_4)$$

exponential blowup!

The Tseytin Transformation

Goal: convert formula to CNF Example: $f = f_1 \lor f_2$

Solution: introduce new variables: $f \mapsto (v, N)$ s.t.

$$f \models (v, N) \coloneqq \mathsf{SAT}f \leftrightarrow \mathsf{SAT}(v \land N)$$

The Tseytin Transformation

Goal: convert formula to CNF Example: $f = f_1 \lor f_2$

Solution: introduce new variables: $f \mapsto (v, N)$ s.t.

$$f \models (v, N) \coloneqq \mathsf{SAT}f \leftrightarrow \mathsf{SAT}(v \wedge N)$$

$$f_1 \models (v_1, N_1) \qquad f_2 \models (v_2, N_2)$$

Goal: $f = f_1 \lor f_2 \models (v, N)$ for fresh v

The Tseytin Transformation

Goal: convert formula to CNF Example: $f = f_1 \lor f_2$

Solution: introduce new variables: $f \mapsto (v, N)$ s.t.

$$f \models (v, N) \coloneqq \mathsf{SAT}f \leftrightarrow \mathsf{SAT}(v \wedge N)$$

$$f_1 \models (v_1, N_1) \qquad f_2 \models (v_2, N_2)$$

Goal: $f = f_1 \lor f_2 \models (v, N)$ for fresh v
 $N := \underbrace{N_1}_{f_1 \leftrightarrow v_1} \land \underbrace{N_2}_{f_2 \leftrightarrow v_2} \land$?

$$N$$
 : cnf C : clause v : var f : \mathcal{F}

The Tseytin Transformation

Goal: convert formula to CNF Example: $f = f_1 \lor f_2$

Solution: introduce new variables: $f \mapsto (v, N)$ s.t.

$$f \models (v, N) \coloneqq \mathsf{SAT}f \leftrightarrow \mathsf{SAT}(v \wedge N)$$

$$f_{1} \models (v_{1}, N_{1}) \qquad f_{2} \models (v_{2}, N_{2})$$

Goal: $f = f_{1} \lor f_{2} \models (v, N)$ for fresh v
 $N \coloneqq \underbrace{N_{1}}_{f_{1} \leftrightarrow v_{1}} \land \underbrace{N_{2}}_{f_{2} \leftrightarrow v_{2}} \land (v \leftrightarrow (v_{1} \lor v_{2}))$
 $\Rightarrow f \leftrightarrow v$

N: cnf C: clause v: var $f: \mathcal{F}$

Tseytin: Correctness Relation

•
$$N \subseteq ([0, b) \cup [nf, nf')),$$

- $v \in [nf, nf')$,
- for all $a \subseteq [0, b)$, there exists $a' \subseteq [nf, nf')$ such that $(a \cup a') \models N$,
- and for all a with $a \models N$, the equivalence $a \models v \leftrightarrow a \models f$ holds.

Basic Definitions: NP²

Problem $Q: X \to \mathbb{P}$

 $Q \in \mathsf{NP}$ iff:

- there is a verifier $V: X \to Y \to \mathbb{P}$
- *V* is polynomial-time computable
- V verifies Q
 - $V \times y \rightarrow Q \times$
 - $Q x \rightarrow \exists y, V x y \text{ and } y \text{ has polynomial size}$

²Definitions by Fabian

Basic Definitions: Polynomial-Time Reductions³

$P: X \to \mathbb{P}$ $Q: Y \to \mathbb{P}$

$$P \preceq_p Q := \exists f : X \to Y, \quad (\forall x, P \ x \leftrightarrow Q(f \ x))$$

 \land polynomial-time computable f

³Definitions by Fabian

Basic Definitions: Polynomial-Time Reductions³

$P: X \to \mathbb{P}$ $Q: Y \to \mathbb{P}$

$$P \preceq_p Q := \exists f : X \to Y, \quad (\forall x, P \ x \leftrightarrow Q(f \ x))$$

 \land polynomial-time computable f
 $\land f$ increases the size polynomially

³Definitions by Fabian

Basic Definitions: Polynomial-Time Reductions³

$P: X \to \mathbb{P}$ $Q: Y \to \mathbb{P}$

$$P \preceq_p Q := \exists f : X \to Y, \quad (\forall x, P \ x \leftrightarrow Q(f \ x))$$

 \land polynomial-time computable f
 $\land f$ increases the size polynomially

NP-hard
$$P := \forall Q, Q \in NP \rightarrow Q \preceq_p P$$

NP-complete $P := P \in NP \land NP$ -hard P

³Definitions by Fabian

Proving Time Bounds

$$\mathsf{cnf} \coloneqq \mathcal{L}(\mathsf{clause})$$

 $\mathcal{E}_N : \mathsf{assgn} \to \mathsf{cnf} \to \mathbb{B}$
 $\mathcal{E}_N \ \mathsf{a} \ [\] \coloneqq \mathsf{T}$
 $\mathcal{E}_N \ \mathsf{a} \ (C :: N) \coloneqq \mathcal{E}_C \ \mathsf{a} \ C \ \& \ \mathcal{E}_N \ \mathsf{a} \ N$

sextraction, running time in terms of arguments

$$T(\mathcal{E}_N) \ a \ [\] \ge 9$$

 $T(\mathcal{E}_N) \ a \ (C :: N) \ge T(\mathcal{E}_N) \ a \ N + T(\mathcal{E}_C) \ a \ C + 22$

2. bound by monotonic polynomial $p_{\mathcal{E}_N} : \mathbb{N} \to \mathbb{N}$ s.t.

$$\forall a \ N, T_{\mathcal{E}_N} \ a \ N \leq p_{\mathcal{E}_N}(\|\overline{a}\| + \|\overline{N}\|)$$

in this case: $p_{\mathcal{E}_N}(n) \coloneqq n \cdot p_{\mathcal{E}_C}(n) + c_{\mathcal{E}_N} \cdot (n+1)$

Introduction	Tableau Construction	Encoding as CNF	Conclusion
00000		00000	00

#P

counting problem $f: X \to \mathbb{N}$

Verifier Characterisation of #P

 $f \in \#\mathsf{P}$, iff there exists a verifier $R: X \to Y \to \mathbb{P}$ s.t.

- R runs in polynomial time
- R only accepts certificates of a polynomial size

$$\forall x, |\{y \mid R x y\}| = f x$$

finite cardinalities $|\{y \mid R \times y\}|$ defined using listability

Shortcomings:

- only computable counting problems definable (solution: functional relations)
- precise definition of counting problems requires a bit of care (e.g. #SAT)

Introduction	Tableau Construction	Encoding as CNF	Conclusion
00000	000000	00000	00

References

Asperti, A. and Ricciotti, W. (2015). A formalization of multi-tape turing machines. Theoretical Computer Science, 603.

Bläser. M.

Theoretical computer science: An introduction.

Cook, S. A. (1971).

The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC '71, pages 151–158, New York, NY. USA. ACM.

ntroduction	Tableau Construction	Encoding as CNF	Conclusion
00000	000000	00000	00

References

Forster, Y. and Kunze, F. (2019).
 A certifying extraction with time bounds from coq to call-by-value lambda-calculus.
 In Interactive Theorem Proving - 10th International Conference, ITP 2019, Portland, USA.
 Also available as arXiv:1904.11818.

Forster, Y., Kunze, F., and Roth, M. (2019). The weak call-by-value lambda-calculus is reasonable for both time and space.

Technical report.

Full version appeared as arXiv:1902.07515 To appear.

Introduction	Tableau Construction	Encoding as CNF	Conclusion
00000		00000	00
References			

- References
 - Forster, Y., Kunze, F., and Wuttke, M. (2020). Verified programming of turing machines in coq. In 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA. January 20-21, 2020, New York, NY, USA. ACM.

Gamboa, R. and Cowles, J. (2004). A mechanical proof of the cook-levin theorem. In Slind, K., Bunker, A., and Gopalakrishnan, G., editors, Theorem Proving in Higher Order Logics, pages 99–116, Berlin, Heidelberg. Springer Berlin Heidelberg.

📄 Karp, R. M. (1972). Reducibility among Combinatorial Problems, pages 85–103. Springer US, Boston, MA.

References

Sipser, M. (1997). Introduction to Theory of Computation.

PWS Publishing Company, 1 edition.